干燥综合征的发病机制及治疗研究进展
2024-12-18石燕楠徐蕊钱捷达展云
[摘" "要]" "干燥综合征(Sjögren's syndrome, SS)是一种慢性炎症性自身免疫性疾病,其特征是外分泌腺受累和明显的淋巴细胞浸润,主要表现为口干、眼干,并伴有全身并发症(如肺部疾病、肾损伤、淋巴瘤等)。然而,SS的发病机制和治疗的临床研究相对较少,和其他自身免疫性疾病免疫治疗效果的差异尚不完全清楚。因此,本文就SS的发病机制及治疗进展进行综述,以期为SS的诊疗提供新思路。
[关键词]" "干燥综合征;辅助性T细胞17;间充质干细胞;B细胞激活因子
[中图分类号]" "R593.2" " " " " " " "[文献标志码]" "A" " " " " " " "[文章编号]" "1674-7887(2024)05-0473-06
Research progress on the pathogenesis and treatment of Sjögren's syndrome*
SHI Yannan**, XU Rui, QIAN Jie, DA Zhanyun***" " " " (Department of Rheumatology and Immunology, Affiliated Hospital of Nantong University, Jiangsu 226001)
[Abstract]" "Sjögren's syndrome(SS) is a chronic inflammatory autoimmune disease characterized by involvement of exocrine glands and significant lymphocyte infiltration. The main manifestations are dry mouth and dry eyes, accompanied by systemic complications(such as lung disease, kidney injury, lymphoma, etc). However, there is relatively little clinical research on the pathogenesis and treatment of SS, and the differences in the efficacy of immunotherapy with other autoimmune diseases are not fully understood. Therefore, this article reviews the pathogenesis and treatment progress of SS, in order to provide new ideas for the diagnosis and treatment of SS.
[Key words]" "Sjögren's syndrome; T helper cell 17; mesenchymal stem cell; B cell activating factor
干燥综合征(Sjögren's syndrome, SS)是一种慢性自身免疫性疾病,与外分泌腺(如腮腺和泪腺)的功能障碍和腺外表现有关,并伴有多种临床症状,如龋齿、阴道干燥和关节痛等[1]。在一项原发性干燥综合征(primary Sjögren's syndrome, pSS)相关的周围神经病变的系统综述和荟萃分析[2]中发现,周围神经病是pSS最常见的神经系统表现。间质性肺病(interstitial lung disease, ILD)是SS最常见和最严重的肺部并发症。在意大利的一个队列研究[3]中,约20%的SS患者表现为ILD,约10%表现为淀粉样变和原发性肺淋巴瘤。SS作为一种自身免疫性疾病,也与滑膜炎和类风湿关节炎(rheumatoid arthritis, RA)密切相关。研究[4]表明,RA的药物治疗策略对SS有一定成效,但最佳的治疗方案尚不清楚。此外,只有不到10%的SS患者观察到肾脏并发症。非霍奇金淋巴瘤(non-Hodgkin's lymphoma, NHL)是SS最严重的腺外并发症。有研究[5]报道,SS-NHL也与NF-κB的异常激活有关。一项多中心临床研究[6]显示,超过1/4的SS患者表现出超出目前欧洲抗风湿病联盟制定的干燥综合征疾病活动指数(European League Against Rheumatism Sjögren's syndrome disease activity index, ESSDAI)分类的全身性症状,包括心血管、消化、肺、耳鼻喉科、皮肤特征和泌尿系统特征。因此,必须重视SS的发病机制及诊疗进展,避免引起患者多脏器损害。
1" "发病机制
1.1" "简介" "2013年,G.NOCTURNE等[7]回顾了SS的发病机制。基于最初的全基因组关联研究(genome-wide association study, GWAS),确定了3个关键步骤:先天性免疫反应的异常激活特别是通过IFN和NF-κB通路,趋化因子受体(C-X-C chemokine receptor, CXCR)5介导的淋巴滤泡非典型募集,以及IL-12-IFN-γ轴的T细胞激活。B细胞激活因子(B cell activating factor, BAFF)被认为对协调该疾病的先天性和适应性免疫反应至关重要。他们还强调了自然杀伤细胞和上皮细胞的病理生理作用,以及神经内分泌系统的功能障碍。
