BTC/DMF辅助的1-取代苯基-3,4-二取代吡唑类衍生物的合成*
2012-11-21陈志卫刘峰帆苏为科
陈志卫, 刘峰帆, 苏为科
(浙江工业大学 药学院 制药工程教育部重点实验室,浙江 杭州 310014)
吡唑类化合物广泛存在于天然产物和非天然产物中,具有抗菌、抗血糖、抗炎、抗肿瘤等[1~4]药理活性。传统的合成方法一般用苯肼与1,3-二羰基化合物反应得到,往往存在或多或少的缺点[5~9],如反应步骤多、原料难得、反应时间长、使用毒性溶剂或贵金属催化剂等。
本文参考文献[9,10]方法,环己酮(1a)与取代苯肼(2a~2f)在乙醇中于室温反应脱水合成取代苯腙(3a~3f); 3与双(三氯甲基)碳酸酯(BTC)与DMF制备所得的Vilsmeier试剂作用环合制得吡唑类化合物(4a~4f, Scheme 1),总收率82%~86%。扩展底物考察了环戊酮(1g),环庚酮(1h)与四氢萘酮(1i)与2a的反应(产物4g~4i, Scheme 2),总收率40%~88%。4的结构经1H NMR,13C NMR, IR和MS表征,其中4b,4c,4e,4f和4h为新化合物。
1 实验部分
1.1 仪器与试剂
WRS-1A型数字熔点仪(温度未校正);Varian-400 MHz型核磁共振仪(CDCl3为溶剂,TMS为内标);Thermo Nicolet Avatar 370型红外光谱仪(KBr压片);Trace DSQ FINNIGSN型质谱仪。
Scheme2
所用试剂均为市售分析纯。
1.2 合成
(1) 3的合成(以3a为例)
在两口烧瓶中加入1a0.98 g(10 mmol),苯肼(2a) 1.08 g(10 mmol)和乙醇5 mL,搅拌下于室温反应15 min。冷却至0 ℃,抽滤,滤饼用少量乙醇洗涤,干燥得白色固体3a,收率98%。
用类似方法合成3b~3h。合成3i需加乙酸60 mg(0.1 mmol)作催化剂,回流反应30 min。
(2)4的合成(以4a为例)
在两口烧瓶中加入DMF 15 mL,搅拌下于0 ℃分次加入BTC 1.93 g(6.5 mmol),加毕,自然升温至室温制得Vilsmeier试剂。冷却至0 ℃,加入3a1.84 g(9.8 mmol),升至室温反应10 min。倾入冰水(20 mL)中,充分搅拌,用饱和NaHCO3溶液调节至pH 8,用乙酸乙酯(3 ×15 mL)萃取,合并有机层,用水(3×15 mL)洗涤,乙酸乙酯(3×15 mL)萃取,合并萃取液,用无水硫酸钠干燥,浓缩后经硅胶柱层析[洗脱剂:V(石油醚) ∶V(乙酸乙酯)=16 ∶1]分离得4a。
表 1 合成4的实验结果Table 1 Experamental results of synthesizing 4
用类似方法合成4b~4f和4h。4g和4i于65 ℃反应18 min合成,后处理方法同4a。4的实验结果见表1。
4a:1H NMRδ: 7.54(d,J=7.6 Hz, 2H, ArH), 7.52(s, 1H, CH), 7.31(t,J=7.6 Hz, 2H, ArH), 7.12(t,J=7.2 Hz, 1H, ArH), 2.69(t,J=6.0 Hz, 2H, CH2), 2.52(t,J=6.0 Hz, 2H, CH2), 1.75~1.80(m, 2H, CH2), 1.66~1.70(m, 2H, CH2);13C NMRδ: 151.0, 140.4, 129.3(2C), 125.1, 123.4, 118.3(2C), 118.0, 23.6, 23.5, 23.5, 20.7; IRν: 3 050, 2 930, 2 855, 1 592, 1 506, 1 461, 1 378, 1 334 cm-1。
4b:1H NMRδ: 7.53(s, 1H, CH), 7.51(d,J=5.6 Hz, 2H, ArH), 6.92(d,J=9.2 Hz, 2H, ArH), 2.82(s, 3H, OCH3), 2.77(t,J=6.4 Hz, 2H, CH2), 2.60(t,J=6.4 Hz, 2H, CH2), 1.82~1.88(m, 2H, CH2), 1.74~1.80(m, 2H, CH2);13C NMRδ: 157.4, 150.4, 134.1, 123.7, 120.1(2C), 117.6(2C), 114.2, 55.5, 23.5(2C), 20.8(2C); IRν: 2 929, 2 853, 1 638, 1 564, 1 516, 1 378, 1 250 cm-1; HR-MS(ESI): Calcd for C14H17N2O{[M+H]+} 229.134 1, found 229.134 9。
4c:1H NMRδ: 7.56(d,J=6.8 Hz, 2H, ArH), 7.54(s, 1H, CH), 6.92(d,J=9.2 Hz, 2H, ArH), 2.76(t,J=6.0 Hz, 2H, CH2), 2.60(t,J=6.0 Hz, 2H, CH2), 1.80~1.88(m, 2H, CH2), 1.74~1.80(m, 2H, CH2);13C NMRδ: 151.4, 138.7, 130.6, 129.1(2C), 123.4, 119.4, 118.5(2C), 23.5, 23.4, 23.4, 20.7; IRν: 2 937, 2 855, 1 596, 1 567, 1 501, 1 375, 829, 813, 786 cm-1; HR-MS(ESI): Calcd for C13H14N2Cl{[M+H]+} 233.084 6, found 233.084 1。
