我国六价铬淡水水生生物安全基准推导研究
2014-09-21廖静梁峰杨绍贵何欢孙成高世祥崔益斌
廖静,梁峰,杨绍贵,何欢,孙成,*,高世祥,崔益斌
1. 南京大学环境学院,南京 210023 2. 河南城建学院,平顶山 467036
我国六价铬淡水水生生物安全基准推导研究
廖静1,梁峰2,杨绍贵1,何欢1,孙成1,*,高世祥1,崔益斌1
1. 南京大学环境学院,南京 210023 2. 河南城建学院,平顶山 467036
参照美国国家环境保护局(USEPA)“推导保护水生生物及其用途的国家水质基准的技术指南”的程序和规范,筛选了我国广泛存在的淡水水生生物物种,收集现有的急性和慢性毒性数据,结合课题组实验得到的部分本土生物毒性数据,分别采用物种敏感度排序法(SSR)、物种敏感度分布法(SSD)以及澳大利亚的水质基准技术方法对我国六价铬的淡水水生生物安全基准进行了推导。获得了我国淡水水生生物的六价铬的双值基准,3种方法得到的基准最大浓度(CMC)分别为23.97、22.84、29.06 μg·L-1,基准连续浓度(CCC)分别为14.63、10.35、9.00 μg·L-1,在同一个数量级上,但与美国的基准值有一些差异,建议使用SSD法推导CMC值和CCC值。研究结果可为我国水质基准的制定提供一些有用的基础资料。
六价铬;淡水水生生物;水质基准;基准最大浓度(CMC);基准连续浓度(CCC)
水质基准是制定水质标准的科学依据,在水环境保护方面发挥着非常重要的作用。颁布水质基准的目的在于防止污染物对重要的商业和娱乐水生生物,以及其他重要物种如河流湖泊中的鱼、底栖无脊椎动物和浮游生物造成不可接受的长期和短期的效应[1]。水生生物安全基准的制定需要根据各区域水环境生物区系特点,选择适当的代表性物种用于水生生物安全基准的推导,以使得基于区域水环境代表性水生生物而得出的基准推导值可以为大多数生物提供适当保护。中国无论从水质上还是从水生态系统的结构特征上与国外都有着明显的差异,仅依靠国外的基准或是标准来制定我国的水质标准,很难为不同水域的生物提供全面的、有效的保护。因此从维护水生态系统的长远利益与保护水环境的可靠性来看,开展中国的水质基准研究,制定我们国家自己的国家水质基准势在必行。正是基于上述因素,我国从“十一五”开始,逐步开展了基于我国的水生生物研究,金小伟等[2]探讨了适用于我国的水质基准计算方法及推导流程,并讨论了推导过程中可能存在的问题;雷炳莉等[3]运用3种方法对太湖流域中五氯酚、2,4-二氯酚及2,4,6-三氯酚进行水质基准推导,并且比较3种方法推导值的差异,提出建立我国的水质基准不能仅依靠国外的水质基准或标准;雷炳莉等[4]采用评估因子法和物种敏感度分布曲线法对3种不同的4-壬基酚进行水质基准推导和比较,提出收集毒性数据应有针对性,明确选择毒性数据的测量终点;中国环境科学研究院的吴丰昌、闫振广等[5-9]已经开展了大量的水质基准研究,吴丰昌等[7]对锌的毒性数据进行分类来研究基准,发现不同类别的物种对锌的敏感性存在显著性差异,其中甲壳类动物最为敏感。目前,我国的水质基准研究已积累了一定的理论基础与实践经验。
铬是14种最有害的重金属之一。由于铬的毒性较高,铬及其化合物被列入中国水环境优先污染物黑名单。铬在环境中稳定存在的2种价态Cr(Ⅲ)和Cr(Ⅵ)却有着不同的性质,适量的Cr(Ⅲ)可以降低人体血浆中的血糖浓度,提高人体胰岛素活性,促进糖和脂肪代谢,提高人体的应激反应能力等。而Cr(Ⅵ)则是一种强氧化剂,具有强致癌变、致畸变、致突变作用,对生物体伤害较大[10]。通常认为六价铬的毒性比三价铬的毒性高100倍。正是由于具有较大的生物毒性,因此,对于六价铬毒性作用的研究一直得到人们的重视。基于此,本文运用物种敏感度排序法(SSR)、以及荷兰和澳大利亚的水质基准的技术方法对中国水生生物物种(包括中国本地种及引进物种等)的六价铬毒性数据进行了研究,以期获得更为适合我国的淡水水生生物六价铬基准,并为中国六价铬水质标准的制定提供参考。
1 材料与方法(Materials and methods)
1.1 物种与数据的筛选
本文基本采用美国国家环境保护局(USEPA)规定的物种选择原则,同时考虑到中国的鱼类以鲤科为主,特别注意收集了鲤科鱼类的六价铬毒性数据,同时收集在我国已广泛繁殖和存在的引进物种的六价铬毒性数据。六价铬的毒性数据主要来源于美国铬的水质基准技术文件[11]、USEPA的ECOTOX毒性数据库(http://cfpub.epa.gov/ecotox/)和中国知网(http://www.cnki.net)以及维普数据库数据(http://www.cqvip.com/),数据收集截止到2013年11月。
对于部分难于获得数据的本土生物,本课题组开展相应急慢性毒性试验,实验室试验物种主要有鲢鱼、鲫鱼、黄颡鱼、林蛙蝌蚪、中华园田螺、青虾等本土生物。
数据收集后,根据USEPA基准技术指南和相关准则[1,11],将不符合水质基准计算要求的试验数据剔除,其中包括非中国物种的试验数据,用去离子水作为试验用水的试验数据和实验设计不科学或者不符合要求的试验数据。
1.2 水生生物试验方法
鲢鱼、鲫鱼、黄颡鱼、林蛙蝌蚪、中华园田螺、青虾的急性毒性测试试验主要参照了“GB/T 13267-1991 水质物质对淡水鱼(斑马鱼)急性毒性测试方法”[12]以及“OECD化学品毒性测试技术指南”[13],受试化合物选择重铬酸钾,化学性质稳定,采用静态试验,得出急性毒性的LC50值。
1.3 水质基准推导方法
1.3.1 物种敏感度排序法
USEPA的物种敏感度分布法(species sensitivity distribution, SSD)即双值基准法,是1978年USEPA的研究人员认识到物种对污染物的敏感度是连续分布的,而且遵循类似于正态分布的概率模型[14],因而提出用基于物种敏感度分布的方法代替专家判断法来制定基准,并且设定了95%的生物保护水平,后经多次修订,方法定形于1985年颁布的水生生物基准技术指南中。该方法来源虽然是SSD曲线法,但在实际操作中,将复杂的SSD作图的过程简化为公式计算,该法在有的文献中也被称为物种敏感度排序法(species sensitivity rank, SSR)[15]。
1.3.2 物种敏感度分布法
欧洲的SSD理论起源于Kooijman[16]对急性毒性值外推中安全因子的研究,提出了基于物种敏感度分布的基准推算方法,但因理论不完善,得出的基准值太低而无法在管理中使用。1989年,Van Straalen和Denneman[17]对其进行了修正,通过设定HCp(hazardous concentration for p of the species),即用(1-p)%物种的保护水平,去掉了函数曲线的“尾巴”,避免了基准值过低的问题,欧美各国一般都默认p值为5,那么HC5是指影响不超过5%的物种,即可以保护95%以上种群时对应的浓度。至此,SSD理论基本成熟,之后Wagner和Lokke[18]以及Aldenberg和Slob[19]对该方法又作了进一步修正,目前欧洲SSD技术的数学模型基础为对数-正态分布或对数-逻辑斯蒂函数分布,澳大利亚/新西兰也对SSD法进行了修正,其运用的主要数学模型基础是Burr Type Ⅲ分布[20]。
2 结果与分析(Results and analysis)
2.1 毒性数据
毒性数据筛选后共得到36个属46个物种的急性毒性数据(表1)、13个属16个物种的慢性毒性数据(表2)、4个物种的淡水藻类和植物的毒性值(表3)以及生物体的生物富集因子(bio-concentration factor, BCF)(表4),毒性数据符合建立基准要求,选择的水生生物测试种涵盖3个营养级:绿藻/初级生产者,小型甲壳类/初级消费者,以及鱼类/次级消费者。选择的水生生物测试种涵盖至少3门8科的生物分类单元。
表1 六价铬对淡水动物的急性毒性Table 1 Acute toxicity of hexavalent chromium to aquatic organisms
注:SMAV即种急性毒性平均值;GMAV即属急性毒性平均值。
Note: SMAV is species mean acute value; GMAV is genus mean acute value.
表2 六价铬对淡水动物的慢性毒性Table 2 Chronic toxicity of hexavalent chromium to aquatic organisms
注:SMCV即种慢性毒性平均值;GMCV即属慢性毒性平均值。
Note: SMCV is species mean chronic value; GMCV is genus mean chronic value.
