APP下载

基于apriori算法对盆栽春小麦生理指标及产量的分析

2024-12-31袁莹莹赵经华迪力穆拉提•司马义杨庭瑞

新疆农业科学 2024年8期
关键词:Apriori算法生理指标关联规则

摘 要:【目的】研究土壤、残膜、灌溉制度等因素对新疆北疆春小麦的生长发育及产量的影响。

【方法】试验采用盆栽试验,运用正交试验设计,选取土壤质地、灌溉方式、灌水定额、灌水次数、土壤地膜残留量5因素,各因素设置4水平,研究不同试验因素组合下春小麦株高、叶绿素含量、有效穗数、穗粒数、产量、水分利用效率和土壤含水率各指标的差异及变化;利用apriori算法分析小麦各生理指标间的关联性。

【结果】全生育期内不同处理下小麦株高变化趋势基本一致,对小麦株高影响较大的因素为灌溉制度;小麦全生育期内叶绿素值整体上呈现单峰变化趋势,适当提高土壤肥力可以增产;土壤含水率与土壤质地和灌水量有明显的相关性。在灌浆期适度增加灌水能够提高小麦叶片光合速率,达到增产效果;灌水次数以及灌溉方式对小麦产量及产量构成因素有显著性影响,渗灌的增产效果表现突出。最高耗水量和最大穗粒数,最大有效穗数,最大株高具有强相关性;最高耗水量与最低干物质重、最低SPAD值有强关联性;最高株高与最低SPAD值呈强相关性。

【结论】土壤质地为粘壤土,灌水方式为渗灌,灌水700 kg/hm2,地膜残留量为0时春小麦产量最高,能够达到71.56 g/盆;灌水定额700 kg/hm2与最高耗水量和最大株高、最低SPAD值、最大有效穗数、最大穗粒数具有强相关性。过高的灌水量和耗水量会导致株高过高,SPAD值小。

关键词:春小麦;生理指标;产量;关联规则;apriori算法

中图分类号:S512 ""文献标志码:A ""文章编号:1001-4330(2024)08-1861-11

收稿日期(Received):2024-01-11

基金项目:国家自然科学基金项目(52169013);新疆维吾尔自治区“十四五”重大专项项目(2020A01003-4)

作者简介:袁莹莹(2000-),女,黑龙江哈尔滨人,硕士研究生,研究方向为节水灌溉,(E-mail)yuanyingying136@163.com

通讯作者:赵经华(1979-),男,新疆奇台人,教授,博士,硕士生/博士生导师,研究方向为节水灌溉,(E-mail)105512275@qq.com

0 引 言

【研究意义】2020年新疆小麦种植面积106.9×104 hm2,总产582.09×104 t,单产5 445.18 kg/hm2,位居全国第6位[1]。关于土壤质地变化对小麦的影响[2-5],研究文献主要集中在土壤质地对小麦产量及品质的影响上,而对小麦生育期中的生理特性影响较少。基于apriori算法分析小麦各生理指标间的关联性,对分析新疆北疆小麦最宜种植制度有重要意义。【前人研究进展】微灌相较于普通灌溉方式有更明显的优点,滴灌条件下土壤蓄水保墒效果要高于传统灌溉方式[6],滴灌与微喷灌能够明显增加0~45 cm土层土壤水稳性团聚体的含量和大小,改善土壤微生物环境[7,8]。喷灌使作物根系产生明显的上移现象,更适合作物生长需要。微喷灌条件下冬小麦叶片光合速率高于漫灌处理[9]。残留在土壤中的地膜会直接影响农作物根系的自然生长,导致作物根系畸变,降低作物成活率,对作物造成不利影响。陈晶等[10]研究发现,土壤残膜量与茄子(Solanum melongena)、玉米(Zea mays)产量呈极显著负相关。马辉等[11,12]发现玉米茎粗和叶面积均随残膜量的增加呈现递减趋势。朱金儒等[13]发现试验区棉花氮主成铃数较对照组减少0.4~12个,落铃率增加3.9%~5.5%。 【本研究切入点】关联规则中的apriori算法在小麦上的应用相对较少。需利用apriori算法分析各生理指标间的关联性。【拟解决的关键问题】采用apriori算法,研究不同土质、灌溉方式、灌水定额、灌水次数和不同地膜残留量对春小麦的生长指标、水分利用效率及产量的影响,以探求最适宜的新疆北疆春小麦种植制度。

