光动力治疗病理性瘢痕的进展
2015-03-20崔晓美朱晶陈晓栋
崔晓美 朱晶 陈晓栋
光动力治疗病理性瘢痕的进展
崔晓美 朱晶 陈晓栋
病理性瘢痕是皮肤受损伤后的异常愈合,以成纤维细胞增殖和胶原蛋白沉积为特征。临床多采用综合疗法治疗瘢痕,取得了一定的疗效。由于某些治疗手段不良反应较大,患者已存在排斥心理。光动力疗法广泛应用于治疗体表的病变,同时其对体内肿瘤的干预疗效也被进行了较多研究。由于光动力疗法低毒性,国内外学者们对其治疗瘢痕的疗效已进行了大量研究。研究表明,光动力疗法能够抑制成纤维细胞的增殖和迁移,诱导凋亡,抑制胞外基质的形成,改善瘢痕外观,对治疗瘢痕有确切疗效。
瘢痕;病理过程;光化学疗法;光敏感药;成纤维细胞;胶原
治疗瘢痕一直是困扰皮肤科和整形科医生的难题之一,无确切有效的治疗手段。由于近年来光动力的迅速发展,学者们对其治疗瘢痕的疗效进行了大量的研究。现从细胞水平、动物模型及临床试验3个方面,概述光敏剂联合光动力治疗病理性瘢痕的研究进展。
作者单位:226001江苏,南通大学附属医院皮肤科
1 病理性瘢痕
病理性瘢痕是以大量成纤维细胞增生和过多的胶原蛋白沉积为特征,其影响外观,伴痒痛等不适感,甚至带来心理上的压力[1-2]。病理性瘢痕包括增生性瘢痕和瘢痕疙瘩。增生性瘢痕往往局限于创缘内,大部分会随着时间推移慢慢消退;瘢痕疙瘩的生长通常会超出创缘,侵犯周围正常皮肤,伴不断生长趋势和遗传倾向[3]。目前,临床多采用综合疗法治疗瘢痕,包括皮损内糖皮质激素注射、外科切除、浅表放射行局部压力治疗等。虽然,临床应用综合治疗方法取得一定疗效,但仍存在不良反应较大等缺点,疗效不十分满意[1,4-6]。有报道,瘢痕疙瘩也存在偶发的自然消退现象,但大部分呈缓慢、侵袭生长[7]。
2 光动力疗法
光敏剂进入人体后,随即进行光照,行光动力治疗。随着研究进展,科学家提出“药物-光照间隔”理念,灵活运用这一时间间隔,达到最佳疗效[8]。正常情况下,氨基酮戊酸(ALA)在细胞内的量很小,本身不产生光敏性。当外源性ALA进入体内后,被增生活跃的细胞选择性吸收并积累,在细胞内转化为原卟啉等卟啉类物质。细胞内的原卟啉是一种很强的光敏剂,经过特定波长的光照射后,即发生光动力反应,产生活性氧如单线态氧等,从而使增生活跃的细胞发生凋亡等一系列变化[9]。
3 病理性瘢痕与光动力
国内外常用于研究或试验的光敏剂有:ALA、甲基氨基酮戊酸酯和海姆泊芬等。激光波长600~800 nm[10]。
3.1 离体成纤维细胞:成纤维细胞主要参与该病的发生发展,因前者功能失调,导致大量的细胞外基质形成[11]。同时研究表明,3~6代以内的离体成纤维细胞尚未改变其自身的特性,仍具备内环境下的生物学特性,因此,学者们将成纤维细胞作为实验对象进行干预研究。
Li等[12]通过共聚焦显微镜,测得原卟啉在胞内聚集峰值对应的最小ALA浓度1 mmol/L,选择该浓度进行实验,激光波长为635 nm,能量密度为0.5 J/cm2~4 J/cm2,功率密度为10 mW/cm2。结果显示,ALA-PDT能诱导成纤维细胞的凋亡,产生细胞毒性作用,并且与能量密度呈正相关。Cai等[13]将630 nm波长激光照射于6.53 μmol/L海姆泊芬孵育的增生性瘢痕成纤维细胞,功率密度为10 mW/cm2,观察到海姆泊芬联合光动力能够使细胞凋亡增加,并且能够促进半胱天冬蛋白酶3的活性增加。
Chiu等[9]将成纤维细胞置于胶原基质,上覆以角质形成细胞,制成生物模型模拟人体瘢痕的组织构成。瘢痕模型构建4 d后,ALA联合635 nm激光干预,设能量密度5、10及20 J/cm2。5 J/cm2组细胞活力与对照组相比差异无统计学意义,而10 J/cm2组和20 J/cm2组较对照组显著降低;瘢痕模型的回缩率降低,并较对照组更早趋于稳定状态;胶原的分布较前稀少,密度较前降低。
3.2 动物模型:在细胞水平研究瘢痕尚存在不足,因当细胞离体后,在形态和生物学特性等方面会发生改变,处于瘢痕中间和边缘的成纤维细胞活力也有所差异[13]。动物模型的建造包括将人的瘢痕组织移植于动物(如裸鼠模型);在动物体表形成创伤,形成瘢痕(如兔耳瘢痕模型)。
Momtazi等[14]通过将人的皮肤移植于裸鼠,制作裸鼠瘢痕模型。从形态学观察、组织病理检查、免疫组化技术3个方面比较,得出裸鼠人皮肤移植形成的瘢痕和人增生性瘢痕相似,Wang等[15]和Seo等[16]得出相近结果,进而为研究奠定基础。
Wang等[17]利用兔耳制作增生性瘢痕动物模型,ALA浓度设10%和20%两个梯度,激光波长为635 nm,照射20 min,光斑大小为1.0 cm,能量密度为114.6 J/cm2。治疗共4次,每周1次。结果显示,ALA-PDT能通过调节基质金属蛋白酶和金属蛋白酶组织抑制物的比例,加速成纤维细胞的老化,促进胶原和胞外基质的降解,从而抑制瘢痕形成,干预效果可维持60 d。
