“一次函数的图象和性质”教学设计说明
2013-04-29赵玉梅
赵玉梅
这节课之前,学生已经学习了函数和一次函数的概念,学习了用“两点法”画一次函数的图象。在学习上述这些知识的同时,教材其实已经为这节课作了铺垫。
根据课程标准和我校八年级学生的实际情况,我把本节课的教学目标确定为:
(1)了解正比例函数y=kx的图象的特点,能熟练地作出一次函数的图象,并结合一次函数的图象探究出一次函数的主要性质;
(2)培养学生课前预习、合作交流、展示、评价及观察能力,比较、抽象、概括的能力,向学生逐步渗透数形结合的思想;
(3)通过学生在学习活动中获得成功的体验,增强学生学习数学的自信心。本节课的教学重点是正比例函数图象的特点及一次函数的图象及性质;教学难点是由图象探究其性质。
因此,由图象去探究、分析函数的性质时,对于现在我们八年级的学生来说有一定的困难。尤其是探索y随x的变化而变化的规律时,学生是感受不到其变化的“双向性”的,这也就是本堂课学生学习的难点;在课堂讲解过程中将这一部分作为讲解的重点。
为了最大限度地解决困难,我在本节课教学上采取了“预习交流,学练展评”的课堂教学模式。其主要分四个步骤:预习—练习—展示—评价。整个课堂是以学生的预习为出发点,以导学案中设计的三个图象问题为主线,在此基础上教师做到“精讲多练”,并通过展示部分学生的练习由大家互相评价,相互学习。具体方法为:
第一步:
根据分类的思想,先研究k>0的情况。让学生先观察导学案第一题,在同一坐标系内的图象,同时完成4个问题,小组内合作交流、讨论,最后每个小组派一名学生回答本小组归纳的结果:a都经过(0,0)点;因此,做图象时只要描除(0,0)外的一个点就行,可以说把“两点法”降低到“一点法”,对学生来说是降低了难度,但实质是一样的“两点法”;图象经过一、三象限;b与x轴正方向所成的锐角大小不同;c因变量y随x的增大而增大。或有的小组以生活中的语言来描述:直线一直是“上升”趋势等。这类看法我都将给予肯定。我在教学的关键时,一直很注重学生的创新能力和发散思维,而对y随x的增大而增大的得出教师给予板演讲解,达到化解难点的目的。
第二步:
接下来让学生大胆地猜想k<0时的性质,估计学生很快会猜出结果。此时,教师给予纠正的同时,并给予积极鼓勵,板演y=kx的图象性质。
第三步:
按照“由浅入深,循序渐进”的原则,我将引导学生完成导学案第二题,估计学生很快就能画出图象,并观察图象找出不同点和相同点。不同点:坐标系内的位置发生了变化——没有经过(0,0);相同点:图象“走势一样”——y随x的增大而增大或y随x的增大而减小。发现一次函数y=kx+b与正比例函数y=kx的性质相同。并板演一次函数y=kx+b的图象的性质。这时,我们已经达到了本节课学习的主要目的了。
第四步:
让学生完成导学案第三题达标练习,仍然采用同学间互答、互评的方式来完成。
第五步:
为进一步的拓展本节课的知识点,教师给学有余力的学生留有补标练习(1)(2),同时也为下节课的内容提供预习提纲。而要想使学生对一次函数有进一步的学习和掌握,这就需要在以后的课堂教学中教师不断地做到知识的拓展和延伸。
第六步:
小结本节课的内容。由我提问,学生总结y=kx,y=kx+b各有哪些性质。在小组内学生小结本堂课学到了什么?有什么收获?到此,学生心目中复杂的函数已经大大降低了难度。这就是老师教学、学生学习的最终目的。
最后,布置课堂作业和下节课的预习提纲,使学生做到带着问题进课堂,带着问题出课堂。
以上是我对一次函数的图象和性质第二课时的教学设计和构思。我认为这种设计层层深入,符合学生的认知规律。
(作者单位 青海省湟中县西堡镇西堡学校)