表3 六价铬对淡水藻类和植物的毒性Table 3 Toxicity of hexavalent chromium to freshwater algae and plants
注:六价铬的受试化合物选用重铬酸钾。
Note: the tested hexavalent chromium is potassium dichromate
表4 六价铬在淡水生物体内的富集系数(BCF)Table 4 Bioconcentration factors (BCF) of hexavalent chromium for aquatic organisms
2.2 水质基准推导
2.2.1 SSR法
SSR法是由USEPA推荐的制定水质基准的标准方法[1],该法是把所获得属的毒性数据按从小到大的顺序进行排列,序列的百分数P按公式P=R/(N+1)进行计算,其中R是毒性数据在序列中的位置,N是所获得的毒性数据量。选择靠近排序百分数为5%处的4个属就是4个最敏感属,然后根据公式(1)~(4)可得出排序百分数为5%处所对应的浓度,该浓度即为最终急性值(final acute value, FAV),基准最大浓度(criteria maximum concentration, CMC)=FAV/2。由于慢性数据量充足,最终慢性值(final chronic value, FCV)使用FAV相同的方法计算,基准连续浓度(criteria continuous concentration, CCC)=min(FCV, FPV, FRV),FPV (final plant value)即最终植物值,FRV (final residue value)即最终残留值。
(1)
(2)
(3)
FAV=eA
(4)
式中GMAV为属急性毒性平均值;P为选择4个属毒性数据的排序百分数;S、L、A为计算中的符号,没有特殊的含义。
根据表1的GMAV值,得出六价铬的FAV是47.94 μg·L-1,即CMC的值为23.97 μg·L-1。根据表2的GMCV值,得出六价铬的FCV是14.63 μg·L-1。从表3中可以看出,六价铬对水生植物毒性范围在84.3~13 000 μg·L-1之间,最敏感的毒性效应值为84.3 μg·L-1,由此确定FPV为84.3 μg·L-1。从表4获得的BCF值看,六价铬在虹鳟鱼肌肉和鱼体内的富集系数分别为小于1和1,表明铬在鱼体内的富集作用不明显,因此此处不再计算最终残留值FRV。所以CCC的值是14.63 μg·L-1。
2.2.2 SSD法
用SSD法推导CMC和CCC时,首先对满足条件的种平均急性值(表1)和种平均慢性值(表2)取对数后分别进行正态分布检验,运用SPSS 19.0进行正态分布检验,结果表明,种平均急性值的对数值及种平均慢性值的对数值均符合正态分布。然后,用SSD法推导CMC时,对种平均急性值由小到大进行排序并编号,以种平均急性值的对数值为横坐标,以每个数据的编号除以数据总数加1(即累积概率,cumulative probability)为纵坐标作图,用Origin 8.5拟合六价铬的急性物种敏感度分布曲线(图1),拟合较好的是BiDoseResp函数,结果见表5,拟合公式为:
(5)
式中,y为累积概率,x为六价铬浓度(μg·L-1)的对数值,A1、A2、p、LOGx1、LOGx2、h1及h2均为曲线特征参数。HC5=45.69 μg·L-1, CMC= HC5/ 2=22.84 μg·L-1。
用SSD法推导CCC时,采用同样的方法拟合六价铬的慢性物种敏感度分布曲线(图2),拟合较好的是Polynomial函数,结果见表5,拟合公式为:
y=A0+A1x+A2x2+A3x3+A4x5+A5x5
(6)
式中,y为累积概率,x为六价铬浓度(μg·L-1)的对数值,A0、A1、A2、A3、A4、A5均为曲线特征参数。CCC=HC5=10.35 μg·L-1。
2.2.3 澳大利亚/新西兰SSD法
采用Burr Ⅲ型分布作为SSD的拟合曲线,Burr Ⅲ型分布是一种灵活的分布函数,对物种敏感性数据拟合特性较好,在澳大利亚和新西兰的环境风险评价和环境质量标准制定中被推荐使用[20],澳大利亚联邦科学与工业研究组织(CSIRO)提供了该方法的说明和相关支持软件BurrlizO(版本1.0.14)[92]。Burr Ⅲ型函数的参数方程:
(7)
图1 六价铬急性毒性数据拟合出的急性物种敏感度分布曲线注:SMAV为种急性毒性平均值,单位是μg·L-1。Fig. 1 The species sensitivity distribution curve based on acute toxicity data of hexavalent chromiumNote: SMAV is species mean acute value. Unit is μg·L-1.
图2 六价铬慢性毒性数据拟合出的慢性物种敏感度分布曲线注:SMCV为种慢性毒性平均值,单位是μg·L-1。Fig. 2 The species sensitivity distribution curve based on chronic toxicity data of hexavalent chromiumNote: SMCV is species mean chronic value. Unit is μg·L-1.
表5 物种敏感度分布(SSD)法对六价铬急慢性毒性数据拟合结果Table 5 Fitted values of acute and chronic toxicity of hexavalent chromium by species sensitivity distribution method
注:CMC为基准最大浓度;CCC为基准连续浓度,HC5。
Note: CMC is criteria maximum concentration; CCC is criteria continuous concentration; HC5.
式中b、c、k为函数的3个参数。当k趋于无穷大时,Burr Ⅲ型分布可变化为ReWeibull分布:
(8)
式中a、b为函数的2个参数。
当c趋于无穷大时,可变化为RePareto分布:
(9)
式中x0、θ为函数的2个参数。
实际应用中,如果k值大于100,就可以重新应用ReWeibull分布函数拟合;当c值大于80,就可以用RePareto分布函数拟合。对表1数据的对数值进行拟合,符合RePareto分布,x0=5.3218,θ=2.7135,HC5=58.13 μg·L-1,CMC=HC5/2=29.06 μg·L-1;对表2数据的对数值进行拟合,符合Burr Ⅲ分布,b=4.2864,c=16.9631,k=0.1176,CCC=HC5=9.00 μg·L-1。
3 讨论(Discussion)
由于一个毒性数据集的分布不能完全吻合某种数理统计分布,所以选用的拟合函数不同,得出的水质基准值也不尽相同。利用3种方法对六价铬水质基准推导值和已有研究的基准值及美国的基准值进行比较(表6)。本研究3种方法推导出来的基准值在一个数量级上,使用SSR法推导的中国的Cr(Ⅵ)基准CMC值与CCC值均大于美国的基准值,这可能是生物区系差异造成的。在本研究中,剔除了一些非中国物种的数据,如美国旗鱼黑头软口鲦、斑马鱼、白鲑和美白鲤等,主要采用中国本土水生生物,另外还包含了一些中国引进的物种,如虹鳟鱼、尼罗罗非鱼和太阳鱼等。
表6 六价铬基准值与水质标准的比较Table 6 Comparison among criteria and standard values of hexavalent chromium
吴丰昌等[9]对运用SSD法对多种重金属进行了基准值推导,包括Cr(VI),比较发现,其CMC值是本研究推导的CMC值的2倍,CCC值差异不大。其原因可能是本研究侧重于收集自然水体中存在的生物,使2种研究的急慢性数据数不同;另外2种研究所用的SSD法拟合函数不一样,拟合出来的结果也不同,进而导致了基准值的差异性。而本研究所用的SSR法主要考虑累积概率接近0.05的4个属的毒性数据,区别于SSD法推导的基准值。
运用3种方法对六价铬基准进行CMC值推导,SSR法主要考虑最敏感的4个属,SSD法更具代表性,用BiDoseResp函数拟合得到的CMC值最小,相对比较严谨,BiDoseResp函数拟合优度高达0.995,建议选择该函数推导的CMC值;利用3种方法对六价铬基准进行CCC值推导时,澳大利亚/新西兰SSD法推导的CCC值最小,而SSD法运用的Polynomial函数拟合优度达到0.952,虽然SSD法没有考虑污染物在生物体内的富集效应,但是相对SSR法推导的值,SSD法推导的CCC值相对比较保守,这样的CCC值对水生物保护有利。因此,建议选择SSD法推导六价铬的急慢性基准值。
