乙醇胺修饰的石墨烯量子点的合成及生物成像应用
2015-02-25曾敏翔谢虞清甄杰明朱先军杨上峰
曾敏翔,陈 翔,谢虞清,管 剑,甄杰明,朱先军,杨上峰
(中国科学技术大学材料科学与工程系 中国科学院能量转换材料重点实验室合肥微尺度物质科学国家实验室,安徽 合肥,230026)
乙醇胺修饰的石墨烯量子点的合成及生物成像应用
曾敏翔,陈翔,谢虞清,管剑,甄杰明,朱先军,杨上峰
(中国科学技术大学材料科学与工程系 中国科学院能量转换材料重点实验室合肥微尺度物质科学国家实验室,安徽 合肥,230026)
摘要:作为新一代基于碳材料的量子点,乙醇胺(Ethanolamine,ETAM)修饰的石墨烯量子点(ETAM-GQDs)成功地通过一步水热法被合成出来,并通过实验显示出在生物成像应用中的潜力。以柠檬酸作为碳源、甘氨酸作为桥联剂,通过乙醇胺/去离子水共溶剂水热法,成功地实现了在石墨烯量子点表面修饰乙醇胺得到ETAM-GQDs。通过原子力显微镜(AFM)、光电子能谱(XPS)、拉曼光谱等对ETAM-GQDs进行表征,在测得ETAM-GQDs的稳态荧光光谱后,通过使用硫酸奎宁作为参比,在365 nm紫外光激发下测得的ETAM-GQDs的量子产率为38.2%。除此之外,活体细胞HL7702和ETAM-GQDs共培养后,通过荧光成像实验证实了ETAM-GQDs可以作为有效的生物成像剂。
关键词:石墨烯;量子点;光致发光;生物成像
1前言
具有光致发光特性的碳材料量子点,由于其低成本、低毒性、良好的化学惰性和生物相容性,近年来吸引了越来越多的研究兴趣[1-10]。作为传统半导体量子点的替代材料,基于碳材料的量子点具有广阔的应用,其中包括生物成像和生物标记[4-12]、荧光墨水[13]、光催化[14-15]、光致发光二极管以及太阳能电池等应用[16-18]。从形貌和尺寸来看,基于碳材料量子点可分为两大类:碳量子点和石墨烯量子点。碳量子点(CDs)通常被定义为尺寸小于10 nm的类球形碳颗粒[3-9,19];而石墨烯量子点(GQDs)则具有单层或多层石墨烯片状结构,并且其平面直径往往小于100 nm[3-9,20-21]。由于显著的量子限域效应和边界效应,石墨烯量子点具有许多有趣的特性并且近年来受到了越来越多的研究[3-9,20-47]。到目前为止,合成石墨烯量子点的方法包括水热/溶剂热切割法[22]、电化学氧化法[12,23]、等离子氧处理法[25]、化学全合成[26]、酸解法和氧化分解法等[3-9,24,27]。为了改善石墨烯量子点的表面化学特性[26-30,46],化学前驱体常常被用来表面修饰和引入其他元素的掺杂。2011年李等[29]报道了石墨烯量子点与低聚端基胺聚乙二醇反应得到蓝色荧光的修饰石墨烯量子点,其尺寸为5~19 nm,量子产率为7.4%。同年,Muellen等[31]利用多环芳烃作为前驱体(Hexa-Peri-Hexabenzocoronene,HBC)合成了多色碟状石墨烯量子点。尽管这些方法都能得到修饰石墨烯量子点,但是由于这些分步合成修饰法多使用昂贵的化学前驱体和复杂的操作流程,因而难以直接应用到工业生产[2-9,21,29-30]。因此,一种能够快速合成高量子产率的修饰石墨烯量子点有待研究发展。
本文报道以柠檬酸作为碳源、甘氨酸作为桥联剂、通过乙醇胺/去离子水共溶剂水热法,一步合成乙醇胺修饰的石墨烯量子点(ETAM-GQDs)。
2实验
2.1材料
柠檬酸(C6H8O7·H2O,99.5%),甘氨酸(99.5%),2-氨基乙醇(乙醇胺,ETAM,99.0%),所有化学品使用前未经进一步纯化。
2.2石墨烯量子点合成
ETAM-GQDs是将混合碳源(柠檬酸和甘氨酸)和表面钝化剂(乙醇胺)作为前驱体,一步水热处理而合成的。在一个典型的合成过程中,将1.0 g(4.8毫摩尔)柠檬酸一水合物和0.3 g(4.0毫摩尔)甘氨酸溶解在5 ml 2-氨基乙醇(ETAM)和水的混合溶剂(4∶1,体积比)并超声30 min。然后将得到的浓混合液在特氟隆高压釜中进行水热加热200 ℃、5 h。得到的深绿色粗产物用甲醇/丙酮作为洗脱剂,利用柱色谱纯化得到了乙醇胺修饰石墨烯量子点(ETAM-GQDs)。同时,也合成了参比石墨烯量子点(CAG-GQDs),即用纯的去离子水为溶剂不添加乙醇胺,其他步骤相同[48]。
