非简并光学参量振荡器中量子态频率上转换
2014-03-25明莹
明 莹
( 延边大学理学院 物理系, 吉林 延吉 133002 )
参量频率转换能够产生可调谐的相干辐射和压缩光[1],因此被广泛应用于干涉测量、精确测量和光谱学等方面,并成为量子网络的重要组成部分[2].在量子网络中, 实现量子态的单位转换的方法有很多,例如可以通过粒子湮灭或产生来实现,也可以通过参量频率上转换来实现,等等.由于参量频率上转换能够显著提高转换效率[3],因此被认为是目前解决量子态转换的最佳方法,但在所知文献中其转换效率均低于50%.研究[4-5]表明,在共振腔内进行频率转换可以有效增强转换效率.基于文献[5],本文提出了在光学参量振荡腔中的量子态频率上转换的方案.
1 理论模型
(1)
(2)
(3)
(4)
图1 实验装置图
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
用振幅和位相正交量定义X=a+a+和Y=-i(a-a+), 获得输出场谐波模的起伏为:
经过傅里叶变换后可得到:
δX0(Ω)=-1/{Ω2(iΩ+γ0+μ0)(γ+μ)+2Ω(Ω-iμ0-2iγ0σ2)(γ+μ)2+
(23)
δY0(Ω)=1/{-Ω2(iΩ+γ0+μ0)(γ+μ)+2Ω(-Ω+iμ0+2iγ0σ2)(γ+μ)2+
(24)
(25)
(26)
其中:
R1=Ω2(iΩ+γ0+μ0)(γ+μ)+2Ω(Ω-iμ0-2iγ0σ2)(γ+μ)2+4γ0(1-σ2)(γ+μ)3,
2Ω(Ω-iμ0-2iγ0σ2)(γ+μ)2-4γ0(1-σ2)(γ+μ)3,
R2=-Ω2(iΩ+γ0+μ0)(γ+μ)+2Ω(-Ω+iμ0+2iγ0σ2)(γ+μ)2+4γ0σ2(γ+μ)3,
2Ω(-Ω+iμ0+2iγ0σ2)(γ+μ)2-4γ0σ2(γ+μ)3,
(27)
(28)
2 结果与讨论
图2 信号传递效率TX、TY和转换效率η随泵浦参数σ的变化曲线
参考文献:
[1] Burnham D C, Weinberg D L. Observation of simultaneity in parametric production of optical photon pairs[J]. Phys Rev Lett, 1970,25(2):84-87.
[2] Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys Rev Lett, 1997,78(16):3221-3224.
[3] Giorgi G, Mataloni P, Marini F D. Frequency hoppping in quantum interferometry: efficient up-down conversion for qubits and ebits[J]. Phys Rev Lett, 2003,90(2):027902.
[4] Bosenberg W R, Guyer D R. Broadly tunable, single-frequency optical parametric frequency-conversion system[J]. J Opt Soc Am B, 1993,10(9):1716-1722.
[5] Bai Y F, Zhai S Q, Gao J R, et al. Noise-free frequency conversion of quantum states[J]. Chin Phys B, 2011,20(3):034207.
[6] Jen H H, Kennedy T A B. Efficiency of light-frequency conversion in an atomic ensemble[J]. Phys Rev A, 2010,82(2):023815.
[7] Pooser R C, Marino A M, Boyer V, et al. Low-noise amplification of a continuous-variable quantum state[J]. Phys Rev Lett, 2009,103(1):010501.
[8] Gardiner C W, Collett M J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation[J]. Phys Rev A, 1985,31(6):3761-3774.
[9] Reynaud S, Fabre C, Giaocobino E. Quantum fluctuations in a two-mode parametric oscillator[J]. J Opt Soc Am B, 1987,4(10):1520-1524.
[10] Collett M J, Gardiner C W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification[J]. Phys Rev A, 1984,30(3):1386-1391.