1 材料与方法

1.1 材 料

试验于2021年试验在新疆农业大学水利学院(43°81′N,87°57′E)进行。试验选取春小麦品种新春52号为试验材料。

1.2 方 法

1.2.1 试验设计

选取土壤质地、灌溉方式、灌水定额、灌水次数、土壤地膜残留共5个影响小麦生理指标及产量因素的正交试验(采用正交表L16(45))。每个因素设置4个水平,每组2个重复。表1,表2

选择盆栽种植方式,每个试验处理2次重复,共32个。选取底面积(0.36×0.36) m2,高0.6 m盆栽种植小麦,盆栽间隔控制在1 m左右,试验于4月16日播种,每盆小麦播种30粒,播种深度4 cm。于小麦播种前各小区统一施尿素底肥,以250 kg/hm2折算为盆体用量,一次性于作物播种前施入盆栽体10~20 cm土壤。

灌溉用水采用常规自来水源,使用点源入渗,使用输液器代替滴灌带,渗灌将输液器的一定长度软管及出水口预埋于设计深度,顶端设有连接器,灌溉时利用输液器的流量控制器调节至设定流量后,与预埋输液器管连接。地表滴灌采用输液器调节好流量后,盆栽土体表面直接灌溉。畦灌则采取地表自由流的方式模拟田间畦灌环境;采用人工布设同等高度的洒水壶模拟田间喷灌环境。根据春小麦不同生育期需水特点选取最适宜的春麦灌水时期。将往年的旧地膜人工粉碎成不规则大小的碎片,折算为盆栽体地膜碎片数量,模仿田间地膜残留实际状态均匀的混合在试验盆栽土壤中。

1.2.2 测定指标

1.2.2.1 株 高

随机选取测量对象,对每小区的小麦株高进行各生育期的分阶段(分蘖期、拔节期、抽穗期、灌浆期和成熟期)测量,采用分度值为0.1 cm的米尺测量盆栽土壤表面距小麦穗顶的高度。

1.2.2.2 叶片相对叶绿素含量

在小麦生长各生育期内,选取长势良好植株,取旗叶、倒二叶、倒四叶,利用SPAD-502 Plus叶绿素指数仪测定SPAD值。利用叶绿素指数仪测量时避开叶片叶脉部分,测量叶片尖部、中部以及根部SPAD值,取最终平均数用于试验分析。

1.2.2.3 土壤水分

测定土壤含水率时,在每个重复布设1根观测管,将土壤每10 cm为一层,共5层,每3~5 d测定一次含水率,若当天有灌水或降雨,则再加测一次。

作物耗水量通过水量平衡原理计算。

ET=I+P0+△W.(1)

式中,ET为作物耗水量(mm);I为灌溉用水量(mm);P0为有效降雨量(mm);△W为全生育期土壤水分消耗,即始末土壤水分差(mm)。

P0=0 "Plt;5 mmP "5 mmlt;Plt;50 mm0.8P "Pgt;50 mm .(2)

式中,P为时段内实际降雨量(mm)。

WUE=YaETa.(3)

IWUE=YaItot.(4)

式中,WUE为水分利用效率[14,15](kg/(hm2·mm));IWUE为灌溉水利用效率(kg/(hm2·mm));Ya为作物产量(kg);Itot为生育期内总灌水量(mm)。

