“小数乘整数”的典型错误及对策
2014-09-27季顺权
季顺权
一、小数乘整数的教学现状
小数乘整数是人教版五年级上册的教学内容,教材说明指出:在具体情境中,小数乘整数很容易转化为整数乘法,联系整数乘、除法的意义也很容易理解小数乘整数以及除数是整数的小数除法的计算意义,因而这部分内容便于学生通过自主探索掌握计算方法。
在实际教学中发现,学生理解小数乘整数意义较为轻松,然而在探索计算方法时,却总会出现种种问题,从课堂教学实践来看,以三种现象最为突出。
1.写0.8乘3的竖式时,3与谁对齐?学生中通常有两种观念:一种认为3应该与0对齐;一种认为3可以与8对齐;
2.在引导学生计算出0.8×3=2.4和2.35×3=7.05后,引导学生观察积的小数点是怎么确定的。大多数学生认为积的小数点与小数因数的小数点对齐,这时许多教师无法给出正确的引导方式,只能空洞地说:这种说法是错误的,以后会进一步学习。
3. “练一练”的“3.7×5、0.18×5”与例题相似,学生能顺利完成,到“46×1.3”时,学生出现了以下几种做法:
■
经过了解发现,第①种做法的学生认为“试一试”中,要求用计算器计算,因此这里也用计算器计算;第②种做法的学生认为46×0.3=13.8,所以应该写13.8;第③种做法的学生注意了先按整数乘法计算出结果,所以就先列出整数乘法的算式,再写上积,确定小数点。
二、原因分析
1.“相同数位对齐”的负迁移
在学习小数乘法之前,学生学习了小数加法的计算方法,已经形成了小数点对齐的定式思维,同时在学生以往所有的竖式中(加、减、乘、除)都一再强调“相同数位对齐”,这些知识使学生产生计算小数乘法时也应该小数点对齐的思维定式。同时在主题图的探究中,结合小数乘整数的意义,让学生在列出“0.8×3”后用“0.8+0.8+0.8=2.4”计算,再次强化了小数点对齐,因此学生在列“0.8×3”的竖式时,认为将3与0对齐很正常。
2.教材编排体系的不足
教材在编排小数乘整数时用了例题“0.8×3”和“2.35×3”,以及“试一试”中的三道题,通过对这些算式计算方法的探究、比较,使学生明确因数中的小数是几位小数,积也是几位小数。学生往往受小数加法的影响认为积的小数点与因数的小数点对齐,而且小数乘整数是符合积的小数点与小数因数的小数点对齐这一现象的。更为关键的是,当学生产生这种想法后,后续的学习中接触到因数中的小数是几位小数,积也是几位小数时,由于有了先入为主的概念,导致学生在学习小数乘小数时困难重重。教材编排的例题都是小数乘一位数,“试一试”中的小数乘两位数是学生用计算器计算,因此学生在用竖式计算小数乘两位数时无所适从,虽然教师讲了将小数乘法看成整数乘法计算,但是学生眼里明明看到的就是小数,他们很疑惑:为什么要看成整数?怎样看成整数?导致在独立列竖式计算小数乘两位数时错误百出。
3.教师处理教材的不当
教师在处理这部分教材时,往往过于强调列出竖式用加法算出结果,以及解决问题策略的多样性,导致学生思维不能集中到将0.8×3看成8×3来计算。因此学生在独立列竖式之前,他们一直没有明确小数乘两位数的竖式计算方法,列出各种各样的竖式也就不在意料之外了。
三、教学对策
1.淡化“相同数位对齐”的负迁移
从学生的已有知识来看,学生对小数加法的计算方法已经有了思维定式,特别是整数乘除法中也是一再强调相同数位对齐。因此教师在课堂教学中,就应该尽量淡化“相同数位对齐”对这节课学习的影响,在学生探究0.8×3、2.35×3结果是多少时,当学生联系小数乘整数的意义提出用加法验证时,教师可以直接让学生口算,只列出横式而不出示竖式,尽量淡化相同数位对齐的思维定式。
2.减少观察竖式产生的错误感知
在教学中,当学生没有感知小数乘法的计算法则时,应该回避竖式的写法,当学生通过加法得出0.8×3=2.4,2.35×3=7.05后,不要求学生列出竖式。在“试一试”的教学中,先让学生用计算器计算476×12、28×53、103×25,再让学生用计算器计算4.76×12、2.8×53、103×0.25,然后比较积的变化,这样学生对“将小数看成整数来计算,因数中的小数是几位小数,积也是几位小数”这两个小数乘法计算中的关键也就有了比较准确的理解,减少了其他错误思维定式的影响。
3.增加小数乘两位数的教学
在学生形成了正确的结论后,为了使学生进一步加深对小数乘法计算法则的理解,掌握小数乘整数的一般方法,教师可以在例题的基础上,适当补充练习。例如:冬冬小朋友买43千克大米要多少元(每千克2.35元)?通过对2.35×43的竖式写法的探究,既验证了前面学习中产生的对小数乘法计算法则的结论,同时也使学生真正掌握小数乘整数的计算法则,理解用竖式计算小数乘整数的方法。