2.3细胞毒性测试
HL7702细胞在5×105细胞/皿(Corning公司430166)接种。经6 h培养将细胞附着在培养皿后,将基质换成不同浓度的ETAM-GQDs(或CAG-GQDs)的DMEM溶液,并以无GQDs的DMEM培养基作为对照。孵育24 h后,用PBS缓冲溶液洗涤三次以除去多余的GQDs。荧光成像使用蔡司LSM710共聚焦显微镜,并选用405 nm激光激发。不同的激发波长荧光成像是通过使用不同的滤光片进行的。
3结果与讨论
3.1石墨烯量子点的合成与表征
石墨烯量子点合成过程如图1所示。使用乙醇胺作为共溶剂,并同时作为表面修饰的前驱体,通过高温条件下与羧基形成的酰胺键形式构建起聚合物框架,后者在高温条件下脱水脱羧碳化,最终形成石墨烯骨架[32,35]。
图1 ETAM-GQDs合成过程Fig.1 Schematic illustration of a synthetic route of ETAM-GQDs involving condensation to carbonization
ETAM-GQDs的形貌通过原子力显微镜(AFM)来表征。如图2所示,ETAM-GQDs的直径分布在20~40 nm的范围,并且其平均高度为1.6 nm,这些参数与其他方法制备的GQDs类似[20,26]。由于拉曼光谱能为碳纳米材料的电子结构提供灵敏而有价值的信息,因而使用拉曼光谱进一步探究了石墨烯量子点的结构[53]。在图2d拉曼光谱中,位于1 380 cm-1和1 585 cm-1的两个宽峰分别属于sp3碳原子振动的D带与sp2碳原子的G带,证实了石墨烯量子点的结构中sp2碳原子和sp3碳原子共存[34]。
为了研究ETAM-GQDs表面官能团,对其进行X射线光电子能谱(XPS能谱)表征。如图2e所示,ETAM-GQDs主要由碳、氧、氮3种元素构成,并且摩尔比为10∶3∶1。高分辨率的C1s XPS光谱图显示3种不同化学环境的碳分别在284.6,285.8和287.7电子伏特有峰值,而这些峰值归属于C=C,C-O/C-N,C=O,证明了羧酸、羟基和酰胺基团的存在,证实了ETAM成功修饰了石墨烯量子点。
图2 ETAM-GQDs的AFM图(a)以及半径分布(b)和高度分布(c), ETAM-GQDs的Raman谱(d), ETAM-GQDs的XPS谱图(e)Fig.2 AFM height image of ETAM-GQDs together with the diameter(a) ,height (b) and distributions(c), Raman spectrum of ETAM-GQDs(d), Survey XPS spectrum of ETAM-GQDs(e)
3.2光学性质
图3显示了ETAM-GQDs紫外可见(UV-vis)光谱和荧光发射(PL)谱图。ETAM-GQDs在甲醇中的UV-vis吸收光谱中,吸收峰在312 nm左右并且出现两个弱肩峰(278 nm和340 nm)。如图3内嵌图所示,即使在非常低的浓度,ETAM-GQDs在365 nm的紫外光下仍然显示明亮的蓝光(0.5 mg·mL-1)。ETAM-GQDs的光致发光光谱也显示为宽峰,并依赖于激发波长而位移。有趣的是,当激发波长由300 nm 逐渐增加至440 nm时,荧光发射峰也红移到较长波长区,并在400 nm激发获得了强度最高的发光峰(见图3)。这个最强发光峰较其它方法制备的小尺寸GQDs位于更长波长,可以解释为不同尺寸的纳米颗粒会导致不同态的分布以及GQDs的带隙[48]。而ETAM-GQDs在不同激发波长下显示不同发光性质的行为可以应用在多色成像中,特别是长波长荧光探针,将在下文有所讨论。
