柑橘果实防治慢性疾病及其活性评价方法研究进展
2015-02-15席万鹏王邦祥
李 怡,席万鹏,王邦祥
(1.西南大学园艺园林学院,重庆 400716;2.南方山地园艺学教育部重点实验室,重庆 401147;3.重庆生产力促进中心,重庆 401117)
柑橘果实防治慢性疾病及其活性评价方法研究进展
李 怡1,2,席万鹏1,2,王邦祥3,*
(1.西南大学园艺园林学院,重庆 400716;2.南方山地园艺学教育部重点实验室,重庆 401147;3.重庆生产力促进中心,重庆 401117)
柑橘果实含丰富生物活性物质,具有抗氧化、抗癌、预防循环系统疾病、抗炎症、抗过敏以及抗菌等活性,其医药和保健功能受到关注,柑橘生物活性物质的功能评价成为热点问题。本文系统地回顾了近年来柑橘果实生物活性与疾病防治的有关研究报道,总结了柑橘果实主要的生物活性及其评价方法的研究现状,旨在为进一步开发利用我国丰富的柑橘资源提供新信息。
柑橘,生物活性,慢性疾病,评价方法
柑橘是世界上最受欢迎的水果之一,有金柑、枸橼、柠檬、来檬、柚、葡萄柚、甜橙、酸橙、柑和橘等重要栽培类型。我国是柑橘果树的重要起源地,具有丰富的柑橘资源。近年的研究证明,柑橘果实含丰富的营养物质和生物活性成分,具有重要的营养、医药和保健价值[1]。生物活性物质是指存在于食品、生物体内的能与人体各种机能产生生物活化效应的一类物质,生物活性物质参与调控人体生理代谢,对维持身体健康具有重要意义。
21世纪的人们面临着诸如癌症、心血管疾病、糖尿病等退行性疾病的威胁,柑橘果实中具有大量能够防治这些流行病的生物活性物质。目前有大量研究对柑橘果实生物活性物质进行了评价,然而对柑橘果实生物活性评价方法却没有系统深入的研究。笔者对近年来国内外柑橘果实生物活性及评价研究报道做了一个系统总结,旨在为下一步研究提供新信息。
1 柑橘果实内生物活性物质
柑橘果实中的生物活性物质有香精油、多甲氧基黄酮、天然色素、果胶、多酚(酚酸、类黄酮)、黄酮苷(橙皮苷、柚皮苷等)、香豆素类、萜类等。大量的抗霉菌和抗酵母实验证明了柑橘精油及其单体具有抑菌作用。柑橘精油抑制食源性病原体如沙门氏菌(shlmonella.spp)和大肠杆菌O157∶H7等。多种多甲氧基黄酮(PMFs)也具有很强的抑菌作用[2],同时PMFs具有降脂、胰岛素增敏、降压、抗炎的功效[3]。柑橘皮、籽中富含的果胶、类胡萝卜素具有抗肿瘤、调剂免疫活性,柑橘果胶多糖增加能促进造血生长因子分泌及骨髓细胞增殖,对肠免疫系统具有调节作用[4]。柑橘多酚中研究最多的是类黄酮,类黄酮具有调节免疫、抗炎、抗氧化、抗肿瘤等活性。柑橘类黄酮能通过调节细胞信号转导调节T淋巴细胞、B淋巴细胞活性,提高免疫[5],通过抗自由基、抗脂质过氧化、抗金属螯合等途径清除自由基,实现抗氧化[6]。黄酮苷具有抗氧化、抗炎活性。柚皮苷通过正向调节超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶的基因的表达,增加超氧化物歧化酶和过氧化氢酶活性,调节抗氧化能力[7],橙皮苷通过抑制炎症反应相关的酶来抑制炎症反应[8]。香豆素类化合物具有维持血糖平衡[9],调节免疫[10]的作用。柑橘萜类化合物等能抑制炎症反应,单萜类物质在实验模型中表现出良好的抗癌活性和心脏保护活性。
柑橘果实中生物活性物质具有显著的抗氧化活性、抗炎活性和抗肿瘤活性,能预防由氧化应激和炎症因子启动和促发一系列慢性病,如高脂血症、冠心病、动脉粥样硬化,糖尿病和阿尔茨海默症等,对心血管疾病和癌症患者具有保护作用[11]。