(责编童夏)
endprint
一、小数乘整数的教学现状
小数乘整数是人教版五年级上册的教学内容,教材说明指出:在具体情境中,小数乘整数很容易转化为整数乘法,联系整数乘、除法的意义也很容易理解小数乘整数以及除数是整数的小数除法的计算意义,因而这部分内容便于学生通过自主探索掌握计算方法。
在实际教学中发现,学生理解小数乘整数意义较为轻松,然而在探索计算方法时,却总会出现种种问题,从课堂教学实践来看,以三种现象最为突出。
1.写0.8乘3的竖式时,3与谁对齐?学生中通常有两种观念:一种认为3应该与0对齐;一种认为3可以与8对齐;
2.在引导学生计算出0.8×3=2.4和2.35×3=7.05后,引导学生观察积的小数点是怎么确定的。大多数学生认为积的小数点与小数因数的小数点对齐,这时许多教师无法给出正确的引导方式,只能空洞地说:这种说法是错误的,以后会进一步学习。
3. “练一练”的“3.7×5、0.18×5”与例题相似,学生能顺利完成,到“46×1.3”时,学生出现了以下几种做法:
■
经过了解发现,第①种做法的学生认为“试一试”中,要求用计算器计算,因此这里也用计算器计算;第②种做法的学生认为46×0.3=13.8,所以应该写13.8;第③种做法的学生注意了先按整数乘法计算出结果,所以就先列出整数乘法的算式,再写上积,确定小数点。
二、原因分析
1.“相同数位对齐”的负迁移
在学习小数乘法之前,学生学习了小数加法的计算方法,已经形成了小数点对齐的定式思维,同时在学生以往所有的竖式中(加、减、乘、除)都一再强调“相同数位对齐”,这些知识使学生产生计算小数乘法时也应该小数点对齐的思维定式。同时在主题图的探究中,结合小数乘整数的意义,让学生在列出“0.8×3”后用“0.8+0.8+0.8=2.4”计算,再次强化了小数点对齐,因此学生在列“0.8×3”的竖式时,认为将3与0对齐很正常。
2.教材编排体系的不足
教材在编排小数乘整数时用了例题“0.8×3”和“2.35×3”,以及“试一试”中的三道题,通过对这些算式计算方法的探究、比较,使学生明确因数中的小数是几位小数,积也是几位小数。学生往往受小数加法的影响认为积的小数点与因数的小数点对齐,而且小数乘整数是符合积的小数点与小数因数的小数点对齐这一现象的。更为关键的是,当学生产生这种想法后,后续的学习中接触到因数中的小数是几位小数,积也是几位小数时,由于有了先入为主的概念,导致学生在学习小数乘小数时困难重重。教材编排的例题都是小数乘一位数,“试一试”中的小数乘两位数是学生用计算器计算,因此学生在用竖式计算小数乘两位数时无所适从,虽然教师讲了将小数乘法看成整数乘法计算,但是学生眼里明明看到的就是小数,他们很疑惑:为什么要看成整数?怎样看成整数?导致在独立列竖式计算小数乘两位数时错误百出。
3.教师处理教材的不当
教师在处理这部分教材时,往往过于强调列出竖式用加法算出结果,以及解决问题策略的多样性,导致学生思维不能集中到将0.8×3看成8×3来计算。因此学生在独立列竖式之前,他们一直没有明确小数乘两位数的竖式计算方法,列出各种各样的竖式也就不在意料之外了。
三、教学对策
1.淡化“相同数位对齐”的负迁移
从学生的已有知识来看,学生对小数加法的计算方法已经有了思维定式,特别是整数乘除法中也是一再强调相同数位对齐。因此教师在课堂教学中,就应该尽量淡化“相同数位对齐”对这节课学习的影响,在学生探究0.8×3、2.35×3结果是多少时,当学生联系小数乘整数的意义提出用加法验证时,教师可以直接让学生口算,只列出横式而不出示竖式,尽量淡化相同数位对齐的思维定式。
2.减少观察竖式产生的错误感知
在教学中,当学生没有感知小数乘法的计算法则时,应该回避竖式的写法,当学生通过加法得出0.8×3=2.4,2.35×3=7.05后,不要求学生列出竖式。在“试一试”的教学中,先让学生用计算器计算476×12、28×53、103×25,再让学生用计算器计算4.76×12、2.8×53、103×0.25,然后比较积的变化,这样学生对“将小数看成整数来计算,因数中的小数是几位小数,积也是几位小数”这两个小数乘法计算中的关键也就有了比较准确的理解,减少了其他错误思维定式的影响。
3.增加小数乘两位数的教学
在学生形成了正确的结论后,为了使学生进一步加深对小数乘法计算法则的理解,掌握小数乘整数的一般方法,教师可以在例题的基础上,适当补充练习。例如:冬冬小朋友买43千克大米要多少元(每千克2.35元)?通过对2.35×43的竖式写法的探究,既验证了前面学习中产生的对小数乘法计算法则的结论,同时也使学生真正掌握小数乘整数的计算法则,理解用竖式计算小数乘整数的方法。
(责编童夏)