3种方法得到的六价铬水生生物基准值与我国地表水环境质量标准I级标准值相比较,在同一数量级上,CMC值均高于标准值,澳大利亚/新西兰SSD法推导的CCC稍低于标准值,SSD法和SSR法推导的CCC值稍高于标准值。因目前我国的I级标准值为单值标准,其介于CMC与CCC之间,还是基本上能满足对环境水体中短期应急和长期生物效应的保护需求。不过考虑到水质标准是在水质基准基础上建立的,因此建议相关部门制定标准时可以考虑分别制定短期标准和长期标准[5,93]。
我国幅员辽阔,不同流域或区域水生生物的种群和数量是不同的,水环境生态特征、水环境承载力等也都有很大的差异。针对我国这种不同区域的生物差异性明显的特点,仅仅制定国家尺度的水质基准,对特定水体区域的生物,尤其是一些敏感水生生物提供的保护可能会不足,这就要求我们在构建水质基准体系时,考虑到不同地域的物种差异性,也就是生态分区差异性,加强区域性敏感物种的水生生物毒性研究,丰富我国水生生物毒性数据库,在制定国家基准的同时还可制定流域尺度的水质基准。
综上所述,本文的主要结论包括:
本研究采用已有水生生物毒性数据,结合本课题组实验数据,运用SSR法、SSD法和澳大利亚SSD法推导出来的CMC值分别为23.97、22.84、29.06 μg·L-1,CCC值分别为14.63、10.35、9.00 μg·L-1。
比较这3种方法,建议使用SSD法推导六价铬的CMC值和CCC值。
3种方法推导的六价铬水生生物基准值与我国地表水环境质量标准I级标准值在同一个数量级上,我国的I级标准值为单值标准,其介于CMC与CCC之间,目前还是基本上能满足对环境水体中短期应急和长期生物效应保护的需求,但长远来看,还是建立双值标准为宜。
[1] Stephen C E, Mount D I, Hansen D J, et al. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses [M]. Washington DC: United States Environmental Protection Agency, Office of Research and Development, 1985: 1-57
[2] 金小伟, 雷炳莉, 许宜平, 等. 水生态基准方法学概述及建立我国水生态基准的探讨[J]. 生态毒理学报, 2009, 4(5): 609-616
Jin X W, Lei B L, Xu Y P, et al. Methodologies for deriving water quality criteria to protect aquatic life (ALC) and proposal for development of ALC in China: A review [J]. Asian Journal of Ecotoxicology, 2009, 4(5): 609-616 (in Chinese)
[3] 雷炳莉, 金小伟, 黄圣彪, 等. 太湖流域 3种氯酚类化合物水质基准的探讨[J]. 生态毒理学报, 2009, 4(1): 40-49
Lei B L, Jin X W, Huang S B, et al. Discussion of quality criteria for three chlorophenols in Taihu Lake [J]. Asian Journal of Ecotoxicology, 2009, 4(1): 40-49 (in Chinese)
[4] 雷炳莉, 刘倩, 孙延枫, 等. 内分泌干扰物 4-壬基酚的水质基准探讨[J]. 中国科学: 地球科学, 2012, 42(5): 657-664
Lei B L, Liu Q, Sun Y F, et al. Water quality criteria for 4-Nonylphenol in protection of aquatic life [J]. Science China: Earth Sciences, 2012, 42(5): 657-664 (in Chinese)
[5] 吴丰昌, 冯承莲, 曹宇静, 等. 我国铜的淡水生物水质基准研究[J]. 生态毒理学报, 2011, 6(6): 617-628
Wu F C, Feng C L, Cao Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China [J]. Asian Journal of Ecotoxicology, 2011, 6(6): 617-628) (in Chinese)
[6] 闫振广, 孟伟, 刘征涛, 等. 辽河流域氨氮水质基准与应急标准探讨[J]. 中国环境科学, 2011, 31(11): 1829-1835
Yan Z G, Meng W, Liu Z T, et al. Development of aquatic life criteria and lash-up standard for ammonia in Liao River Basin [J]. China Environmental Science, 2011, 31(11): 1829-1835 (in Chinese)
[7] 吴丰昌, 冯承莲, 曹宇静, 等. 锌对淡水生物的毒性特征与水质基准的研究[J]. 生态毒理学报, 2011, 6(4): 367-382
Wu F C, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382 (in Chinese)
[8] 张瑞卿, 吴丰昌, 李会仙, 等. 应用物种敏感度分布法研究中国无机汞的水生生物水质基准[J]. 环境科学学报, 2012, 32(2): 440-449
Zhang R Q, Wu F C, Li H X, et al. Deriving aquatic water quality criteria for inorganic mercury in China by species sensitivity distributions [J]. Acta Scientiae Circumtantiae, 2012, 32(2): 440-449 (in Chinese)
[9] 吴丰昌, 冯承莲, 张瑞卿, 等. 我国典型污染物水质基准研究[J]. 中国科学: 地球科学, 2012, 42(5): 665-672
Wu F C, Feng C L, Zhang R Q, et al. Derivation of water quality criteria for representative water-body pollutants in China [J]. Science China: Earth Sciences, 2012, 42(5): 665-672 (in Chinese)
[10] 王振来, 钟艳玲. 微量元素铬的研究进展[J]. 中国饲料, 2001, (4): 16-17
Wang Z L, Zhong Y L. Investigation progress about microelement chromium [J]. China Feed, 2001, 4: 16-17 (in Chinese)
[11] USEPA. Ambient Water Quality Criteria for Chromium [M]. Washington DC: Office of Water, USEPA, 1980: 1-44
[12] 谢凤君, 陈惠志, 赵幼一. GB/T 13267-1991 水质/物质对淡水鱼(斑马鱼)急性毒性测定方法[S]. 北京: 国家环境保护局, 1992
Xie F J, Chen H Z, Zhao Y Y. GB/T 13267-1991 Water quality-Determination of the acute toxicity of substance to a freshwater fish(Brachydanio rerio Hamilton-Buchanan) [S]. Ministry of Environmental Protection of the People's Republic of China, 1992 (in Chinese)