图3 ETAM-GQDs的紫外可见光谱和荧光发射谱图Fig.3 UV-vis absorption and PL spectra of ETAM-GQDs
ETAM-GQDs在365 nm的荧光量子产率是通过以硫酸奎宁作为参比,用相对量子产率计算法测定的,为38.2%[32]。 ETAM-GQDs的高荧光量子产率来源于表面态的增加以及氮元素的掺杂,因为这有利于增强激发态的荧光回迁[41,48]。为了进一步证实这一观点,通过相同的水热合成路线得到了一种不含乙醇胺修饰的GQDs(简称CAG-GQDs)作为对照。而不修饰乙醇胺的参比石墨烯量子点CAG-GQDs的荧光量子产率在相同的条件下测得为27.0%,这比ETAM-GQDs的38.2%低了约40%。这一结果表明,ETAM的修饰以及共掺杂氮和氧的表面钝化对其高荧光量子产率是至关重要的。
3.3生物成像
尽管乙醇胺修饰石墨烯量子点在体外显示出有趣的荧光特性,然而其能否在活体细胞中依然有显著的荧光活性仍然不得而知,特别是考虑到细胞内复杂的生物化学环境以及潜在活性的水解氧化酶体系[3-9]。因此,为了探索ETAM-GQDs能否在活体细胞中生物成像的应用潜力,实验使用了人肝细胞(HL7702细胞)在不同浓度ETAM-GQDs下进行了测试[39-40]。如图4所示,当使用不同浓度的ETAM-GQDs在405 nm激光激发下,荧光强度随量子点浓度的提高而显著提高。在浓度为2 mg/mL 时,孵育ETAM-GQDs的 HL7702细胞显示清晰的细胞结构。
图4 不同浓度的ETAM-GQDs条件下培养的细胞成像图Fig.4 Fluorescent images of HL7702 cells incubated without/with ETAM-GQDs at different concentrations
然而,当HL7702细胞在与对照石墨烯量子点CAG-GQDs培养后,几乎不显示任何可见荧光(如图5)。即便是HL7702细胞在CAG-GQDs的高浓度(2 mg/mL)中培养,其他条件与乙醇胺修饰石墨烯量子点一致,仍然未见明显荧光。考虑到对照样品CAG-GQDs量子产率比ETAM-GQDs低得多,并且表面化学环境也有所不同,很可能导致其在细胞体内不产生荧光。
图5 ETAM-GQDs和CAG-GQDs条件下培养的细胞成像图Fig.5 Fluorescent images of cells incubated with ETAM-GQDs or CAG-GQDs (both at 2 mg/mL) for 24 h
正如之前讨论,ETAM-GQDs发光峰值在不同的激发波长下有所差异,因而有潜力应用于多色生物成像技术。同时,使用HL7702细胞作为研究载体,在几个不同的激发波长下激发,研究ETAM-GQDs的活体荧光特性。如图6所示,不同的滤光调控的激发波长下,ETAM-GQDs的荧光图像显示出不同发光特性,说明了ETAM-GQDs对激发波长依赖性的光致发光行为[42]。其中,用ETAM-GQDs培养的细胞在330~385 nm的滤光片显示出明显的蓝色荧光信号,而这种现象是与荧光光谱所得到的结果一致。出人意料的是,荧光信号在530~550 nm的滤光片下也很强,可能由于黄色荧光在这种情况下容易被观察。但是,在460~495 nm和650~725 nm的滤光片下,细胞的荧光信号变得几乎不可见,这也和荧光发射光谱十分一致。尽管这种光致发光行为的详尽机理仍不清楚,但是活细胞的荧光稳定性仍然使ETAM-GQDs具有体外生物测试和医学成像的潜在应用。
图6 在ETAM-GQDs培养下的多色细胞成像图,图中各滤光片对应波段分别为:WU:330~385nm;WIG:530~550nm;WIBA:460~495nm;CY5:650~725nm。Fig.6 Fluorescent images of HL7702 cells incubated with ETAM-GQDs (2 mg/mL) taken with different filters.Including WU(transmission range:330~385nm),WIBA(460~495nm)and CY5(650~725nm).