endprint
一、小数乘整数的教学现状
小数乘整数是人教版五年级上册的教学内容,教材说明指出:在具体情境中,小数乘整数很容易转化为整数乘法,联系整数乘、除法的意义也很容易理解小数乘整数以及除数是整数的小数除法的计算意义,因而这部分内容便于学生通过自主探索掌握计算方法。
在实际教学中发现,学生理解小数乘整数意义较为轻松,然而在探索计算方法时,却总会出现种种问题,从课堂教学实践来看,以三种现象最为突出。
1.写0.8乘3的竖式时,3与谁对齐?学生中通常有两种观念:一种认为3应该与0对齐;一种认为3可以与8对齐;
2.在引导学生计算出0.8×3=2.4和2.35×3=7.05后,引导学生观察积的小数点是怎么确定的。大多数学生认为积的小数点与小数因数的小数点对齐,这时许多教师无法给出正确的引导方式,只能空洞地说:这种说法是错误的,以后会进一步学习。
3. “练一练”的“3.7×5、0.18×5”与例题相似,学生能顺利完成,到“46×1.3”时,学生出现了以下几种做法:
■
经过了解发现,第①种做法的学生认为“试一试”中,要求用计算器计算,因此这里也用计算器计算;第②种做法的学生认为46×0.3=13.8,所以应该写13.8;第③种做法的学生注意了先按整数乘法计算出结果,所以就先列出整数乘法的算式,再写上积,确定小数点。
二、原因分析
1.“相同数位对齐”的负迁移
在学习小数乘法之前,学生学习了小数加法的计算方法,已经形成了小数点对齐的定式思维,同时在学生以往所有的竖式中(加、减、乘、除)都一再强调“相同数位对齐”,这些知识使学生产生计算小数乘法时也应该小数点对齐的思维定式。同时在主题图的探究中,结合小数乘整数的意义,让学生在列出“0.8×3”后用“0.8+0.8+0.8=2.4”计算,再次强化了小数点对齐,因此学生在列“0.8×3”的竖式时,认为将3与0对齐很正常。
2.教材编排体系的不足
教材在编排小数乘整数时用了例题“0.8×3”和“2.35×3”,以及“试一试”中的三道题,通过对这些算式计算方法的探究、比较,使学生明确因数中的小数是几位小数,积也是几位小数。学生往往受小数加法的影响认为积的小数点与因数的小数点对齐,而且小数乘整数是符合积的小数点与小数因数的小数点对齐这一现象的。更为关键的是,当学生产生这种想法后,后续的学习中接触到因数中的小数是几位小数,积也是几位小数时,由于有了先入为主的概念,导致学生在学习小数乘小数时困难重重。教材编排的例题都是小数乘一位数,“试一试”中的小数乘两位数是学生用计算器计算,因此学生在用竖式计算小数乘两位数时无所适从,虽然教师讲了将小数乘法看成整数乘法计算,但是学生眼里明明看到的就是小数,他们很疑惑:为什么要看成整数?怎样看成整数?导致在独立列竖式计算小数乘两位数时错误百出。
3.教师处理教材的不当
教师在处理这部分教材时,往往过于强调列出竖式用加法算出结果,以及解决问题策略的多样性,导致学生思维不能集中到将0.8×3看成8×3来计算。因此学生在独立列竖式之前,他们一直没有明确小数乘两位数的竖式计算方法,列出各种各样的竖式也就不在意料之外了。
三、教学对策
1.淡化“相同数位对齐”的负迁移
从学生的已有知识来看,学生对小数加法的计算方法已经有了思维定式,特别是整数乘除法中也是一再强调相同数位对齐。因此教师在课堂教学中,就应该尽量淡化“相同数位对齐”对这节课学习的影响,在学生探究0.8×3、2.35×3结果是多少时,当学生联系小数乘整数的意义提出用加法验证时,教师可以直接让学生口算,只列出横式而不出示竖式,尽量淡化相同数位对齐的思维定式。
2.减少观察竖式产生的错误感知
在教学中,当学生没有感知小数乘法的计算法则时,应该回避竖式的写法,当学生通过加法得出0.8×3=2.4,2.35×3=7.05后,不要求学生列出竖式。在“试一试”的教学中,先让学生用计算器计算476×12、28×53、103×25,再让学生用计算器计算4.76×12、2.8×53、103×0.25,然后比较积的变化,这样学生对“将小数看成整数来计算,因数中的小数是几位小数,积也是几位小数”这两个小数乘法计算中的关键也就有了比较准确的理解,减少了其他错误思维定式的影响。
3.增加小数乘两位数的教学
在学生形成了正确的结论后,为了使学生进一步加深对小数乘法计算法则的理解,掌握小数乘整数的一般方法,教师可以在例题的基础上,适当补充练习。例如:冬冬小朋友买43千克大米要多少元(每千克2.35元)?通过对2.35×43的竖式写法的探究,既验证了前面学习中产生的对小数乘法计算法则的结论,同时也使学生真正掌握小数乘整数的计算法则,理解用竖式计算小数乘整数的方法。
(责编童夏)
endprint