1.2.2.4 春小麦产量及产量构成因素

于小麦成熟后测定春小麦产量,分别测算小麦有效穗数、千粒重、每穗粒数,单打单收。带回室内烘干称重,记录产量。

1.3 数据处理

研究关联规则的挖掘是通过apriori算法实现的,apriori算法遵循先验定理,即:频繁项集的所有非空子集也一定是频繁的。Apriori算法是根据数据情况首先设置最小支持度min-sup和最小置信度min-confi。对原始数据库进行迭代筛选,基于最小支持度进行剪枝,不断地得到候选项集和频繁项集。即得到所有关联规则,再根据支持度sup、置信度con和提升度lift从中筛选出有效规则。

支持度sup:相互关联的数据在原始数据集中出现次数占总数据集的比重。

sup(X,Y)=count(XY)count(D).(5)

式中,sup(X,Y)为X,Y两项对应的支持度,count(XY)为X,Y两项事务出现的次数,count(D)为原始数据集的数量大小。

置信度confi:置信度表示数据Y出现后,另一个数据X出现的概率,即数据的条件概率。

confi(XY)=sup(XY)·count(Y)count(D).(6)

提升度lift:表示Y出现的条件下X出现的概率与X总体发生的概率之比。

lift(XY)=confi(XY)·count(X)count(D).(7)

提升度表示项集Y对项集X的影响程度,当提升度等于1时,X,Y两项集的出现是相互独立的,即关联规则XY无意义;当提升度小于1时,X,Y两项集互斥,只有当提升度大于1时Y的出现会使X更频繁地出现,此时关联规则才有价值。

2 结果与分析

2.1 不同处理对春小麦生长指标的影响

2.1.1 不同处理对小麦株高的影响

研究表明,比较不同处理全生育期小麦株高变化,各处理小麦株高变化均呈不断增加的趋势。分蘖期—拔节期增高速率最大,之后逐渐变缓。T7与T15处理株高显著(Plt;0.05)高于其余处理,T11、T12处理株高显著较低(Plt;0.05)。其中T10处理拔节期到抽穗期株高增长速率最大,为1.17 cm/d,T10处理水分供应充沛,喷灌水分利用率相对较高,无地膜残留,最利于植株生长。T13处理抽穗期后株高持续增长,T13处理采用膜下滴灌,灌水定额较大,粘壤土持水能力强,地膜残留对植株生长的影响较小。T11处理拔节期至灌浆期增长较慢,当土质为壤土,灌溉方式为渗灌,灌水定额在500~700 m3/hm2,地膜残留为0~250 kg/hm2时,有利于小麦株高增长。表3

2.1.2 不同处理对SPAD值的影响

研究表明,分蘖期T2 SPAD值最高,较最低T6 处理高84.27%,其余各处理差异不显著;拔节期T2、T3 处理SPAD 值最高,T11 处理最低,其他各处理无显著性差异;抽穗期T11 处理叶绿素含量最低,T2、T3和T4处理较其他处理相比叶绿素含量较高,分别超过最低处理T11 63.12%、67.71%和73.70%;灌浆期与抽穗期相似,T2、T3和T4处理叶绿素值表现较好,分别高于最低处理T11 64.20%、68.64%和74.87%,T1处理叶绿素值最高,为29.99,T13 处理SPAD值最低,为16.15。

小麦全生育期内叶绿素值整体上呈单峰变化趋势,由分蘖期起SPAD值开始升高,直至抽穗期小麦叶片叶绿素值达到最大,其中T2处理SPAD值最大为61.4,超过T11处理 36%,从抽穗期到灌浆期SPAD值并无明显变化,灌浆期到成熟期叶片开始衰老,叶绿素降解,退绿黄化,SPAD值急速下降。表4

2.2 不同处理对土壤水分变化、小麦耗水特性的影响

2.2.1 不同处理对土壤水分变化规律的影响

研究表明,各生育期内,随测定深度的增加,土壤含水率的变化趋势大致相同,从土壤深度10 cm处到土壤深度50 cm处,含水率呈先迅速增大、后缓慢减小的趋势,各生育期土壤含水率均在20 cm土层深处达到最大。