4结论
(1)合成了新型乙醇胺修饰的石墨烯量子点。通过AFM表征,确定出所制备ETAM-GQDs的直径分布在20~40 nm的范围,且平均直径为~30 nm,平均高度为~1.6 nm。同时通过XPS证明了乙醇胺成功地修饰在石墨烯量子点上。
(2)对ETAM-GQDs进行了紫外可见光谱等光学表征,在365 nm 激光激发下,产物显示出明亮的蓝色,而荧光发射光谱也进一步显示了产物的荧光特性。另外通过合成参比石墨烯量子点,发现了乙醇胺修饰后量子产率提高了约40%,达到了38.2%(以硫酸奎宁为基准)。
(3)通过将产物与HL7702细胞共培养,研究了ETAM-GQDs和对照CAG-GQDs在活体细胞的生物成像,并且对ETAM-GQDs培养的HL7702细胞进行了多色成像研究,表明乙醇胺表面修饰后的ETAM-GQDs具有较好的生物相容性和荧光活性。这些结果将有利于未来碳基量子点的研究和生物应用。
参考文献References
[1]Xu X,Ray R,Gu Y,etal. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J].JournaloftheAmericanChemicalSociety,2004,126(40): 12 736-12 737.
[2]Sun Y P,Zhou B,Lin Y,etal. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence[J].JournaloftheAmericanChemicalSociety,2006,128(24): 7 756-7 757.
[3]Wang Y,Hu A. Carbon Quantum Dots: Synthesis,Properties and Applications[J].JournalofMaterialsChemistryC,2014,2(34): 6 921-6 939.
[4]Lin L,Rong M,Luo F,etal. Luminescent Graphene Quantum Dots as New Fluorescent Materials for Environmental and Biological Applications[J].TrACTrendsinAnalyticalChemistry,2014,54: 83-102.
[5]Bacon M,Bradley S J,Nann T. Graphene Quantum Dots[J].Particle&ParticleSystemsCharacterization,2014,31(4): 415-428.
[6]Luo P G,Yang F,Yang S T,etal. Carbon-based Quantum Dots for Fluorescence Imaging of Cells and Tissues[J].RSCAdvances, 2014,4(21): 10 791-10 807.
[7]Li H,Kang Z,Liu Y,etal. Carbon Nanodots: Synthesis, Properties and Applications[J].JournalofMaterialsChemistry, 2012,22(46): 24 230-24 253.
[8]Shen J,Zhu Y,Yang X,etal. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices[J].ChemicalCommunications,2012,48(31): 3 686-3 699.