[13] OECD. TG 203 OECD Guideline for Testing of Chemical. Fish, Acute Toxicity Test [S]. OECD, 1992(不能找到具体城市名,OECD是一个组织)
[14] Mount D. Aquatic Surrogates [C]. Washington DC: US Environmental Protection Agency, Surrogate Species Workshop, 1982
[15] 闫振广, 孟伟, 刘征涛, 等. 我国淡水生物氨氮基准研究[J]. 环境科学, 2011, 32(6): 1564-1570
Yan Z G, Meng W, Liu Z T, et al. Development of freshwater aquatic life criteria for ammonia in China [J]. Environmental Science, 2011, 32(6): 1564-1570 (in Chinese)
[16] Kooijman S. A safety factor for LC50values allowing for differences in sensitivity among species [J]. Water Research, 1987, 21(3): 269-276
[17] Van Straalen N M, Denneman C A. Ecotoxicological evaluation of soil quality criteria [J]. Ecotoxicology and Environmental Safety, 1989, 18(3): 241-251
[18] Wagner C, Lokke H. Estimation of ecotoxicological protection levels from NOEC toxicity data [J]. Water Research, 1991, 25(10): 1237-1242
[19] Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data [J]. Ecotoxicology and Environmental Safety, 1993, 25(1): 48-63
[20] Hose G C, Van Den Brink P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data [J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4): 511-520
[21] 高晓莉, 齐凤生, 罗胡英. 铜, 汞, 铬对泥鳅的急性毒性和联合毒性实验[J]. 水利渔业, 2003, 23(2): 63-64
[22] 张海艳, 李霞, 骆美蓉. 苯酚和铬对麦穗鱼的急性毒性及苯酚麦穗鱼的遗传毒性研究[J]. 安徽农业科学, 2013, 41(12): 5389-5391
Zhang H Y, Li X, Luo M R. Study on the acute toxicity of phenol and chromium to Pseudorasbora parva and genetic toxicitiesof phenol [J]. Journal of Anhui Agricultural Sciences, 2013, 41(12): 5389-5391 (in Chinese)
[23] Mishra R. Effect of dichromate on lipid and amino acid contents of liver and muscle of Clarias batrachus (L.) [J]. Environment and Ecology, 1997, 15(1): 41-45
[24] 杨丽华, 方展强, 郑文彪. 重金属对鲫鱼的急性毒性及安全浓度评价[J]. 华南师范大学学报: 自然科学版, 2003, (2): 101-106
Yang L H, Fang Z Q, Zheng W B. Safety assessment and acute toxicity of heavy metals to crucian Carassius auratus [J]. Journal of South China Normal University: Natural Science Edition, 2003, (2): 101-106 (in Chinese)
[25] Adelman I R, Smith Jr L L, Siesennop G D. Acute toxicity of sodium chloride, pentachlorophenol, guthion, and hexavalent chromium to fathead minnows (Pimephales promelas) and goldfish (Carassius auratus) [J]. Journal of the Fisheries Board of Canada, 1976, 33(2): 203-208
[26] Riva M C, Flos R, Crespi M, et al. Lethal potassium dichromate and whitening (blankophor) exposure of goldfish (Carassius auratus): Chromium levels in gills [J]. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1981, 68(2): 161-165
[27] 雷忻, 杜团, 廉振民, 等. 重金属铬对金鱼的毒性效应及鳃的组织学影响[J]. 水生态学杂志, 2009, 2(5): 71-74
[28] Kazlauskiene N, Burba A, Svecevicius G. Acute toxicity of five galvanic heavy metals to hydrobionts [J]. Ecology, 1994, 1: 33-36
[29] Waheda M F. Effect of size of fathead minnows (Pimephales promelas) and green sunfish (Lepomis cyanellus) on hexavalent chromium toxicity [D]. Washington DC: WSU Printing Service, 1977:1-70
[30] Dorn P B, Raia J C, Rodgers J H, et al. Hexavalent chromium as a reference toxicant in effluent toxicity tests [J]. Environmental Toxicology and Chemistry, 1987, 6(6): 435-444
[31] Jop K M, Parkerton T F, Rodgers J H, et al. Comparative toxicity and speciation of two hexavalent chromium salts in acute toxicity tests [J]. Environmental Toxicology and Chemistry, 1987, 6(9): 697-703
[32] Academy of Natural Sciences. The Sensitivity of Aquatic Life to Certain Chemicals Commonly Found in Industrial Wastes [R]. Washington DC: U.S. Public Health Service Grant, 1960
[33] 米静洁, 袁慧, 王兰. 铜, 镉, 铬, 铅对河南华溪蟹的急性毒性作用 [J]. 安徽农业科学, 2008, 36(17): 7273-7274