不同质地的土壤在试验过程中含水率变化各不相同,其中砂土质含水率最低,含水率变化最为明显,壤土含水率总体较大,保水性能好。当土壤地膜残量小于450 kg/ hm2时土壤含水量能够处于较高水平。地膜残留量大于450 kg/hm2时一部分处理的土壤含水量同样处于较高水平。图1

2.2.2 不同处理对小麦耗水特性的影响

研究表明,不同处理下春小麦各阶段耗水强度变化趋势基本一致,各处理分蘖期小麦耗水强度波动幅度为0.67~2.91 mm/d,分蘖期到拔节期小麦耗水强度呈增加趋势,增至1.38~5.27 mm/d,自拔节期至抽穗期,日耗水量迅速增加,达到峰值7.99~10.58 mm/d,其中耗水强度最高的处理为T13处理,耗水强度为10.58 mm/d,抽穗期耗水强度最低为T5处理,耗水强度为7.99 mm/d。由抽穗期开始,小麦耗水量逐渐回落,灌浆期小麦耗水强度落至6.69~9.21 mm/d。直至成熟期结束,耗水强度降至最低,为0.81~3.59 mm/d。土壤含水率与土壤质地和灌水量有明显的相关性。图2

T13处理的耗水量最高为453.93 mm,高于T16处理35.3 mm,与其余各处理有显著性差异(Plt;0.05),T5处理耗水量最低,为270.89 mm。T5与T8处理WUE较高,与其他各处理有显著性差异(Plt;0.05)。T2与T1处理IWUE最高,T4、T10、T13处理灌溉水利用效率最低,与其他各处理由显著性差异(Plt;0.05),IWUE最高T2处理与最低组T13处理相差0.65(kg·hm2)/mm。

土壤质地与灌水模式对小麦耗水量影响大,对WUE和IWUE影响最大的试验因素均为灌水定额。当灌水定额设定为500~700 m3/hm2时水分利用效率最高,当灌水定额增加至800 m3/hm2时,WUE与IWUE有所降低,当灌水次数分别为5次、6次时,小麦WUE值与IWUE达到最佳水平。表5

2.2.3 不同处理对小麦产量及产量构成因素的影响

研究表明,T5处理小麦的有效穗数最高,还有T8、T9处理,高于其他处理并与其他处理的有效穗数具有显著性差异(Plt;0.05); T1处理有效穗数最少,约为28个。T15处理的穗粒数表现最好,与其余各处理间存在显著性差异(Plt;0.05),高于最低T16处理,为50.8%。T8处理千粒重与T4、T5和T9处理间无显著性差异,高于其余各处理。

灌水次数对最终有效穗数有着显著的影响,试验中灌水8次(灌浆期灌水3次)时春小麦有效穗数最多,在灌浆期适当增加灌水次数可提高小麦有效穗数、穗粒数、千粒重、干物质积累以及产量。

渗灌的增产效果与其他灌溉方式相比较表现更为突出,春小麦的穗粒数、千粒重、干物质积累量以及产量均在灌溉方式为渗灌时达到最高,产量最高可达71.56 g/盆。表6,图3

2.2.4 关联规则

研究表明,将各指标按照大小分别分为4类。

试验设计为700 m3/hm2灌溉定额、中壤土时更容易出现最高耗水量,最高耗水量和最大穗粒数,最大有效穗数,最大株高具有强相关性,而耗水量最高并没有使SPAD值、千粒重、干物质重达到最大,与之相反的是,最高耗水与最低干物质重、最低SPAD值表现出了强相关性。700 m3/hm2的灌溉定额、最大耗水、最高株高、最大穗粒数有强相关性。图4,表7