4e:1H NMRδ: 7.65~7.67(m, 1H, ArH), 7.56(s , 1H, CH), 7.46~7.48(m, 1H, ArH), 7.28(t,J=8.8 Hz, 1H, ArH), 7.13~7.16(m, 1H, ArH), 2.75(t,J=6.0 Hz, 2H, CH2), 2.59(t,J=6.0 Hz, 2H, CH2), 1.81~1.88(m, 2H, CH2), 1.73~1.79(m, 2H, CH2);13C NMRδ: 151.4, 142.6, 138.7, 130.6, 129.4, 129.1, 123.4, 119.4, 118.5, 23.5, 23.4, 23.3, 20.7; IRν: 2 854, 1 596, 1 491, 1 373, 792, 777, 679 cm-1; HR-MS(ESI): Calcd for C13H14N2Cl{[M+H]+} 233.084 6, found 233.084 9。
4f:1H NMRδ: 7.56(s, 1H, CH), 7.47(s, 1H, ArH), 7.35(d,J=8.0 Hz, 1H, ArH), 7.23(t,J=8.0 Hz, 1H, ArH), 7.00(d,J=7.6 Hz, 1H, ArH), 2.76(t,J=6.4 Hz, 2H, CH2), 2.58(t,J=6.4 Hz, 2H, CH2), 2.36(s, 3H, CH3), 1.81~1.86(m, 2H, CH2), 1.72~1.78(m, 2H, CH2);13C NMRδ: 150.7, 140.0, 139.0, 128.7, 126.0, 123.4, 119.1, 117.8, 115.2, 23.5, 23.4, 23.4, 21.4, 20.7; IRν: 2 981, 2 854, 1 611, 1 496, 1 375 cm-1; HR-MS(ESI): Calcd for C14H17N2{[M+H]+} 213.139 2, found 213.139 1。
4g:1H NMRδ: 7.80(s, 1H, CH), 7.48~7.39(m, 1H, ArH), 7.27~7.29(m, 1H, ArH), 7.03~7.09(m, 2H, ArH), 2.72~2.94(m, 4H, CH2), 2.49~2.56 (m, 2H, CH2);13C NMRδ: 155.9, 143.4, 140.5, 124.4, 120.3, 119.6, 119.3, 118.3, 111.1, 28.7, 25.9, 24.5; IRν: 2 930, 2 849, 1 659, 1 610, 1 468, 965, 760 cm-1。
4h:1H NMRδ: 7.57(d,J=7.6 Hz, 2H, ArH), 7.55(s, 1H, CH), 7.35(t,J=7.6 Hz, 2H, ArH), 7.15(t,J=7.6 Hz, 1H, ArH), 2.83(t,J=6.0 Hz, 2H, CH2), 2.57(t,J=6.0 Hz, 2H, CH2), 1.80~1.86(m, 2H, CH2), 1.62~1.73(m, 4H, CH2);13C NMRδ: 155.8, 139.9, 129.0(2C), 125.0, 124.6, 123.2, 118.0(2C), 31.9, 29.9, 29.5, 27.9, 25.4; IRν: 2 914, 2 844, 1 574, 1 504, 1 388, 1 327 cm-1; HR-MS(ESI): Calcd for C14H17N2{[M+H]+} 213.139 2, found 213.139 5。
4i:1H NMRδ: 7.98(d,J=7.6 Hz, 1H, ArH), 7.73(d,J=7.6 Hz, 2H, ArH), 7.69(s, 1H, CH), 7.43(t,J=8.0 Hz, 2H, ArH), 7.26~7.30(m, 1H, ArH), 7.20~7.26(m, 3H, ArH), 2.98(t,J=7.2 Hz, 2H, CH2), 2.86(d,J=7.2 Hz, 2H, CH2);13C NMRδ: 149.4, 140.1, 136.6, 129.2, 129.0(2C), 128.1, 127.5, 126.6, 125.5, 123.1, 122.3, 118.5, 118.4(2C), 29.5, 19.2; IRν: 2 929, 1 596, 1 561, 1 502, 1 470, 1 440, 1 376, 1 321, 1 276 cm-1。
2 结果与讨论