Mi J J, Yuan H, Wang L. Study on the acute toxic effects of Cu, Cd, Cr and Pb on Sinopotamon henanense [J].Journal of Anhui Agricultural Sciences, 2008, 36(17): 7273-7274 (in Chinese)
[34] 陈万光, 周芬娜, 邓平平, 等. 3种常用药物对高体鳑鲏幼鱼的急性毒性研究[J]. 水产科学, 2010, 29(9): 543-545
[35] 谭树华, 邓先余, 蒋文明, 等. Cr6+和Hg2+对克氏原螯虾的急性毒性试验[J]. 水利渔业, 2007, 27(5): 39-41
Tan S H, Deng X Y, Jiang W M, et al. Study on the acute toxicity of Cr6+ and Hg2+ on the Cambarus clarkii [J]. Reservoir Fisheries, 2007, 27(5): 39-41 (in Chinese)
[36] 姜福全. 稀有鮈鲫急性, 亚慢性毒性试验方法及其在东湖底泥毒性研究中的应用[D]. 北京: 中国科学院研究生院, 2006: 29-35
Jiang F Q. Methods of acute and subchronic toxicity test using Gobiocypris rarus and their application in toxicity study of sediment in Donghu Lake [D]. Graduate University of Chinese Academy of Sciences, 2006: 29-35 (in Chinese)
[37] 王少博, 王维民, 郭亚楠, 等. 重金属镉和铬对草鱼苗的急性和慢性毒性效应[J]. 兰州大学学报: 自然科学版, 2007, 43(4): 60-64
Wang S B, Wang W M, Guo Y N. Acute and chronic toxicity of chromium and cadmium on grass carp fries (Ctenopharyngodon idellus) [J]. Journal of Lanzhou University: Natural Sciences, 2007, 43(4): 60-64 (in Chinese)
[38] 陈细香, 谢嘉华, 卢昌义, 等. 汞和铬对黄鳝的急性毒性研究[J]. 水利渔业, 2008, 28(2): 103-104
[39] Benoit D A. Toxic effects of hexavalent chromium on brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri) [J]. Water Research, 1976, 10(6): 497-500
[40] Larrain A, Riveros A, Bay-Schmith E, et al. Evaluation of three larval instars of the midge Chironomus petiolatus as bioassay tools using a computationally intensive statistical algorithm [J]. Archives of Environmental Contamination and Toxicology, 1997, 33(4): 407-414
[41] Khangarot B S, Ray P K. Acute toxicity and toxic interaction of chromium and nickel to common guppy Poecilia reticulata (Peters) [J]. Bulletin of Environmental Contamination and Toxicology, 1990, 44(6): 832-839
[42] Oliveira-Filho E C, Paumgartten F. Comparative study on the acute toxicities of α, β, γ, and δ isomers of hexachlorocyclohexane to freshwater fishes [J]. Bulletin of Environmental Contamination and Toxicology, 1997, 59(6): 984-988
[43] 刘大胜, 孔强, 王大榜, 等. 金属离子鱼类急性毒性研究及对环境标准修订的启示意义[J]. 环境科学与管理, 2010, 35(4): 38-42
Liu D S, Kong Q, Wang D B, et al. Fish acute toxicity of metal ions and its inspiration for environmental standards revision [J]. Environmental Science and Management, 2010, 35(4): 38-42 (in Chinese)
[44] Svecevicius G. Acute toxicity of hexavalent chromium to European freshwater fish [J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(5): 741-747
[45] Van Den Dikkenberg R P, Canton H H, Mathijssen-Spiekman L A, et al. Usefulness of Gasterosteus aculeatus-- the Three-Spined Stickleback-- As a Test Organism in Routine Toxicity Tests [R]. Amsterdam: National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport, 1989
[46] Van Der Putte I, Brinkhorst M A, Koeman J H. Effect of pH on the acute toxicity of hexavalent chromium to rainbow trout (Salmo gairdneri) [J]. Aquatic Toxicology, 1981, 1(2): 129-142
[47] Buhl K J, Hamilton S J. Relative sensitivity of early life stages of arctic grayling, coho salmon, and rainbow trout to nine inorganics [J]. Ecotoxicology and Environmental Safety, 1991, 22(2): 184-197
[48] White A M. The toxicity of hexavalent chromium (Cr6+) to twenty-one species aquatic animals native to Ohio [D]. Waukesha: John Carroll University, University Heights, 1983:13
[49] Gendusa T C, Beitinger T L, Rodgers J H. Toxicity of hexavalent chromium from aqueous and sediment sources to Pimephales promelas and Ictalurus punctatus [J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50(1): 144-151
[50] Bailey H C, Liu D. Lumbriculus variegatus, a benthic oligochaete, as a bioassay organism [C]. Philadelphia : Aquatic Toxicology and Hazard Assessment, 3rd Symposium, ASTM STP 707, 1980, PA: 205-215