2 柑橘果实内活性物质对人类重大慢性疾病防治及其机理
2.1 癌症防治及机理
统计发现,柑橘果实混合提取物中类黄酮(flavonids)、类胡萝卜素(carotenoid)和类柠檬苦素(limonoids)具有抗癌活性,其中研究报道最多的是类黄酮,类黄酮的抗癌活性表现在减轻细胞毒作用,减轻DNA损伤,抗癌细胞增殖与迁移,促癌细胞凋亡四个方面。在致癌的最初阶段类黄酮通过放大解毒作用控制肿瘤发展[12],橙皮素能显著抑制绝经乳腺癌小鼠肿瘤细胞的雌激素应答基因pS2的过度表达,使血浆中雌激素含量降低,同时抑制细胞对葡萄糖的吸收,从而抑制乳腺肿瘤发展[13];柚皮苷通过促进氧化损伤后的人类前列腺肿瘤细胞DNA修复,能防止前列腺肿瘤细胞突变,在一定程度上具有预防癌症的效果[14];柑橘类黄酮抑制癌细胞胞分泌基质金属蛋白酶(MMP),抑制癌细胞迁移、附着,入侵周围组织从而抗癌细胞增殖[15];橘皮素能诱导半光天冬氨酸-3激活,增加磷脂酰丝氨酸暴露面,诱导人类结肠癌细胞凋亡[16],另有研究表明,高温处理过的柑橘果胶能抑制肿瘤细胞增殖,将细胞周期阻滞在G2/M期并诱导依赖半胱天冬酶-3的细胞凋亡[17]。
2.2 糖尿病防治及机理
截至目前,柑橘果实中的类黄酮、香精油、香豆素类和果胶等,已被证明能够防治糖尿病。柑橘类黄酮(如柚皮苷、橙皮苷、川陈皮素,橘皮素)参与调控脂质代谢及其他与胰岛素抵抗综合征相关的代谢,被认为是治疗代谢失调症的新药,如2型糖尿病和心血管疾病。甜橙皮提取物富含酚酸、类黄酮,治疗雄性糖尿病小鼠后,小鼠肝脏、心脏、肾脏组织中耗水率、脂质过氧化反应与血清胰岛素水平平行降低[18]。柑橘皮的油包中含有丰富的香精油,柑橘香精油含丰富的单萜(柠檬烯和γ-松油烯)和倍半萜烯,细胞实验表明香橼精油具有抗氧化、降血糖、抗胆碱酯酶的特性[19]。Sugiura等研究无核蜜桔对链脲霉素诱导的糖尿病大鼠肝脏抗氧化防御系统的长期作用影响,发现无核蜜桔对由细胞损伤和肝功能障碍恶化引起的慢性高血糖有抑制作用[20]。葡萄柚种子甲醇提取物中含有不同浓度的生物碱、强心甾、类黄酮、单宁和皂苷,给药糖尿病大鼠后发现其具有降血压降血脂的生物效应,具有治疗1型糖尿病的潜力[21]。综上,柑橘生物活性物质能抑制与肥胖有关的胰岛素抵抗,促进胰岛素分泌,维持机体糖、脂代谢平衡,同时可以预防并治疗糖尿病综合征,从而对糖尿病防治有较好效果。
图1 柑橘生物活性物质防治糖尿病机理图Fig.1 The anti-diabetes mechanism of Citrus bioactive
2.3 心血管疾病防治及机理
心血管疾病严重危害人类健康,主要包括冠心病、先天性心脏病、高血压和动脉粥样硬化等。防治心血管疾病有关的柑橘果实生物活性物质主要有类黄酮、类柠檬苦素、香豆素类和膳食纤维等。柑橘果实生物活性物质主要通过抑制血栓形成、调节血脂、抑制动脉粥样硬化形成的途径防治心血管疾病。体外研究表明类黄酮通过长期的累积影响束缚血小板膜[22]。血小板参与止血、血栓形成、炎症过程,血小板聚合是冠状动脉血栓初始形成的关键程序,类黄酮通过调节血小板功能减少血块形成的风险[23]。血脂代谢异常是心血管疾病的诱发因子,柑橘生物活性物质能显著降低人体血胆固醇[24]。当小鼠由1%乳清酸膳食诱导肝三酰甘油大量积累,超低密度脂蛋白分泌减少,增强三酰甘油合成并降低氧化程度时,橙皮苷抑制肝脏中由乳清酸诱导的三酰甘油积累和胆固醇含量的升高[25]。