胶质母细胞瘤的遗传特性:异质性及临床意义
2015-08-03涂艳阳张永生第四军医大学唐都医院实验外科唐都医院陕西西安70038
涂艳阳,李 倩,张永生 (第四军医大学:唐都医院实验外科,唐都医院,陕西 西安70038)
0 引言
胶质母细胞瘤(glioblastomamultiforme,GBM)是最常见的、致死率最高的成人脑肿瘤,约占所有胶质瘤的60%~70%.虽然对胶质母细胞瘤的治疗取得了进步,但GBM患者的平均存活时间仍然较短,约为15个月[1].根据其临床特点,GBM被划分为原发性和继发性胶质母细胞瘤.原发性胶质母细胞瘤进展迅速,无癌前病变;继发性胶质母细胞瘤可进展为弥漫性星形细胞瘤(WHOⅡ级)或间变性星形细胞瘤(WHOⅢ级)[2].最近GBM基因谱研究发现了一些对诊断和预后评估有用的“生物标记物”,如异柠檬酸脱氢酶1(isocitrate dehydrogenase 1,IDH1)突变,该突变在继发性胶质母细胞瘤中较常见(>80%),但在原发性胶质母细胞瘤中很少见(<5%)[3-5].癌症基因组图谱(Cancer Genome Atlas,TCGA)研究基于基因表达水平把GBM分为四类分子分型:前神经元(proneural)、神经元(neural)、经典(classical)和间叶(mesenchymal)[6],加深了对原发性和继发性胶质母细胞瘤基因组改变的认识(表1).
1 分子异质性
最近大规模基因组分析明确了GBM的瘤内异质性,从而进一步细化了该病的病理组织学分类.TCGA研究揭示了GBM的遗传和表观遗传改变,及具有潜在预后或诊断价值的生物标记物,如TP53突变、IDH1突变、表皮生长因子受体(epidermal growth factor receptor,EGFR)的扩增或突变以及氧(6)-甲基鸟嘌呤-DNA甲基转移酶(O(6)-methylguanine-DNA methyltransferase,MGMT)启动子甲基化[7].
瘤内分子异质性是临床上对抗肿瘤复发、侵袭所面临的主要挑战.而靶向治疗能够针对性地作用于高表达特定蛋白的一类细胞亚群,而不影响其它细胞,通过这种筛选,其它细胞亚群则继续增殖[8].两个广泛应用的靶向治疗方案为:靶向EGFR或血管内皮生长因子的抑制剂.
基因表达谱分析表明GBM中存在与肿瘤发生相关的不同的分子和遗传变异,并可依据其匹配的标准分级再次细分.Verhaak等[6]依据其不同的遗传、表观遗传和转录修饰特点以及预测和诊断价值提出了四种分子亚型,包括前神经元、神经元、经典和间叶,如IDH1/2突变为前神经元,EGFR扩增为经典亚型、NF1缺失为间叶亚型[9].EGFR扩增、IDH1/2突变、MGMT启动子甲基化、1p/19q共缺失是目前主要的生物标志物.
表1 原发性和继发性胶质母细胞瘤不同的遗传和临床特征
2 分子标志物
2.1 表皮生长因子受体的扩增/突变体 EGFR是胶质细胞瘤最常见的治疗靶点,40%~60%患者存在该基因扩增[10-11].EGFR修饰激活多种细胞信号传导通路,并最终促进肿瘤的生长和进展.最常见的EGFR变异体是EGFRvIII,它是以配体非依赖的方式组成性激活EGFR,其对预后影响具有争议.Heimberger等[11]称EGFRvIII变异体与患者的治疗结果不具有相关性.Pelloski等[12]的研究结果显示其与预后不良相关,或是可作为较长存活期的预测分子[13],即使经过患者的分子预筛选,诸如厄洛替尼、吉非替尼或单克隆抗体等小分子抑制剂亦无法阻断EGFR信号通路[14].因此,EGFR靶向治疗的抗性机制及其基因扩增或变异体的预后价值仍需阐明[15].
2.2 异柠檬酸脱氢酶-1/异柠檬酸脱氢酶-2基因突变 IDH1和IDH2突变常见于II级、III级胶质瘤和继发性胶质母细胞瘤,高达70%~75%,在原发性胶质母细胞瘤中较罕见,只有5%.IDH1突变与TP53突变、1P/19q缺失呈强相关性[3].IDH1突变通常存在于TP53突变的年轻患者中,且预后良好.IDH1/2突变也与表观遗传改变密切相关[4,16].IDH 突变、1p/19q共缺失及神经胶质瘤CpG岛高甲基化表型(glioma-CpG island hypermethylator phenotype,G-CIMP)被认为是预后良好的标记物,也被用来预测化疗反应[17].