[51] Ewell W S, Gorsuch J W, Kringle R O, et al. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species [J]. Environmental Toxicology and Chemistry, 1986, 5(9): 831-840
[52] 石戈, 王健鑫, 武佳, 等. Cu2+和 Cr6+对中国林蛙蝌蚪的急性毒性[J]. 东北师大学报: 自然科学版, 2007, 39(2): 116-121
Shi G, Wang J X, Wu J, et al. Acute toxicity of Cu2+and Cr6+to Rana chensinensis tadpoles [J]. Journal of Northeast Normal University: Natural Science Edition, 2007, 39(2): 116-121 (in Chinese)
[53] 王维君. 铬对中国林蛙(Rana chensiensis)幼体的毒性效应[D]. 西安: 陕西师范大学, 2006: 18-23
Wang W J. Toxic effect of chromium on Rana chensiensis tadpole [D]. Xian: Shanxi Normal University, 2006:18-23(in Chinese)
[54] Chin H C, Chou F F. Acute chromium toxicity of the freshwater mussel, Hyriopsis cumingii Lea [J]. Nan-Ching Ta Hsueh Hsueh PaoTsu Jan K'o Hsueh Pan, 1978, 4: 96-101
[55] Khangarot B S, Ray P K. Sensitivity of freshwater pulmonate snails, Lymnaea luteola L. to heavy metals [J]. Bulletin of Environmental Contamination and Toxicology, 1988, 41(2): 208-213
[56] Rathore R S, Khangarot B S. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Muller to selected heavy metals [J]. Ecotoxicology and Environmental Safety, 2002, 53(1): 27-36
[57] Khangarot B S. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller) [J]. Bulletin of Environmental Contamination and Toxicology, 1991, 46(6): 906-912
[58] Reynoldson T B, Rodriguez P, Madrid M M. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Muller, 1774) from the North American Great Lakes and Northern Spain [J]. Hydrobiologia, 1996, 334(1-3): 199-206
[59] Wong C K, Pak A P. Acute and subchronic toxicity of the heavy metals copper, chromium, nickel, and zinc, individually and in mixture, to the freshwater copepod Mesocyclops pehpeiensis [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 73(1): 190-196
[60] Wong C K. Effects of chromium, copper, nickel, and zinc on survival and feeding of the cladoceran Moina macrocopa [J]. Bulletin of Environmental Contamination and Toxicology, 1992, 49(4): 593-599
[61] Elnabarawy M T, Welter A N, Robideau R R. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals [J]. Environmental Toxicology and Chemistry, 1986, 5(4): 393-398
[62] Spehar R L, Fiandt J T. Acute and chronic effects of water quality criteria-based metal mixtures on three aquatic species [J]. Environmental Toxicology and Chemistry, 1986, 5(10): 917-931
[63] Cowgill U M, Milazzo D P. The response of the three brood Ceriodaphnia test to fifteen formulations and pure compounds in common use [J]. Archives of Environmental Contamination and Toxicology, 1991, 21(1): 35-40
[64] 庄德辉. 重铬酸钾对方形网纹溞的毒性研究[J]. 环境科学学报, 1994, 14(3): 335-340
Zhuang D H. Toxicity of K2Cr2O7to Ceriodaphnia quadrangula (O. F. Muller) [J]. Acta Scientiae Circumtantiae, 1994, 14(3): 335-340 (in Chinese)
[65] 吕耀平, 李小玲, 贾秀英. Cr6+, Mn7+和 Hg2+对青虾的毒性和联合毒性研究[J]. 上海水产大学学报, 2007, 16(6): 549-554
Lv Y P, Li X L, Jia X Y. Study on the acute toxicity and joint toxicity of Cr6+, Mn7+and Hg2+on the Macrobrachium nipponense [J]. Journal of Shanghai Fisheries University, 2007, 16(6): 549-554 (in Chinese)
[66] 江敏, 臧维玲, 姚庆祯, 等. 四种重金属对罗氏沼虾仔虾的毒性作用[J]. 上海水产大学学报, 2002, 11(3): 203-207
Jiang M, Zang W L, Yao Q Z, et al. The toxicity of four heavy metals on Macrobrachium rosenbergii post larva [J]. Journal of Shanghai Fisheries University, 2002, 11(3): 203-207 (in Chinese)
[67] Baudouin M F, Scoppa P. Acute toxicity of various metals to freshwater zooplankton [J]. Bulletin of Environmental Contamination and Toxicology, 1974, 12(6): 745-751
[68] Jop K M, Rodgers J H, Price E E, et al. Renewal device for test solutions in Daphnia toxicity tests [J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(1): 95-100