Manthey研究了橙皮苷、柚皮苷,多甲氧基黄酮与橘皮素配方剂对膳食诱导仓鼠高胆固醇症的降血脂作用及代谢通路的影响。研究发现,含1%多甲氧基黄酮的膳食能显著减少血清总超低密度脂蛋白及低密度脂蛋白,降低血清三酰基甘油,说明肝脏中高水平的多甲氧基黄酮代谢物可能在活体中直接产生降血脂作用[26]。炎症刺激引起血管平滑肌增殖和迁移,容易引发动脉狭窄和粥样硬化。Chen Siyu等研究发现柚皮苷能降低血管平滑肌细胞(VSMC)中血红素氧合酶-1 mRNA(HO-1 mRNA)表达及其蛋白质活性,呈剂量依赖型降低TNF-α诱导的VSMC增殖及迁移,从而预防动脉粥样硬化[27]。
表1 部分柑橘品种生物活性及作用机理研究Table1 Biological activity and mechanism of different citrus varieties
2.4 肥胖防治及机理
近年来,世界肥胖人数急剧上升。肥胖影响消化系统和内分泌系统的功能,增加心血管疾病和癌症发生的危险性,如何减轻肥胖的疾病危险成为目前研究的焦点。从柑橘皮中分离出的多甲氧基黄酮和香豆素衍生物具有抗肥胖活性。在小鼠3T3-L1细胞脂肪积累实验中,5-羟基-6,7,8,30,40-五甲氧基黄酮表现出最强的抗肥胖效果[28]。研究表明,柚皮素能激活PPAR-α转录因子,上调脂肪酸氧化相关的基因表达,有助于体内降血脂、抗肥胖[29]。
2.5 其他慢性疾病防治及机理
2.5.1 抗HIV 研究发现柠檬苦素和诺米林能抑制HIV-1在所有细胞系统中复制,分离感染HIV-1菌株后的人类外周血单核细胞(PBMC)经柠檬苦素和诺米林处理后呈剂量依赖性抑制病毒复制[30]。柠檬汁治疗艾滋病人群由白色链珠菌引起的鹅口疮比传统龙胆紫有更好的效果[31]。客麦隆的传统治疗师发现用由柑橘、林生假榆橘、芦荟、青蒿,火筒树水煎液含类黄酮,具有抗氧化剂和抗菌剂功效,能轻易治愈艾滋病机会性感染皮肤病,如疱疹,卡波济氏肉瘤,皮癣[32]。
2.5.2 镇痛、抗痉挛 来檬、佛手精油主要成分柠檬烯(58.4%),β-蒎烯(15.4%),γ-萜品烯(8.5%),柠檬醛(4.4%)具有重要的解痉挛功效[33]。香橼水提液中的黄酮类和酚类物质具有止痛功能[34]。
2.5.3 抗阿尔茨海默病 茨海默病是老年人常见疾病之一,严重影响老年人的生活质量,目前文献报道生物碱类、黄酮类、皂苷类、香豆素类、酚酸类和木脂素类等植物化学成分针对阿尔茨海默病有较好的防治作用。Takashi招募了11例患者以探讨多奈哌齐单独治疗和川陈皮素干预多奈哌齐治疗阿尔茨海默病的稳定性和安全性,证明了川陈皮素对多奈哌齐治疗的阿尔茨海默病患者的认知障碍加重有预防作用[35]。
3 柑橘果实生物活性物质活性评价方法及研究现状
3.1 体外实验法
用体外法评价柑橘果实生物活性物质具有简便、敏感性高、用药量少、成本低的优点。用于评价柑橘果实生物活性物质的体外实验法有:生化实验法,细胞培养法,离体器官法。