2.3 氧(6)-甲基鸟嘌呤-DNA甲基转移酶启动子甲基化 MGMT编码DNA修复酶能修复使用替莫唑胺烷化物化疗而产生的细胞毒性产物.MGMT的高甲基化或表观遗传沉默失活了DNA修复能力,使肿瘤细胞对治疗更敏感[18].MGMT启动子甲基化是IDH1/2突变/G-CIMP阳性神经胶质瘤的常见特征,而在G-CIMP阴性的原发性胶质母细胞瘤中不太普遍[19].
2.4 1型神经纤维瘤蛋白 NF1基因编码1型神经纤维瘤蛋白,这是一种肿瘤抑癌基因,负向调节Ras和哺乳动物星形细胞瘤的雷帕霉素靶点[20].NF1基因突变是胶质母细胞瘤间叶亚型最常见的特征[6].降解增加和蛋白激酶C的过度活化均能导致NF1蛋白失活[21].NF1缺失可以通过Ras信号通路的介导过度激活(mammalian target of rapamycin,mTOR),从而促进细胞增殖和迁移[22].虽然NF1的纯合缺失在体内体外均能促进细胞增殖,但这一单一因素不足以诱导遗传工程小鼠模型的肿瘤形成[23].一些研究报道利用基因工程小鼠模型显示,当神经胶质细胞的NF1纯合性丢失与TP53突变相关联时会诱导形成恶性星形细胞瘤[24],并且当同时发生磷酸酶、张力蛋白同源缺失,则会进一步进展为胶质母细胞瘤[25].
2.5 血小板衍生的生长因子受体α扩增 血小板衍生的生长因子受体α(platelet-derived growth factor receptor alpha,PDGFRA)基因在约13%的GBM中都有扩增,主要存在于前神经元亚型[6,9].PDGF 和PDGFR扩增已被证明与侵袭性脑胶质瘤生长相关.PDGFR和(或)其配体表达可通过自分泌、旁分泌途径促进肿瘤发生发展[26].此外,PDGFR可以非配体依赖的方式激活.PDGFRAΔ8,9是一种 PDGFRA的基因内缺失,与非配体依赖的下游c-Jun磷酸化相关联[27].点突变只能在Ⅳ级胶质瘤中检测到,表明PDGFRA是这类患者潜在的治疗靶点.
3 异质性临床意义
瘤内异质性具有两面性:一方面可作为预测预后的生物标记物来指导个体化治疗,另一方面它又是靶向治疗失败的诱导因素.GBM的遗传改变主要涉及三大信号通路包括:RTK/RAS/PI3K,P53/MDM2/MDM4和 RB/CDK4/INK4A[18].表 2 列出了一些临床试验中常见的靶向治疗.但是,诸如贝伐单抗的靶向药物和目前临床上的标准治疗相比并没有显现出较好的疗效,患者总生存期也未见延长[28].肿瘤亚克隆多样性、药物渗透性差和其他代偿途径的激活均会造成治疗的失利[29].
表2 常见的突变基因和治疗药物
总之,细胞亚型和新的生物标记物的鉴定,例如IDH1,有效地补充了传统的病理组织学分级,有助于进一步提高疾病的预后预测能力.然而,由于诊断方法的局限性以及肿瘤进展过程中的复杂变化,使得从根本上预测此类肿瘤的治疗效果仍有难度.因此,个体化治疗从一个理念到真正转化成临床实践,满足临床治疗需求仍有很长的路要走.采用靶向不同信号通路的多种抑制剂联合治疗或调控分子靶向剂都可能是未来胶质母细胞瘤治疗的发展方向.
[1]Ohgaki H,Kleihues P.Epidemiology and etiology of gliomas[J].Acta Neuropathol,2005,109(1):93-108.
[2]Peiffer J,Kleihues P.Hans-Joachim Scherer(1906-1945),pioneer in glioma research[J].Brain Pathol,1999,9(2):241-245.
[3]Watanabe T,Nobusawa S,Kleihues P,et al.IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas[J].Am J Pathol,2009,174(4):1149-1153.
[4]Nobusawa S,Watanabe T,Kleihues P,et al.IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas[J].Clin Cancer Res,2009,15(19):6002-6007.
[5]Killela PJ,Pirozzi CJ,Healy P,et al.Mutations in IDH1,IDH2,and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas[J].Oncotarget,2014,5(6):1515-1525.
[6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J].Cancer Cell,2010,17(1):98-110.
[7]The Cancer Genome AtlasResearch Network.Comprehensive genomic characterization defines human glioblastoma genes and core pathways[J].Nature,2008,455(7216):1061-1068.
[8]Bonavia R,Inda MM,Cavenee WK,et al.Heterogeneity maintenance in glioblastoma:a social network[J].Cancer Res,2011,71(12):4055-4060.
[9]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.