[9]Baker S N,Baker G A. Luminescent Carbon Nanodots: Emergent Nanolights[J].AngewandteChemieInternationalEdition,2010, 49(38): 6 726-6 744.
[10]Cao L,Wang X,Meziani M J,etal. Carbon Dots for Multiphoton Bioimaging[J].JournaloftheAmericanChemicalSociety,2007, 129(37): 11 318-11 319.
[11]Chen B,Li F,Li S,etal. Large Scale Synthesis of Photoluminescent Carbon Nanodots and Their Application for Bioimaging[J].Nanoscale,2013, 5(5): 1 967-1 971.
[12]Gokhale R,Singh P. Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging[J].Particle&ParticleSystemsCharacterization, 2014,31(4): 433-438.
[13]Zhu L,Yin Y,Wang C F,etal. Plant Leaf-Derived Fluorescent Carbon Dots for Sensing,Patterning and Coding[J].JournalofMaterialsChemistryC,2013,1(32): 4 925-4 932.
[14]Zhang M,Yao Q,Guan W,etal. Layered Double Hydroxide-Supported Carbon Dots as an Efficient Heterogeneous Fenton-like Catalyst for Generation of Hydroxyl Radicals[J].TheJournalofPhysicalChemistryC,2014,118(19): 10 441-10 447.
[15]Li H,Liu R,Kong W,etal. Carbon Quantum Dots with Photo-Generated Proton Property as Efficient Visible Light Controlled acid Catalyst[J].Nanoscale,2014,6(2): 867-873.
[16]Chung W,Jung H,Lee C H,etal. Extremely High Color Rendering White Light from Surface Passivated Carbon Dots and Zn-doped AgInS 2 Nanocrystals[J].JournalofMaterialsChemistryC, 2014,2(21): 4 227-4 232.
[17]Zhu Z,Ma J,Wang Z,etal. Efficiency Enhancement of Perovskite Solar Cells Through Fast Electron Extraction: The Role of Graphene Quantum Dots[J].JournaloftheAmericanChemicalSociety,2014,136(10): 3 760-3 763.
[18]Kim J K, Park M J, Kim S J,etal. Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk HeteroJunction Solar Cells[J].ACSnano, 2013, 7(8): 7 207-7 212.
[19]Wang L,Wang Y,Xu T,etal. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties[J].Naturecommunications,2014,5.
[20]Ponomarenko L A, Schedin F, Katsnelson M I,etal. Chaotic Dirac Billiard in Graphene Quantum Dots[J].Science,2008, 320(5 874): 356-358.
[21]Zhu S,Tang S,Zhang J,etal. Control the Size and Surface Chemistry of Graphene for the Rising Fluorescent Materials[J].ChemicalCommunications,2012,48(38): 4 527-4 539.
[22]Pan D,Zhang J,Li Z,etal. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J].AdvancedMaterials,2010,22(6):734-738.
[23]Li L,Wu G,Yang G,etal. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives[J].Nanoscale,2013,5(10): 4 015-4 039.
[24]Zhou X,Zhang Y,Wang C,etal. Photo-Fenton Reaction of Graphene Oxide: a New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage[J].ACSNano,2012,6(8): 6 592-6 599.
[25]Yan X,Cui X,Li B,etal. Large,Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics[J].Nanoletters,2010,10(5): 1 869-1 873.
[26]Lin L,Zhang S. Creating High Yield Water Soluble Luminescent Graphene Quantum Dots Via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes[J].ChemicalCommunications, 2012,48(82):10 177-10 179.
[27]Lu J,Yeo P S E,Gan C K,etal. Transforming C60 Molecules into Graphene Quantum Dots[J].NatureNanotechnology,2011, 6(4): 247-252.
[28]Li Y,Zhao Y,Cheng H,etal. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups[J].JournaloftheAmericanChemicalSociety,2011,134(1):15-18.
[29]Shen J,Zhu Y,Chen C,etal. Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots[J].ChemicalCommunications,2011,47(9): 2 580-2 582.