评价天然活性物质抗氧化活性常用生化实验法。如现在流行的ORAC法,DPPH法,FRAP法等,纳米探针技术也用于评价抗氧化剂的还原能力[41]。Sun CD等用β-胡萝卜素漂白法测定了柑橘果实不同组织部位柠檬苦素和诺米林的抗氧化能力,发现不同品种不同组织中柠檬苦素和诺米林的抗氧化能力不同[42]。Sun Y等用DPPH法测定了中国主要柑橘品种生理落果的抗氧化活性,证明了柑橘生理落果果实是多种抗氧化物质的潜在来源[43]。评价柑橘果实生物活性物抗肿瘤活性、免疫活性时,常用细胞培养法。常用的细胞株有巨噬细胞、癌细胞[44-45]、小肠细胞等。巨噬细胞在机体免疫调控和免疫反应中扮演重要角色。Ha等用酶标法、酶联免疫法、单克隆抗体法检测了柑橘柚皮芸香苷对巨噬细胞中炎性介质的调控活性[46]。血管生成和免疫细胞粘附是癌症和动脉粥样硬化的重要过程,Kim J D利用体外培养的人脐静脉内皮细胞(HUVECs)研究了四种类黄酮的抗氧化能力、细胞毒性、潜在的抗血管生成细胞粘附能力,探讨了类黄酮对癌症和动脉粥样硬化的预防作用[47]。评价柑橘果实生物活性物抗病毒、抗血栓、抗心脏病活性时,常用离体器官法。Orallo 等对柑橘类黄酮橙皮素和柚皮素对完整大鼠主动脉潜在的血管舒张、抗氧化、环核苷酸磷酸二酯酶(PDE)抑制作用进行了研究,发现主动脉血管舒张作用主要与不同PDE同工酶抑制作用相关[48-49]。
3.2 体内实验法
生物体内环境复杂,单独的体外化学法不能完全地代表生物活性物质在体内的真实情况,对生物活性物质的研究依赖于体内实验法。目前,柑橘生物活性物质体内生物功能评价大多基于相应的动物模型。Kurowska用高胆固醇膳食家兔饲喂诱导高水平的低密度脂蛋白-胆固醇,补充橙汁、葡萄柚汁观察家兔的胆固醇代谢变化[50]。Lee等用高胆固醇膳食饲喂小鼠诱导高水平的三酰甘油、胆固醇,3-羟基-3-甲基戊二酰-辅酶A还原酶及脂酰辅酶A:胆固醇酰基转移酶活性,在其膳食中加入0.1%的柚皮苷后发现以上指标降低[51]。Jain等通过小鼠气囊炎症模型,测定炎症组织渗出物、组织形态学、血药含量等指标以验证柚皮苷、橙皮苷对小鼠炎症模型的抗氧化和抗炎能力,证实了柚皮苷、橙皮苷抗炎能力强于吲哚美辛[52]。Okuyama 用暂时性全脑缺血小鼠模型研究验证了橙皮油素抑制延迟海马神经元细胞凋亡及其机制[53]。
3.3 人群调查
近年来,观测生物活性物质在人体内的转化转运规律及对人的治疗作用和毒副作用,成为评价生物活性物质活性的重要形式。柑橘果实的生物活性评价人群调查实验主要在志愿者中进行。Olivier 等对24名营养状况良好的健康志愿者进行了为期18周的橙汁及其主要多酚橙皮苷摄入对免疫调节的诱导作用的调查[54]。Dragan等采用随机对照交叉实验调查了橙汁中橙皮苷对人类志愿者白细胞营养基因组的影响,发现橙汁中的柚皮苷在基因组效应中起着相关作用[55]。Bertuzzi等对80名男性健康志愿者进行了柠檬精油超氧阴离子清除活性评价实验,研究发现柠檬精油能减轻人类皮肤的脂质过氧化,对人类抵抗皮肤氧化损伤有实际应用[56]。
3.4 高通量筛选与组学新技术
随着基因组学、代谢组学等组学技术的发展及疾病防治的分子和细胞作用机制、药物作用靶标的不断阐明,采用多指标活性筛选体系进行植物活性成分的高通量筛选势在必行。活性成分的筛选模型已经从整体动物、系统、器官,组织深入到细胞、酶、受体、内源性活性物质基因。在柑橘生物活性物质结合代谢组学技术的研究中,色谱(HPLC,GC),质谱(MS),核磁共振(NMR)是常用的技术手段。常运用生物标记研究柑橘生物活性物质的营养功效及慢性疾病防治作用,脯氨酸甜菜碱、黄烷酮葡萄糖苷酸等被认定为研究柑橘体内代谢的标记物[57-58]。高通量筛选(High throughput screening,HTS)技术是以分子水平和细胞水平的实验方法为基础,具有微量、快速、灵敏和准确等特点。