[69] Call D J, Brooke L T, Ahmad N, et al. Aquatic Pollutant Hazard Assessments and Development of a Hazard Prediction Technology by Quantitative Structure-Activity Relationships; Second Quaterly Report, US EPA Cooperative Agreement No.CR 809234-01-0 [R]. Superior: Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, 1981
[70] Guilhermino L, Diamantino T C, Ribeiro R, et al. Suitability of test media containing EDTA for the evaluation of acute metal toxicity to Daphnia magna Straus [J]. Ecotoxicology and Environmental Safety, 1997, 38(3): 292-295
[71] 吴永贵, 袁玲, 黄建国. Cr6+的隆线溞趋光指数与LC50急性毒性的比较[J]. 环境科学学报, 2004, 24(5):905-909
Wu Y G, Yuan L, Huang J G. Comparison of phototaxis index with acute toxicity test (LC50) using Daphnia carinata [J]. Acta Scientiae Circumtantiae, 2004, 24(5): 905-909 (in Chinese)
[72] Arkhipchuk V V, Blaise C, Malinovskaya M V. Use of hydra for chronic toxicity assessment of waters intended for human consumption [J]. Environmental Pollution, 2006, 142(2): 200-211
[73] Khangarot B S, Ray P K. Sensitivity of toad tadpoles, Bufo melanostictus (Schneider), to heavy metals [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 38(3): 523-527
[74] Holland G. Toxic effects of organic and inorganic pollutants on young salmon and trout [R]. State of Washington Department of Fisheries, Research Bulletin, 1960, wa: 263
[75] Cavas T, Garanko N N, Arkhipchuk V V. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate [J]. Food and Chemical Toxicology, 2005, 43(4): 569-574
[76] Cearley J E. Toxicity and bioconcentration of cadmium, chromium, and silver in Micropterus salmonides and Lepomis macrochirus [D]. Oklahoma City: University of Oklahoma, 1971: 76
[77] Drummond R A, Olson G F. Response of Brook Trout (Salvelinus fontinalis) Exposed to Four Metals and Four Pesticides [R]. Duluth: USEPA, 1987
[78] 张云美, 潘永全, 徐惠, 等. 在亚慢性毒性试验中应用红剑鱼, 孔雀鱼和食蚊鱼的效果观察[J]. 医学动物防制, 2007, 23(5): 333-335,383
Zhang Y M, Pan Y Q, Xu H, et al. Application of Xiphophorus helleri, Poecilia and Gambusia affinis in subchronic toxicity test [J]. Journal of Medical Pest Control, 2007, 23(5): 333-335, 383 (in Chinese)
[79] Abbasi S A, Baji V, Madhavan K, et al. Impact of chromium (VI) on catfish Wallago attu [J]. Indian Journal of Environmental Health, 1991, 33(3): 336-340
[80] Hickey C W. Sensitivity of four New Zealand cladoceran species and Daphnia magna to aquatic toxicants [J]. New Zealand Journal of Marine and Freshwater Research, 1989, 23(1): 131-137
[81] Diamantino T C, Guilhermino L, Almeida E, et al. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests [J]. Ecotoxicology and Environmental Safety, 2000, 45(3): 253-259
[82] Enserink L, De La Haye M, Maas H. Reproductive strategy of Daphnia magna: Implications for chronic toxicity tests [J]. Aquatic Toxicology, 1993, 25(1): 111-123
[83] Oner M, Atli G, Canli M. Effects of metal (Ag, Cd, Cr, Cu, Zn) exposures on some enzymatic and non-enzymatic indicators in the liver of Oreochromis niloticus [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(3): 317-321
[84] St Laurent D, Blaise C, Macquarrie P, et al. Comparative assessment of herbicide phytotoxicity to Selenastrum capricornutum using microplate and flask bioassay procedures [J]. Environmental Toxicology and Water Quality, 1992, 7(1): 35-48
[85] Hickey C W, Blaise C, Costan G. Microtesting appraisal of ATP and cell recovery toxicity end points after acute exposure of Selenastrum capricornutum to selected chemicals [J]. Environmental Toxicology and Water Quality, 1991, 6(4): 383-403
[86] Mayer P, Frickmann J, Christensen E R, et al. Influence of growth conditions on the results obtained in algal toxicity tests [J]. Environmental Toxicology and Chemistry, 1998, 17(6): 1091-1098