3 讨 论

地膜残留量大,影响土壤水分入渗及根系生长和养分吸收[12,16]。通过采用一定的措施提高土壤肥力,能够显著的延缓小麦功能叶片的退绿黄化的衰老过程,维持较长的有效光合时间,增加干物质的积累,保障后期干物质转运效率[17,18]。为达到节水增产的目的,灌水量可适度增加,但需控制在一定范围之内,与杨晓亚等[19]的研究结果一致。灌浆期适度增加灌水次数可以提高灌溉水利用效率,是因为小麦的产量重要来源为灌浆期冠层叶[20],即在灌浆期适度增加灌水能够促进小麦旗叶生长,提高小麦叶片光合速率,达到增产效果。增加灌溉次数可以增加小麦的根长根重以及地上部生物累积量,从而提高产量和水分利用率[21]。赵世伟等[22]通过盆栽试验得到了相同的试验结果,即在灌浆—成熟期进行调亏处理会对穗粒数以及千粒重产生较大影响。试验所得结果与于振文等[23]得到的结果一致:灌水次数增加时,产量构成因素随之增加。

玉米茎粗和叶面积均随残膜量的增加呈递减趋势[24],对玉米一类苗具有显著不利影响[7]、土壤残膜量与茄子、玉米产量呈极显著负相关[10]。除此之外,残膜可造成棉花现蕾期推迟,地膜残留量大时棉花主成铃数减少,落铃率也会增加。与试验结果大体吻合,在试验中,当残膜量小于650 kg/hm2时,土壤含水量较高,对小麦生长影响较小。残膜水平大于650 kg/hm2时,也存在小部分处理的土壤含水量较高,可能是较多的地膜在土壤中造成土壤的异质性,产生优势流,使得土壤水分运动加速,减少与土壤基质反应时间,使土壤湿润面积增大。

4 结 论

4.1 灌水定额小于800 m3/hm2时,小麦株高随灌水定额的增加而增加,渗灌较其他灌溉方式更有利于小麦植株的生长。

4.2 提高土壤肥力可以减轻水分胁迫对小麦最终产量造成的不利影响。在灌浆期适度增加灌水次数能够促进小麦旗叶生长,提高小麦叶片光合速率,达到增产效果。

4.3 土质为壤土、灌水700 m3/hm2,灌溉7次时土壤含水率较高,保水性好;使用膜下滴灌可以进一步保持土壤水分。当地膜残留小于650 kg/hm2时土壤含水率能够保持在较高水平。

4.4 使用壤土种植能够有效的提高小麦水分利用效率与灌溉水利用效率,当灌水定额设定为500 m3/hm2,灌水次数为6次时水分利用效率最高。

4.5 当土质为粘壤土,灌溉方式为渗灌,灌水500 m3/hm2,灌溉次数为8,地膜残留量为0时春小麦产量达到最大值71.56 g/盆。

4.6 最高耗水量和最大穗粒数,最大有效穗数,最大株高具有强相关性;最高耗水量与最低干物质重、最低SPAD值有强关联性;最高株高与最低SPAD值呈强相关性。

参考文献(References)

[1]肖丽, 吴新元, 王成. 种业振兴背景下推进新疆小麦育种工作对策研究——以新疆农业科学院为例[J]. 农业科技管理, 2022, 41(5): 17-20.

XIAO Li, WU Xinyuan, WANG Cheng. Studies on countermeasures of promoting wheat breeding in Xinjiang under the background of seed industry revitalization, taking Xinjiang academy of agricultural sciences as an example[J]. Management of Agricultural Science and Technology, 2022, 41(5): 17-20.

[2] 韩巧霞, 郭天财, 闫凌云, 等. 土壤质地对不同筋型冬小麦品种面团流变学特性的影响[J]. 山东农业科学, 2010, 42(8): 31-33.

HAN Qiaoxia, GUO Tiancai, YAN Lingyun, et al. Effects of soil texture on dough rheological characteristics of different gluten types of winter wheat[J]. Shandong Agricultural Sciences, 2010, 42(8): 31-33.

[3] 胡鑫慧, 谷淑波, 朱俊科, 等. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.

HU Xinhui, GU Shubo, ZHU Junke, et al. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields[J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.