结合代谢组学与高通量技术筛选出代谢产物,能节省研究成本,提高研究效率,筛选出的代谢物可采用基因组学和蛋白组学做进一步的研究。功能基因芯片的出现为果品生物活性物质提供了一种简易、可行的初筛方法。Inglese等用定量高通量筛选的方法,发现了一系列的类黄酮选择性抑制荧光素酶,为其活性的药理机制做出了指示[59]。高通量药物实验证明橙皮苷能激活Notch1,抑制神经内分泌肿瘤标志物的表达从而抑制良性肿瘤细胞增殖[60]。Luc等用改造过的对昆虫蜕皮激素响应-受体高度敏感的蚕蛾细胞系,高通量筛选出酸橙为蜕皮激素受体拮抗剂[61]。
4 问题与展望
目前国内外对柑橘果实生物活性物质防治人类慢性疾病方面的研究领域和应用范围在不断扩大,但存在不少问题,主要如下:目前柑橘果实生物活性物质的研究多数停留在提取分离、结构鉴定以及基于细胞、器官、或是动物模型的总体评价,但对其详尽的调控机理研究,例如活性物质与靶标构效关系等研究较少;柑橘果实生物活性物质防治慢性疾病的研究基本上处在体外和动物实验阶段,且缺乏临床应用研究;柑橘果实生物活性物质在人体内发挥生理活性的量效关系等方面的研究较少。针对以上问题,笔者认为今后的研究重点应当是:建立适当的多指标柑橘果实生物活性物质筛选评价模型,利用高通量技术,全面的追踪分离活性成分;加强柑橘果实生物活性物质防治慢性疾病机理的研究,明确不同的活性作用靶标;加大人体内源性环境对柑橘果实生物活性物质活性的影响的研究,预测生物活性物质的体内生物利用度。随着柑橘果实内具有防治慢性疾病的生物活性物质被逐渐发现,及其相关的作用机制被阐明,柑橘在医药保健和食品领域有着广阔的开发利用前景。夯实柑橘果实内生物活性物质防治慢性疾病方面的研究将为柑橘功能性食品的开发提供更为稳健与长足的发展。
[1]Economos C,Clay W D. Nutritional and health benefits of citrus fruits[J]. Food,Nutrition and Agriculture(FAO)Alimentation,Nutrition et Agriculture(FAO)Alimentacion,Nutricion y Agricultura(FAO),1999.
[2]Manthey J A,Grohmann K,Montanari A Ash,et al. Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-a expression by human monocytes[J]. Journal of Natural Products,1999,62:441-444.
[3]Assini J M,Mulvihill E E,Huff M W. Citrus flavonoids and lipid metabolism[J]. Current opinion in lipidology,2013,24(1):34-40.
[4]Suh H J,Yang H S,Ra K S,et al. Peyer's patch-mediated intestinal immune system modulating activity of pectic-type polysaccharide from peel of[J]. Food chemistry,2013,138(2):1079-1086.