[87] Rojickova R, Marsalek B. Selection and sensitivity comparisons of algal species for toxicity testing [J]. Chemosphere, 1999, 38(14): 3329-3338
[88] Beuffe H. Experimental Design Based on the Variations of DCMU Enhanced Fluorescence for Short-Term Acute Toxicity Screening [R]. [S.l.]: OECD-IRCHA, 1987
[89] Kuhn R, Pattard M. Results of the harmful effects of water pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication inhibition test [J]. Water Research, 1990, 24(1): 31-38
[90] Buhler D R, Stokes R M, Caldwell R S. Tissue accumulation and enzymatic effects of hexavalent chromium in rainbow trout (Salmo gairdneri) [J]. Journal of the Fisheries Board of Canada, 1977, 34(1): 9-18
[91] Fromm P O, Stokes R M. Assimilation and metabolism of chromium by trout [J]. Journal (Water Pollution Control Federation), 1962, 34(11): 1151-1155
[92] CSIRO (Australia's Commonwealth Scientific and Industrial Research Organisation). A Flexible Approach to Species Protection [R/OL]. (2002-10-07) [2013-07-29]. http://www.cmis.csiro.au/envir/burrlioz
[93] 冯承莲, 吴丰昌, 赵晓丽, 等. 水质基准研究与进展[J]. 中国科学: 地球科学, 2012, 42(5): 646-656
Feng C L, Wu F C, Zhao X L, et al. Water quality criteria research and progress [J]. Science China: Earth Sciences, 2012, 42(5): 646-656 (in Chinese)
◆
DerivationofFreshwaterQualityCriteriaforHexavalentChromiumforProtectionofAquaticOrganismsinChina
Liao Jing1, Liang Feng2, Yang Shaogui1, He Huan1, Sun Cheng1,*, Gao Shixiang1, Cui Yibin1
1. School of the Environment, Nanjing University, Nanjing 210023, China 2. Henan University of Urban Construction, Pingdingshan 467036, China
18 October 2013accepted19 December 2013
According to the methods and procedures of surface water qua1ity criteria established by United States Environmental Protection Agency (USEPA) (Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses, 1985), the aquatic species existing widely in China were selected, and their toxicity data were collected from database and acquired from our research on some native species. The aquatic quality criteria of hexavalent chromium in China were derived using three methods: species sensitivity rank (SSR), species sensitivity distribution (SSD) and the method of criteria development recommended by Australia. Results showed that the criteria maximum concentration (CMC) value of hexavalent chromium were 23.97, 22.84, 29.06 μg·L-1and the criteria continuous concentration (CCC) value were 14.63, 10.35, 9.00 μg·L-1, respectively. The criteria values were of the same order of magnitude. The criteria proposed in this study had a little difference from the criteria launched by USEPA. We suggest using SSD method to derive CMC value and CCC value. The results of this study might provide some useful clues and data for the development of China’s water quality criteria.
hexavalent chromium; freshwater aquatic organisms; water quality criteria; criteria maximum concentration (CMC); criteria continuous concentration (CCC)
国家水体污染控制与治理科技重大专项(2012ZX07501-003-002);河南城建学院博士科研启动基金项目(2013JBS003)
廖静(1989-),女,硕士,研究方向为重金属水质基准,E-mail: june.0000@163.com;
*通讯作者(Corresponding author),E-mail: envidean@nju.edu.cn
10.7524/AJE.1673-5897.20131018001
廖静,梁峰,杨绍贵, 等. 我国六价铬淡水水生生物安全基准推导研究[J]. 生态毒理学报, 2014, 9(2): 306-318
Liao J, Liang F, Yang S G, et al. Derivation of freshwater quality criteria for hexavalent chromium for protection of aquatic organisms in China [J]. Asian Journal of Ecotoxicology, 2014, 9(2): 306-318 (in Chinese)
2013-10-18录用日期2013-12-19
1673-5897(2014)2-306-13
X171.5
A
孙成(1955—),男,教授,博士生导师,主要从事微量与痕量有机污染物的分析、污染物的环境行为以及水体中有毒有机物去除技术与机理研究,发表科学论文140多篇。