[4] 孙耀民, 王勇, 王则勋, 等. 引黄灌溉对土壤质地和小麦产量影响的试验研究[J]. 水利科学与寒区工程, 2021, 4(5): 21-25.

SUN Yaomin, WANG Yong, WANG Zexun, et al. Study on the effect of irrigation from the Yellow River on soil texture and wheat yield[J]. Hydro Science and Cold Zone Engineering, 2021, 4(5): 21-25.

[5] 檀满枝, 李开丽, 史学正, 等. 华北平原土壤剖面质地构型对小麦产量的影响研究[J]. 土壤, 2014, 46(5): 913-919.

TAN Manzhi, LI Kaili, SHI Xuezheng, et al. Impact of soil profile texture pattern(SPTP) on wheat yield in North China Plain[J]. Soils, 2014, 46(5): 913-919.

[6] 陈静, 王迎春, 李虎, 等. 滴灌施肥对免耕冬小麦水分利用及产量的影响[J]. 中国农业科学, 2014, 47(10): 1966-1975.

CHEN Jing, WANG Yingchun, LI Hu, et al. Effects of drip fertigation with No-tillage on water use efficiency and yield of winter wheat[J]. Scientia Agricultura Sinica, 2014, 47(10): 1966-1975.

[7] 袁德玲, 张玉龙, 唐首锋, 等. 不同灌溉方式对保护地土壤水稳性团聚体的影响[J]. 水土保持学报, 2009, 23(3): 125-128, 134.

YUAN Deling, ZHANG Yulong, TANG Shoufeng, et al. Effect on soil water-stable aggregates of different irrigation methods in protected field[J]. Journal of Soil and Water Conservation, 2009, 23(3): 125-128, 134.

[8] 陈文平, 谷振宏, 郑志松. 水分对小麦生长发育的影响[J]. 河南农业, 2019,(7): 26.

CHEN Wenping, GU Zhenhong, ZHENG Zhisong. Effect of water on the growth and development of wheat[J]. Agriculture of Henan, 2019,(7): 26.

[9] 董志强, 张丽华, 吕丽华, 等. 不同灌溉方式对冬小麦光合速率及产量的影响[J]. 干旱地区农业研究, 2015, 33(6): 1-7.

DONG Zhiqiang, ZHANG Lihua, LYU Lihua, et al. Effects of different irrigation methods on photosynthetic rate and yield of winter wheat[J]. Agricultural Research in the Arid Areas, 2015, 33(6): 1-7.

[10] 陈晶, 黄邦升, 纪洪彦, 等. 残留地膜对农业环境影响的研究初报[J]. 农业环境科学学报, 1989, 8(2): 16-19, 49.

CHEN Jing, HUANG Bangsheng, JI Hongyan, et al. A tentative report on the study of the impact on agriculture environment due to the remalinder plastic sheet covered the soils[J]. Journal of Agro-Environmental Science, 1989, 8(2): 16-19, 49.

[11] 马辉. 典型农区地膜残留特点及对玉米生长发育影响研究[D]. 北京: 中国农业科学院, 2008.

MA Hui. Study on the Characteristic of Plastic Film Residue and Its Effect on Maize Growth in Typical Regions[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.

[12] 辛静静, 史海滨, 李仙岳, 等. 残留地膜对玉米生长发育和产量影响研究[J]. 灌溉排水学报, 2014, 33(3): 52-54.

XIN Jingjing, SHI Haibin, LI Xianyue, et al. Effects of plastic film residue on growth and yield of maize[J]. Journal of Irrigation and Drainage, 2014, 33(3): 52-54.

[13] 朱金儒, 李文昊, 王振华, 等. 覆膜滴灌棉田地膜残留量对棉花生长的影响[J]. 干旱区研究, 2021, 38(2): 570-579.

ZHU Jinru, LI Wenhao, WANG Zhenhua, et al. Effect of film mulching residue on cotton growth in drip irrigation cotton field[J]. Arid Zone Research, 2021, 38(2): 570-579.