[5]Manthey J A,Guthrie N,Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation[J]. Current Medicinal Chemistry,2001,8(2):135-153.
[6]Bombardelli E,Morazzoni P. The flavonoids:new perspectives in biological activities and therapeutics[J]. Chimica oggi,1993,11(7-8):25-28.
[7]Jeon S M,Bok S H,Jang M K,et al. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits[J]. Life Sciences,2001,69(24):2855-2866.
[8]Sakata K,Hirose Y,Qiao Z,et al. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line[J]. Cancer Letters,2003,199(2):139-145.
[9]Ramesh B,Pugalendi K V. Influence of umbelliferone on glycoprotein components in diabetic rats[J]. Toxicology Mechanisms and Methods,2007,17(3):153-159.
[10]Jun D Y,Kim J S,Park H S,et al. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or-independent caspase cascade[J]. Carcinogenesis,2007,28(6):1303-1313.
[11]Sen S,Chakraborty R,Sridhar C,et al. Free radicals,antioxidants,diseases and phytomedicines:current status and future prospect[J]. International Journal of Pharmaceutical Sciences Review and Research,2010,3(1):91-100.
[12]Manach C,Regerat F,Texier O,et al. Bioavailability,metabolism and physiological impact of 4-oxo-flavonoids[J]. Nutrition Research,1996,16(3):517-544.
[13]Yang Y,Wolfram J,Boom K,et al. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells[J].Cell Biochemistry and Function,2013,31(5):374-379.
[14]Gao K,Henning S M,Niu Y,et al. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells[J]. The Journal of Nutritional Biochemistry,2006,17(2):89-95.
[15]Liu H,Radisky D C,Nelson C M,et al. Mechanism of Akt1 inhibition of breast cancer cell invasion reveals a protumorigenic role for TSC2[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(11):4134-4139.
[17]Hao M,Yuan X,Cheng H,et al. Comparative studies on the anti-tumor activities of high temperature-and pH-modified citrus pectins[J]. Food & function,2013,4(6):960-971.
[18]Parmar H S,Kar A. Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice[J]. Biofactors,2007,31(1):17-24.
[19]Conforti F,Statti G A,Tundis R,et al. In vitro activities of Citrus medica L. cv. Diamante(Diamante citron)relevant to treatment of diabetes and Alzheimer's disease[J]. Phytotherapy Research,2007,21(5):427-433.
[20]Sugiura M,Ohshima M,Ogawa K,et al. Chronic administration of Satsuma mandarin fruit(Citrus unshiu Marc.)improves oxidative stress in streptozotocin-induced diabetic rat liver[J]. Biological and Pharmaceutical Bulletin,2006,29(3):588-591.
[21]Adeneye A A. Hypoglycemic and hypolipidemic effects of methanol seed extract of Citrus paradisi Macfad(Rutaceae)in alloxan-induced diabetic Wistar rats[J]. Nigerian Quarterly Journal of Hospital Medicine,2007,18(4):211-215.
[22]Van Wauwe J,Goossens J. Effects of antioxidants on cyclooxygenase and lipoxygenase activities in intact human platelets:comparison with indomethacin and ETYA[J]. Prostaglandins,1983,26(5):725-730.
[23]Guerrero J A,Lozano M L,Castillo J,et al. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor[J]. Journal of Thrombosis and Haemostasis,2005,3(2):369-376..
[24]Cha J Y,Cho Y S,Kim I,et al. Effect of hesperetin,a citrus flavonoid,on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats[J]. Plant Foods for Human Nutrition,2001,56(4):349-358.
[25]Kim H K,Jeong T S,Lee M K,et al. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats[J]. Clinica chimica acta,2003,327(1):129-137.
[26]Kurowska E M,Manthey J A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia[J]. Journal of Agricultural and Food Chemistry,2004,52(10):2879-2886.
[27]Chen S,Ding Y,Tao W,et al. Naringenin inhibits TNF-α induced VSMC proliferation and migration via induction of HO-1[J]. Food and Chemical Toxicology,2012,50(9):3025-3031.