3.3 临床研究:光动力治疗因其并发症和风险较低,现已用于瘢痕疙瘩行临床试验性研究。Nie等[18]将其用于治疗一左颏下复发的瘢痕疙瘩。患者为一36岁白种伊朗女性,无家族史,经过5次甲基氨基酮戊酸酯联合光动力治疗,敷药时间为3 h,激光波长为633 nm,能量密度为37 J/cm2,瘢痕疙瘩从原来的1.8 cm×0.6 cm缩小到1.4 cm×0.4 cm,变平坦,整体颜色得到很大改善。随访1年,未见复发。Bruscino等[19]对右下颏一外伤瘢痕行甲基氨基酮戊酸酯联合光动力治疗,药物浓度为16%,敷药3 h后予632 nm波长激光照射,能量密度为37 J/cm2,功率密度为70~100 mW/cm2。经过3次治疗,瘢痕外观得到较大改善。随访1年,未见复发。Campbell等[20]对2例患者进行甲基氨基酮戊酸酯联合光动力治疗,药物浓度为16.8%,敷药4 h后予(635±2)nm波长激光照射,能量密度为37 J/cm2,经过3个疗程,每个疗程2次治疗后,取得较好的疗效。
Sakamoto等[21]选取6例成人,共21处病理性瘢痕进行临床回顾性研究,该研究采取双盲试验。针对这21处瘢痕进行2~3次的20%ALA-PDT或16.8%甲基氨基酮戊酸酯治疗,敷药3 h后,采用波长为635 nm激光照射,能量密度为200 J/cm2。治疗1~3次,治疗间隔为1个月。治疗前后的图像资料被整理成92对,由3名皮肤科医生对其疗效进行判断。结果表明,2~3次的ALA-PDT或者甲基氨基酮戊酸酯联合光动力治疗对瘢痕的外观改善有确切的效果。
4 结语
光动力疗法是一种安全的治疗手段,其对瘢痕的干预效果也得到了许多国内外学者的研究及肯定。行光动力治疗时,光敏剂和激光波长的选择很重要,前者直接关系到光敏剂的药理原理,从而决定光动力的靶向效应;后者决定了光穿透组织的深度,从而决定光动力作用的深度。静脉注射级光敏剂海姆泊芬的研制,解决了光敏剂到达组织的深度这一问题,目前仍需改进的是如何增加激光穿透组织的深度。Kearney等[22]提出通过微针注射来改良给药途径,从而增加光动力的疗效,缩短系统给药导致的皮肤光敏时间。随着光动力的不断发展,其不但运用于皮肤良恶性病变的治疗,还被使用于脑部肿瘤、视网膜病变、膀胱癌及食管癌的试验治疗,并具有一定的疗效[23-24]。
[1]Kerwin LY,El Tal AK,Stiff MA,et al.Scar prevention and remodeling:a review of the medical,surgical,topical and light treatment approaches[J].Int J Dermatol,2014,53(8):922-936.
[2]Bran GM,Goessler UR,Hormann K,et al.Keloids:current concepts of pathogenesis (review)[J].Int J Mol Med,2009,24(3):283-293.
[3]Wolfram D,Tzankov A,Pülzl P,et al.Hypertrophic scars and keloids--a review of their pathophysiology,risk factors,and therapeutic management[J].Dermatol Surg,2009,35(2):171-181.
[4]Rabello FB,Souza CD,Farina Júnior JA.Update on hypertrophic scar treatment[J].Clinics (Sao Paulo),2014,69(8):565-573.
[5]Meaume S,Le Pillouer-Prost A,Richert B,et al.Management of scars:updated practical guidelines and use of silicones[J].Eur J Dermatol,2014,24(4):435-443.
[6]Monstrey S,Middelkoop E,Vranckx JJ,et al.Updated scar managementpracticalguidelines:non-invasiveand invasive measures[J].J Plast Reconstr Aesthet Surg,2014,67(8):1017-1025.