[10]Patel M,Vogelbaum MA,Barnett GH,et al.Molecular targeted therapy in recurrent glioblastoma:current challenges and future directions[J].Expert Opin Investig Drugs,2012,21(9):1247-1266.
[11]Heimberger AB,Hlatky R,Suki D,et al.Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients[J].Clin Cancer Res,2005,11(4):1462-1466.
[12]Pelloski CE,Ballman KV,Furth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.
[13]Montano N,Cenci T,Martini M,et al.Expression of EGFRvIII in glioblastoma:prognostic significance revisited[J]. Neoplasia,2011,13(12):1113-1121.
[14]Hegi ME,Rajakannu P,Weller M.Epidermal growth factor receptor:a re-emerging target in glioblastoma[J].Curr Opin Neurol,2012,25(6):774-779.
[15]Gan HK,Cvrljevic AN,Johns TG.The epidermal growth factor receptor variant III(EGFRvIII):where wild things are altered[J].FEBS J,2013,280(21):5350-5370.
[16]Weller M,Felsberg J,Hartmann C,et al.Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma:a prospective translational study of the German Glioma Network[J].J Clin Oncol,2009,27(34):5743-5750.
[17]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.
[18]Brennan CW,Verhaak RG,McKenna A,et al.The somatic genomic landscape of glioblastoma[J].Cell,2013,155(2):462-477.
[19]Wick W,Weller M,van den Bent M,et al.MGMT testing--the challenges for biomarker-based glioma treatment[J].Nat Rev Neurol,2014,10(7):372-385.
[20]Nissan MH,Pratilas CA,Jones AM,et al.Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence[J].Cancer Res,2014,74(8):2340-2350.
[21]McGillicuddy LT,Fromm JA,Hollstein PE,et al.Proteasomal and genetic inactivation of the NF1 tumor suppressor in gliomagenesis[J].Cancer Cell,2009,16(1):44-54.
[22]Sandsmark DK,Zhang H,Hegedus B,et al.Nucleophosmin mediates mammalian target of rapamycin-dependent actin cytoskeleton dynamics and proliferation in neurofibromin-deficient astrocytes[J].Cancer Res,2007,67(10):4790-4799.
[23]Bajenaru ML,Zhu Y,Hedrick NM,et al.Astrocyte-specific inactivation of the neurofibromatosis 1 gene(NF1)is insufficient for astrocytoma formation[J].Mol Cell Biol,2002,22(14):5100-5113.
[24]Zhu Y,Guignard F,Zhao D,et al.Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma[J].Cancer Cell,2005,8(2):119-130.
[25]Kwon CH,Zhao D,Chen J,et al.Pten haploinsufficiency acceleratesformation of high-grade astrocytomas[J].Cancer Res,2008,68(9):3286-3294.
[26]Assanah MC,Bruce JN,Suzuki SO,et al.PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain[J].Glia,2009,57(16):1835-1847.
[27]Clarke ID,Dirks PB.A human brain tumor-derived PDGFR-alpha deletion mutant is transforming[J].Oncogene,2003,22(5):722-733.
[28]Chinot OL,Wick W,Mason W,et al.Bevacizumab plus radiotherapytemozolomide for newly diagnosed glioblastoma[J].N Engl J Med,2014,370(8):709-722.
[29]Wen PY,Chang SM,Lamborn KR,et al.Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas:North American Brain Tumor Consortium trial 04-02[J].Neuro Oncol,2014,16(4):567-578.
[30]Gallego O,Cuatrecasas M,Benavides M,et al.Efficacy of erlotinib in patients with relapsed gliobastoma multiforme who expressed EGFRVIII and PTEN determined by immunohistochemistry[J].J Neurooncol,2014,116(2):413-419.
[31]Chakravarti A,Wang M,Robins HI,et al.RTOG 0211:a phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients[J].Int J Radiat Oncol Biol Phys,2013,85(5):1206-1211.
[32]Peereboom DM,Ahluwalia MS,Ye X,et al.NABTT 0502:a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme[J].Neuro Oncol,2013,15(4):490-496.
[33]Dresemann G,Weller M,Rosenthal MA,et al.Imatinib in combination with hydroxyurea versus hydroxyurea alone as oral therapy in patients with progressive pretreated glioblastoma resistant to standard dose temozolomide[J].J Neurooncol,2010,96(3):393-402.
[34]See WL,Tan IL,Mukherjee J,et al.Sensitivity of glioblastomas to clinically available MEK inhibitors is defined by neurofibromin 1 deficiency[J].Cancer Res,2012,72(13):3350-3359.
[35]ClinicalTrials.gov[Internet].Bethesda(MD):National Library of Medicine.[cited 2014 Jun 5].Available from:http://clinicaltrials.gov/ct2/show/NCT01227434.