[28]Hirata T,Fujii M,Akita K,et al. Identification and physiological evaluation of the components from fruits as potential drugs for anti-corpulence and anticancer[J]. Bioorganic & Medicinal Chemistry,2009,17(1):25-28.
[29]Cho K W,Kim Y O,Andrade J E,et al. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats[J]. European Journal of Nutrition,2011,50(2):81-88
[30]Battinelli L,Mengoni F,Lichtner M,et al. Effect of limonin and nomilin on HIV-1 replication on infected human mononuclear cells[J]. Planta medica,2003,69(10):910-913.
[31]Wright S C,Maree J E,Sibanyoni M. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass()and gentian violet[J]. Phytomedicine,2009,16(2):118-124.
[32]Noumi E,Manga P N. Traditional medicines for HIV/AIDS and opportunistic infections in north-west Cameroon:Case of skin infections[J]. Am J Trop Med Hyg,2011,1:44-64.
[33]Spadaro F,Costa R,Circosta C,et al. Volatile composition and biological activity of key lime Citrus aurantifolia essential oil[J]. Natural Product Communications,2012,7(11):1523-1526.
[34]Negi A,Juyal V. Analgesic activity of fruit decoction of Citrus medica Linn[J]. Journal of Pharmacy Research,2010,3(9):2119-2121.
[35]Seki T,Kamiya T,Furukawa K,et al. Nobiletin-rich Citrus reticulata peels,a kampo medicine for Alzheimer's disease:A case series[J]. Geriatrics & gerontology international,2013,13(1):236-238.
[36]Putri H,Nagadi S,Larasati Y A,et al. Cardioprotective and hepatoprotective effects of peels extract on rats model[J]. Asian Pacific journal of tropical biomedicine,2013,3(5):371-375.
[37]Nakajima A,Aoyama Y,Nguyen T T L,et al. Nobiletin,a citrus flavonoid,ameliorates cognitive impairment,oxidative burden,and hyperphosphorylation of tau in senescence-accelerated mouse[J]. Behavioural brain research,2013,250:351-360.
[38]Mäkynen K,Jitsaardkul S,Tachasamran P,et al. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp([L.]Osbeck)in Thailand[J]. Food chemistry,2013,139(1):735-743.
[39]Panara K. A review on phytochemical and pharmacological properties of Citrus medica Linn[J]. International Journal of Pharmaceutical & Biological Archive,2012,3(6).
[40]Costa C A R A,Cury T C,Cassettari B O,et al. Citrus aurantium L. essential oil exhibits anxiolytic-like activity mediated by 5-HT1A-receptors and reduces cholesterol after repeated oral treatment[J]. BMC Complementary and Alternative Medicine,2013,13(1):42.
[41]Huang D,Ou B,Prior R L. The chemistry behind antioxidant capacity assays[J]. Journal of Agricultural and Food Chemistry,2005,53(6):1841-1856.
[42]Sun C D,Chen K S,Chen Y,et al. Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation[J]. Food Chemistry,2005,93(4):599-605.
[43]Sun Y,Qiao L,Shen Y,et al. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits[J]. Journal of Food Science,2013,78(1):C37-C42.
[44]Chidambara Murthy K N,Jayaprakasha G K,Kumar V,et al.Citrus limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2314-2323.
[45]Lee S,Ra J,Song J Y,et al. Extracts from promote immune-mediated inhibition of tumor growth in a murine renal cell carcinoma model[J]. Journal of ethnopharmacology,2011,133(3):973-979.
[46]Ha S K,Park H Y,Eom H,et al. Narirutin fraction from citrus peels attenuates LPS-stimulated inflammatory response through inhibition of NF-κB and MAPKs activation[J]. Food and Chemical Toxicology,2012,50(10):3498-3504.
[47]Kim J D,Liu L,Guo W,et al. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion[J]. The Journal of Nutritional Biochemistry,2006,17(3):165-176.
[49]Orallo F,Camia M,Alvarez E,et al. Implication of cyclic nucleotide phosphodiesterase inhibition in the vasorelaxant activity of the citrus-fruits flavonoid(±)-naringenin[J]. Planta medica,2005,71(2):99-107.