[30]Li Q,Zhang S,Dai L,etal. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction[J].JournaloftheAmericanChemicalSociety,2012,134(46): 18 932-18 935.
[31]Liu R,Wu D,Feng X,etal. Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology[J].JournaloftheAmericanChemicalSociety,2011, 133(39): 15 221-15 223.
[32]Zhu S,Meng Q,Wang L,etal. Highly Photoluminescent Carbon Dots for Multicolor Patterning,Sensors and Bioimaging[J].AngewandteChemie,2013,125(14): 4 045-4 049.
[33]Wang J,Wang C F,Chen S. Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication,Pyrolysis Process and Multicolor Printing Patterns[J].AngewandteChemie,2012,124(37): 9 431-9 435.
[34]Wu X,Tian F,Wang W,etal. Fabrication of Highly Fluorescent Graphene Quantum Dots Using L-glutamic Acid for in Vitro/in Vivo Imaging and Sensing[J].JournalofMaterialsChemistryC,2013, 1(31): 4 676-4 684.
[35]Huang J J,Zhong Z F,Rong M Z,etal. An Easy Approach of Preparing Strongly Luminescent Carbon Dots and Their Polymer Based Composites for Enhancing Solar Cell Efficiency[J].Carbon,2014,70: 190-198.
[36]Qu S,Wang X,Lu Q,etal. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots[J].AngewandteChemie,2012,124(49): 12 381-12 384.
[37]Li H,He X,Kang Z,etal. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design[J].AngewandteChemieInternationalEdition,2010,49(26): 4 430-4 434.
[38]Yang S T,Wang X,Wang H,etal. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging agents[J].TheJournalofPhysicalChemistryC,2009,113(42): 18 110-18 114.
[39]Sun Y,Wang S,Li C,etal. Large Scale Preparation of Graphene Quantum Dots from Graphite with Tunable Fluorescence Properties[J].PhysicalChemistryChemicalPhysics,2013, 15(24): 9 907-9 913.
[40]Zardini H Z,Davarpanah M,Shanbedi M,etal. Microbial Toxicity of Ethanolamines-Multiwalled Carbon Nanotubes[J].JournalofBiomedicalMaterialsResearchPartA,2014,102(6): 1 774-1 781.
[41]Gupta V,Chaudhary N,Srivastava R,etal. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices[J].JournaloftheAmericanChemicalSociety,2011,133(26): 9 960-9 963.
[42]Wang H,Wang H Y,Gao B R,etal. Exciton Diffusion and Charge Transfer Dynamics in Nano Phase-Separated P3HT/PCBM Blend Films[J].Nanoscale,2011,3(5): 2 280-2 285.
[43]Xue L,Li Y,Dong F,etal. Donor-Acceptor Alternating Copolymers as Donor Materials for Bulk-Heterojunction Solar Cells: Effects of Molecular Structure on Film Morphology and Device Performance[J].Nanotechnology,2010,21(15): 155 201.
[44]Liu A,Dirsch O,Fang H,etal. HMGB1 Translocation and Expression is Caused by Warm Ischemia Reperfusion Injury,but not by Partial Hepatectomy in Rats[J].ExperimentalandMolecularPathology,2011,91(2): 502-508.
[45]Dong Y,Shao J,Chen C,etal. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid[J].Carbon,2012,50(12): 4 738-4 743.
[46]Zhu S,Zhang J,Tang S,etal. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications[J].AdvancedFunctionalMaterials,2012,22(22): 4 732-4 740.
[47]Yeh T F,Teng C Y,Chen S J,etal. Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination[J].AdvancedMaterials,2014,26(20): 3 297-3 303.
[48]Dong Y,Pang H,Yang H B,etal. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission[J].AngewandteChemieInternationalEdition,2013,52(30): 7 800-7 804.