[14] 胡建强, 赵经华, 马英杰, 等. 不同灌水定额对膜下滴灌玉米耗水及产量的影响[J]. 新疆农业大学学报, 2018, 41(1): 67-71.

HU Jianqiang, ZHAO Jinghua, MA Yingjie, et al. Effects of different irrigation quotas on water consumption and yield of maize under drip irrigation[J]. Journal of Xinjiang Agricultural University, 2018, 41(1): 67-71.

[15] 刘浩, 孙景生, 张寄阳, 等. 耕作方式和水分处理对棉花生产及水分利用的影响[J]. 农业工程学报, 2011, 27(10): 164-168.

LIU Hao, SUN Jingsheng, ZHANG Jiyang, et al. Effect of tillage methods and water treatment on production and water use of cotton[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 164-168.

[16] 祁虹, 赵贵元, 王燕, 等. 我国棉田残膜污染危害与治理措施研究进展[J]. 棉花学报, 2021, 33(2): 169-179.

QI Hong, ZHAO Guiyuan, WANG Yan, et al. Research progress on pollution hazards and prevention measures of residual film in cotton field in China[J]. Cotton Science, 2021, 33(2): 169-179.

[17] 刘国伟, 任艳云, 闫璐. 土壤肥力和灌水量组合对不同类型小麦光合特性及产量的影响[J]. 农学学报, 2017, 7(6): 27-33.

LIU Guowei, REN Yanyun, YAN Lu. Combination of soil fertility and irrigation: effect on photosynthetic characteristics and yield of different-type wheat[J]. Journal of Agriculture, 2017, 7(6): 27-33.

[18] 于丰鑫, 石玉, 赵俊晔, 等. 土壤肥力对高产小麦品种烟农1212旗叶叶绿素荧光特性和产量的影响[J]. 麦类作物学报, 2018, 38(10): 1222-1228.

YU Fengxin, SHI Yu, ZHAO Junye, et al. Effect of different soil fertility on chlorophyll fluorescence characteristics and yield in high-yielding wheat variety yannong 1212[J]. Journal of Triticeae Crops, 2018, 38(10): 1222-1228.

[19] 杨晓亚, 于振文, 许振柱. 灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响[J]. 生态学报, 2009, 29(2): 846-853.

YANG Xiaoya, YU Zhenwen, XU Zhenzhu. Effects of irrigation regimes on water consumption characteristics and nitrogen accumulation and allocation in wheat[J]. Acta Ecologica Sinica, 2009, 29(2): 846-853.

[20] 张其德, 刘合芹, 张建华, 等. 限水灌溉对冬小麦旗叶某些光合特性的影响[J]. 作物学报, 2000, 26(6): 869-873.

ZHANG Qide, LIU Heqin, ZHANG Jianhua, et al. Effects of limited irrigation on some photosynthetic functions of flag leaves i n winter wheat[J]. Acta Agronomica Sinica, 2000, 26(6): 869-873.

[21] 刘祖贵, 孙景生, 张寄阳, 等. 不同时期干旱对强筋小麦产量与品质特性的影响[J]. 麦类作物学报, 2008, 28(5): 877-882.

LIU Zugui, SUN Jingsheng, ZHANG Jiyang, et al. Effect of drought at different growing stages on yield and quality characteristics of strong-gluten wheat[J]. Journal of Triticeae Crops, 2008, 28(5): 877-882.

[22] 赵世伟, 管秀娟, 吴金水. 不同生育期干旱对冬小麦产量及水分利用效率的影响[J]. 灌溉排水, 2001, 20(4): 56-59.

ZHAO Shiwei, GUAN Xiujuan, WU Jinshui. Effects of water deficits on yield and WUE in winter wheat[J]. Irrigation and Drainage, 2001, 20(4): 56-59.

[23] 于振文, 岳寿松, 沈成国, 等. 高产低定额灌溉对冬小麦旗叶衰老的影响[J]. 作物学报, 1995, 21(4): 503-508.