[7]Smith OJ,McGrouther DA.The natural history and spontaneous resolution of keloid scars [J].J Plast Reconstr Aesthet Surg,2014,67(1):87-92.
[8]Celli JP,Spring BQ,Rizvi I,et al.Imaging and photodynamic therapy:mechanisms,monitoring,and optimization [J].Chem Rev,2010,110(5):2795-2838.
[9]Chiu LL,Sun CH,Yeh AT,et al.Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast coculture[J].Lasers Surg Med,2005,37(3):231-244.
[10]Kloeters O,Tandara A,Mustoe TA.Hypertrophic scar model in the rabbit ear:a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction[J].Wound Repair Regen,2007,15(Suppl 1):S40-45.
[11]Sebastian A,Allan E,Allan D,et al.Addition of novel degenerate electrical waveform stimulation with photodynamic therapy significantly enhances its cytotoxic effect in keloid fibroblasts:first report of a potential combination therapy [J].J Dermatol Sci,2011,64(3):174-184.
[12]Li X,Zhou ZP,Hu L,et al.Apoptotic cell death induced by 5-aminolaevulinic acid-mediated photodynamic therapy of hypertrophic scar-derived fibroblasts [J].J Dermatolog Treat,2014,25(5):428-433.
[13]Cai H,Gu Y,Sun Q,et al.Effect of hematoporphyrin monomethyl ether-mediated photodynamic therapy on hypertrophic scar fibroblasts [J].Photodermatol Photoimmunol Photomed,2011,27(2):90-96.
[14]Momtazi M,Kwan P,Ding J,et al.A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar [J].Wound Repair Regen,2013,21(1):77-87.
[15]Wang J,Ding J,Jiao H,et al.Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process [J].Wound Repair Regen,2011,19(2):274-285.
[16]Seo BF,Lee JY,Jung SN.Models of abnormal scarring [J].Biomed Res Int,2013,2013:423147.
[17]Wang Q,Dong Y,Geng S,et al.Photodynamic therapy inhibits the formation of hypertrophic scars in rabbit ears by regulating metalloproteinases and tissue inhibitor of metalloproteinase-1[J].Clin Exp Dermatol,2014,39(2):196-201.
[18]Nie Z,Bayat A,Behzad F,et al.Positive response of a recurrent keloid scarto topicalmethylaminolevulinate-photodynamic therapy [J].Photodermatol Photoimmunol Photomed,2010,26(6):330-332.
[19]Bruscino N,Lotti T,Rossi R.Photodynamic therapy for a hypertrophic scarring:a promising choice [J].Photodermatol Photoimmunol Photomed,2011,27(6):334-335.
[20]Campbell SM,Tyrrell J,Marshall R,et al.Effect of MAL-photodynamic therapy on hypertrophic scarring [J].Photodiagnosis Photodyn Ther,2010,7(3):183-188.
[21]Sakamoto FH,Izikson L,Tannous Z,et al.Surgical scar remodelling after photodynamic therapy using aminolaevulinic acid or its methylester:a retrospective,blinded study of patients with field cancerization[J].Br J Dermatol,2012,166(2):413-416.
[22]Kearney MC,Brown S,McCrudden MT,et al.Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy [J].Photodiagnosis Photodyn Ther,2014,11(4):459-466.
[23]Lei TC,Glazner GF,Duffy M,et al.Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer [J].Photodiagnosis Photodyn Ther,2012,9(3):232-242.
[24]Hopper C.Photodynamic therapy:a clinical reality in the treatment of cancer[J].Lancet Oncol,2000,1:212-219.
Photodynamic therapy for the treatment of pathological scars
Cui Xiaomei,Zhu Jing,Chen Xiaodong.
Department of Dermatology,Affiliated Hospital of Nantong University,Nantong 226001,Jiangsu,China
Pathological scars are caused by abnormal healing after skin damage,and are characterized by fibroblast proliferation and collagen deposition.At clinics,comprehensive therapy is usually applied for treating scars,and has exerted some therapeutic effects.However,the severe adverse effects of some therapies have caused treatment refusal by patients.Photodynamic therapy has been widely used to treat superficial lesions,and has also been well studied for therapeutic intervention in visceral tumors.Because of the hypotoxicity of photodynamic therapy,its therapeutic effect on scars has been widely studied by domestic and foreign scholars.These researches have shown that photodynamic therapy can inhibit the proliferation and migration of fibroblasts,induce apoptosis,inhibit the formation of extracellular matrix,improve the appearance of scars,and exert definite therapeutic effects on scars.
Cicatrix;Pathologic processes;Photochemotherapy;Photosensitizing agents;Fibroblasts;Collagen
Chen Xiaodong,Email:dermatochen@163.com
10.3760/cma.j.issn.1673-4173.2015.06.008
陈晓栋,Email:dermatochen@163.com
2014-12-05)