[49]Anilkumar P,Wang X,Cao L,etal. Toward Quantitatively Fluorescent Carbon-Based “Quantum” Dots[J].Nanoscale,2011, 3(5): 2 023-2 027.
[50]Sun Y P,Wang X,Lu F,etal. Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots[J].TheJournalofPhysicalChemistryC,2008,112(47): 18 295-18 298.
[51]Sevilla M,Fuertes A B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose[J].Carbon,2009, 47(9): 2 281-2 289.
[52]Sevilla M,Fuertes A B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides[J].Chemistry-AEuropeanJournal,2009,15(16): 4 195-4 203.
[53]Kang H,Kulkarni A,Stankovich S,etal. Restoring Electrical Conductivity of Dielectrophoretically Assembled Graphite Oxide Sheets by Thermal and Chemical Reduction Techniques[J].Carbon, 2009,47(6): 1 520-1 525.
[54]Liang J,Jiao Y,Jaroniec M,etal. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance[J].AngewandteChemieInternationalEdition,2012,51(46): 11 496-11 500.
[55]Choi C H,Chung M W,Park S H,etal. Additional Doping of Phosphorus and/or Sulfur into Nitrogen-Doped Carbon for Efficient Oxygen Reduction Reaction in Acidic Media[J].PhysicalChemistryChemicalPhysics,2013,15(6):1 802-1 805.
[56]Wohlgemuth S A,White R J,Willinger M G,etal. A One-Pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels with Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction[J].GreenChemistry,2012,14(5): 1 515-1 523.
[57] Wu W,Zhang Z,Liebeskind L S. In Situ Carboxyl Activation Using a Silatropic Switch: a New Approach to Amide and Peptide Constructions[J].JournaloftheAmericanChemicalSociety, 2011,133(36):14 256-14 259.
[58]Somers R C,Bawendi M G,Nocera D G. CdSe Nanocrystal Based Chem-/Bio-Sensors[J].ChemicalSocietyReviews,2007,36(4): 579-591.
(编辑王方)
One-Pot Synthesis and Bioimaging Application ofEthanolamine-Grafted Graphene Quantum Dots
ZENG Minxiang,CHEN Xiang,XIE Yuqing,GUAN Jian,ZHEN Jieming,
ZHU Xianjun,YANG Shangfeng
(CAS Key Laboratory of Materials for Energy Conversion,Hefei National Laboratory for Physical Sciences at Microscale,
University of Science and Technology of China (USTC),Hefei 230026,China)
Abstract:Ethanolamine-grafted graphene quantum dots (ETAM-GQDs) as a novel type of carbon-based quantum dots have been successfully synthesized via a facile one-pot hydrothermal approach,and show potential application in bioimaging.The hydrothermal synthesis of ETAM-GQDs was accomplished by introducing ethanolamine (ETAM) as the co-solvent blending deionized water while citric acid and glycine are used as the main carbon source and bridge for condensation respectively. The size distribution of ETAM-GQDs was determined by AFM and TEM. The photoluminescent (PL) quantum yield of ETAM-GQDs was measured to be 38.2% under 365 nm light excitation by using quinine sulphate as a standard. The biocompatibility of ETAM-GQDs evaluated by MTT assay indicated the low toxicity of ETAM-GQDs at concentrations below 1 mg/mL. Fluorescent imaging of living HL7702 cells incubated with ETAM-GQDs demonstrated that ETAM-GQDs can be applied as an effective bioimaging agent.
Key words:graphene;quantum dots;photoluminescence;bioimaging
中图分类号:O69
文献标识码:A
文章编号:1674-3962(2015)11-0841-06
青年园地
收稿日期:2015-07-15
基金项目:国家自然科学基金资助项目(21371164)
第一作者:曾敏翔,男,1992年生,博士研究生
通讯作者:杨上峰,男,1975年生,教授,博士生导师,Email:sfyang@ustc.edu.cn
DOI:10.7502/j.issn.1674-3962.2015.11.06