YU Zhenwen, YUE Shousong, SHEN Chengguo, et al. Effect on senescence of flag leaf in winter wheat under high yield-low norm irrigation conditions[J]. Acta Agronomica Sinica, 1995, 21(4): 503-508.

[24] 姚素梅, 康跃虎, 吕国华, 等. 喷灌与地面灌溉条件下冬小麦籽粒灌浆过程特性分析[J]. 农业工程学报, 2011, 27(7): 13-17.

YAO Sumei, KANG Yuehu, LYU Guohua, et al. Analysis on grain filling characteristics of winter wheat under sprinkler irrigation and surface irrigation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 13-17.

Study on physiological indexes and yield analysis of spring wheat

in pots based on apriori algorithm

YUAN Yingying1, ZHAO Jinghua1, Dilimulati Simayi2, YANG Tingrui1

(1.College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University / Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention," Urumqi 830052, China; 2. Kashgar Water Conservancy Bureau, Kashgar Xinjiang 844000, China)

Abstract:【Objective】 To provide a theoretical basis for wheat planting in northern Xinjiang.

【Methods】 Five factors (soil texture, irrigation mode, irrigation quota, irrigation frequency and soil mulch film residue) were selected, and four levels were set for each factor, and the difference of spring wheat plant height, chlorophyll value, effective ear number, ear grain number, yield, water use efficiency and soil moisture content under different experimental factors were explored. Meanwhile, the apriori algorithm was used to explore the association rules between physiological indicators.

【Results】 The change trend of wheat plant height under different treatments during the whole growth period was basically the same, and the factor that had a greater influence on wheat plant height was the irrigation system. The chlorophyll value of wheat showed a unimodal trend during the whole growth period, and appropriate improvement of soil fertility could increase yield. There was a significant correlation between soil moisture content and soil texture and irrigation volume. Moderately increasing irrigation during the filling period could increase the photosynthetic rate of wheat leaves and achieve the effect of increasing yield. The frequency of irrigation and the irrigation method had a significant impact on the yield and yield composition factors of wheat, and the yield increase effect of infiltration irrigation was outstanding. The highest water consumption, maximum number of ear grains, maximum effective ear number and maximum plant height were strongly correlated. The highest water consumption was strongly correlated with the lowest dry matter weight and the lowest SPAD value. The highest plant height was strongly correlated with the lowest SPAD value.

【Conclusion】 The soil texture is clay loam, the irrigation method is seepage irrigation with 700 kg/hm2, and the highest yield of spring wheat is achieved when the residual amount of mulch is 0, which is able to reach 71.56 g/pot. The irrigation quota of 700 kg/hm2 is strongly correlated with the highest water consumption, maximum plant height, minimum SPAD value, maximum effective panicle number, maximum ear grain number. Excessive irrigation and consumption will lead to high plant height, and low SPAD value.

Key words:spring wheat; physiological characters; yield; association rules; apriori algorithm

Fund projects:The Project of National Natural Foundation of China (52169013); The Major Special Project of the 14th Five Year Plan of Xinjiang Uygur Autonomous Region(2020A01003-4)

Correspondence author:ZHAO Jinghua(1979-), male, from Qitai, Xinjiang, Dr. professor, research direction:water-saving irrigation technology, (E-mail)105512275@qq.com

猜你喜欢

Apriori算法生理指标关联规则
烯效唑对小麦种子成苗的影响
不同香樟品系嫁接苗的生理指标测定
智能穿戴设备监测数据的分析及研究
基于Hadoop平台的并行DHP数据分析方法
基于Apriori算法的高校学生成绩数据关联规则挖掘分析
基于云平台MapReduce的Apriori算法研究
关联规则,数据分析的一把利器
数据挖掘在高校课堂教学质量评价体系中的应用
关联规则挖掘Apriori算法的一种改进
基于关联规则的计算机入侵检测方法