应用BTC替代传统的POCl3与DMF制备新型的Vilsmeier试剂与相应底物进行环合反应制备目标化合物的优点在于反应条件温和,化学选择性高,而且可以避免后处理中产生容易造成环境富氧化的磷酸盐。在4i的合成中, Vilsmeier试剂的使用量由文献[9]的6 eq降为2 eq,反应时间由6 h降为0.25 h。
本实验重点考察了环合反应中原料配比和温度对收率的影响,对其工艺进行了考察,结果表明n(3) ∶n(BTC) ∶n(DMF)=1.00 ∶0.66 ∶2.00时收率较高。随后对反应温度也进行了考察,15 ℃~30 ℃为较佳温度,当反应温度低于15 ℃时,反应时间要延长,反应温度高于30 ℃时,反应选择性下降,收率降低。由表1可知,苯肼上的取代基对收率有一定的影响,芳环上具有给电子取代基一般有利于反应的进行,强吸电子基团不反应(未得到4d)。环戊酮的反应收率相对较低(如4g的收率仅40%)。
[1] Manikannan R, Venkatesan R, Muthusubramanian S,etal. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity[J].Bioorg Med Chem Let,2010,20:6920-6924.
[2] Shen D M, Brady E J, Candelore M R,etal. Discovery of novel,potent,selective,and orally active human glucagon receptor antagonists containing a pyrazole core[J].Bioorg Med Chem Lett,2001,21:76-81.
[3] Desaia D, Kaushal N, Gandhi U H. Synthesis and evaluation of the anti-inflammatory properties of selenium-derivatives of celecoxib[J].Chem Biol Interact,2010,188:446-456.
[4] Tobias P, Christina W Y, Jakob E R,etal. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction: induction of growth arrest in MCF-7 cancer cells[J].Org Biomol Chem,2007,5:3963-3970.
[5] Nakhai A, Bergman J. Synthesis of hydrogenated indazole derivatives starting with a,b-unsaturated ketones and hydrazine derivatives[J].Tetrahedron,2009,65:2298-2306.
[6] Stokes B J, Vogel C V, Urnezis L K,etal. Intramolecular Fe(Ⅱ)-catalyzed N-O or N-N bond formation from aryl azides[J].Org Lett,2010,12:2884-2887.
[7] Ka Y L, Saravanan G and Jae N K. Facile synthesis of 2H-indazole derivatives starting from the Baylis-Hillman adducts of 2-cyclohexen-1-one[J].Tetrahedron Lett,2005,46:5387-539.
[8] Peruncheralathan S, Khan T A, Junjappa H. Regioselective synthesis of 1-aryl-3,4-substituted/annulated-5-(methylthio)pyrazoles and 1-aryl-3-(methylthio)-4,5-substituted/annulated pyrazoles[J].J Org Chem,2005,70:10030-10035.
[9] Ganesabaskaran S, Radhakrishnan S, Paramasivan T P. Selective synthesis of some 4,5-dihydro-2H-benzo[g]indazoles and 8,9-dihydro-2H-benzo[e]indazoles via the Vilsmeier-Haack reaction under thermal and microwave assisted conditions[J].J Heterocycl Chem,2006,43:389.
[10] Thierry A, Badia T, Michel F,etal. A One-pot synthesis of 2-substituted 2,4,5,6-tetrahydrocyclopentapyrazoles[J].Synthesis,1988,9:742-743.