[50]Kurowska E M,Borradaile N M,Spence J D,et al. Hypocholesterolemic effects of dietary citrus juices in rabbits[J]. Nutrition Research,2000,20(1):121-129.
[51]Lee S H,Park Y B,Bae K H,et al. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase in rats[J]. Annals of Nutrition and Metabolism,1999,43(3):173-180.
[52]Jain M,Parmar H S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation[J]. Inflammation Research,2011,60(5):483-491.
[53]Okuyama S,Minami S,Shimada N,et al. Anti-inflammatory and neuroprotective effects of auraptene,a citrus coumarin,following cerebral global ischemia in mice[J]. European Journal of Pharmacology,2013,699(1):118-123.
[54]Perche O,Vergnaud-Gauduchon J,Morand C,et al. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans[J]. Clinical Nutrition,2014,33(1):130-135.
[55]Milenkovic D,Deval C,Dubray C,et al. Hesperidin displays relevant role in the nutrigenomic effect of orange juice on blood leukocytes in human volunteers:a randomized controlled cross-over study[J]. PloS one,2011,6(11):e26669.
[56]Bertuzzi G,Tirillini B,Angelini P,et al. Antioxidative action of citrus limonum essential oil on skin[J]. European Journal of Medicinal Plants,2013,3(1):1-9.
[57]Heinzmann S S,Brown I J,Chan Q,et al. Metabolic profiling strategy for discovery of nutritional biomarkers:proline betaine as a marker of citrus consumption[J]. The American Journal of Clinical Nutrition,2010,92(2):436-443.
[58]Pujos-Guillot E,Hubert J,Martin J F,et al. Mass spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegeTableintake:citrus fruit as a case study[J]. Journal of Proteome Research,2013,12(4):1645-1659.
[59]Inglese J,Auld D S,Jadhav A,et al. Quantitative high-throughput screening:a titration-based approach that efficiently identifies biological activities in large chemical libraries[J]. Proceedings of the National Academy of Sciences,2006,103(31):11473-11478.
[60]Zarebczan B,Pinchot S N,Kunnimalaiyaan M,et al. Hesperetin,a potential therapy for carcinoid cancer[J]. The American Journal of Surgery,2011,201(3):329-333.
[61]Swevers L,Kravariti L,Ciolfi S,et al. A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds[J]. The FASEB journal,2004,18(1):134-136.
Advances in chronic diseases preventation and bioactive compounds evolution of citrus fruits
LI Yi1,2,XI Wan-peng1,2,WANG Bang-xiang3,*
(1.College of Horticulture and Landscape Architecture,Southwest University,Chongqing 401147,China;2.Key Laboratory of Horticulture Science for Southern Mountainous Regions,Ministry of Education,Chongqing 400715,China;3.Chongqing Productivity Promotion Center,Chongqing 401147,China)
The citrus bioactive compounds has been wildly concerned because of it’s function of medical and health care,such as antioxidant,anticancer,anti-cardiovascular disease,anti-inflammatory,anti-allergic and anti-microbial. The evolution of citrus bioactivity became a hot topic of the world. In this paper,the recent literature on the bioactivator and its role in chronic disease prevention and treatment were reviewed. The new advances made in the cure mechanism and related areas were summarized in an attempt to provide new information for future exploitation and utilization of rich citrus genetic resources in China.
citrus;bioactivity;chronic disease;evaluation method
2014-08-11
李怡(1990-),女,硕士在读,研究方向:果品营养与质量安全。
*通讯作者:王邦祥(1978-),男,硕士研究生,助理研究员,主要从事农业科技研究。
国家自然科学基金项目(31171930);中央高校基本科研科研业务费专项(XDJK2014A014);重庆市“创新团队建设计划”项目(KJTD201333);重庆市农业科技成果转化资金项目(cstc2014jcsf-nycgzhA80009)。
TS255.1
A
:1002-0306(2015)09-0366-06
10.13386/j.issn1002-0306.2015.09.072