C.P.MAVRAGANI等[8]综述了先天性和适应性免疫途径的治疗策略和分子靶点。关于先天性免疫的调节,主要集中在抑制促炎因子的产生,如IL-1、IL-6和TNF-α的产生对其他自身免疫性疾病也有效。IFN相关通路抑制剂也是目前令人感兴趣的治疗方案。例如,下调初级树突状细胞表面受体ILT7表达来减少TOLL样受体7/9介导的IFN的产生被认为是一种潜在的治疗途径。在适应性免疫方面,主要集中在抗原呈递、共刺激、B细胞活化、T细胞增殖和生发中心形成等方面。总的来说,大多数策略都旨在调节异常炎症。
1.2" "表面分子" "IFN是一种免疫调节蛋白,可促进先天性免疫、获得性免疫和抗病毒激活。研究人员[9]在SS患者的唾液腺中观察到树突状细胞,这表明IFN-Ⅰ在唾液腺病变的形成中发挥了作用。IFN通过Janus激酶(Janus tyrosine kinase, JAK)-信号传导及转录激活蛋白(signal transducer and activator of transcription, STAT)信号通路激活典型干扰素刺激基因的过表达,该通路被定义为“干扰素特征”。IFN可磷酸化STAT1、STAT2、STAT3和STAT5,从而激活下游信号,导致免疫细胞的激活[10]。
研究[11]发现,细胞黏附分子-1、细胞间黏附分子-1(intercellular adhesion molecule-1, ICAM-1)和程序性死亡配体-1(programmed death ligand-1, PD-L1)在SS患者中的表达增强。这些细胞因子的异常表达是由IFN-Ⅰ和IFN-Ⅱ通过JAK-STAT通路介导的。还有学者[12-13]使用活性氧和N-乙酰半胱氨酸来诱导或阻断ICAM-1和PD-L1的表达,并揭示了调控SS中ICAM-1和PD-L1表达的IFN信号与氧化应激有关。
1.3" "基因位点" "病因学研究已经在基因组水平上揭示了SS的发病机制。自身免疫性疾病的一个GWAS确定了人类白细胞抗原(human leukocyte antigen, HLA)区域和SS之间的关联,包括人类白细胞DR抗原(human leukocyte antigen DR, HLA-DR)、人类白细胞DQB1抗原(human leukocyte antigen DQB1, HLA-DQB1)和人类白细胞DQA1抗原(human leukocyte antigen DQA1, HLA-DQA1)。此外,6个超过提示阈值的非HLA区域(Pmetalt;5×10-5)也被证明参与了SS,包括干扰素调节因子5(interferon regulatory factor 5, IRF5)、信号传导子及STAT4、B淋巴酪氨酸激酶、IL-12A、TNF-α诱导蛋白3相互作用蛋白1(TNF-α-induced protein 3-interacting protein 1, TNIP1)和CXCR5,其中,IRF5和STAT4的表达是继HLA区域之后最重要的区域。
1.4 " 炎症因子
1.4.1" "辅助性T细胞17(T helper cell 17, Th17)/IL-17" "Th17独立调节免疫应答。Th17细胞在TGF-β和IL-6的刺激下,从抗原提呈细胞分化为幼稚T细胞。导管上皮细胞分泌的IL-1β和树突状细胞分泌的IL-23也参与了Th17细胞的极化。IL-17和IL-22是由Th17细胞产生的主要有效细胞因子。Th17细胞通过产生促炎细胞因子TNF-α和IL-6来介导炎症反应。既往研究[14]显示,IL-17/IL-23在SS小鼠模型中表达增强,提示Th17参与了唾液腺的淋巴细胞浸润,并参与了病变形成。调节性T细胞(regulatory T cell, Treg)和Th17细胞被活化T细胞的TGF-β诱导,表明在这些对抗炎症相关细胞之间可能存在一种平衡。目前有一种基于细胞质小RNA(small cytoplasmic RNA, scRNA)测序和通量平衡分析的强大算法,最近被用来预测细胞代谢状态和致病性之间的关系,并已被用于Th17-Treg网络的研究[15]。
滤泡辅助性T细胞(type follicular helper T, Tfh)17和产生IL-17的B细胞(IL-17-producing B, B17)也有助于IL-17的产生。最近的一项研究[16]显示,在链脲佐菌素(streptozotocin, STZ)诱导的1型糖尿病和SS的NOD/ShiLtJ小鼠(非肥胖型糖尿病小鼠)外周血和脾脏中,产生IL-17的细胞数量增加。在代谢紊乱的小鼠模型中,唾液腺产生的IL-17浸润增加,并与SS的严重性相关。随后研究[17]发现,代谢异常诱导的IL-17异常表达导致SS患者唾液腺损伤和组织恢复抑制。此外,维生素A缺乏症可加剧SS患者Th17/Treg比值的失衡。
1.4.2" "TNF/BAFF" "TNF-α主要由巨噬细胞和T细胞以两种形式产生:可溶性TNF-α(soluble TNF-α, sTNF-α)和跨膜TNF-α(transmembrane TNF-α, Tm TNF-α)。sTNF-α是炎症和自身免疫性疾病的有效调节因子。TNF-α与肿瘤坏死因子受体(tumor necrosis factor receptor, TNFR)1或TNFR2结合,通过激活NF-κB通路和MAPKs来介导炎症反应[17]。
BAFF参与了多种自身免疫性疾病的发病机制,包括RA、系统性红斑狼疮(systemic lupus erythematosus, SLE)、Graves病和抗肾小球基底膜病。在SS小鼠模型中,BAFF的过表达提高MHC-Ⅱ的表达,增强淋巴细胞浸润,并增加了生发中心样结构的数量[18]。在SS患者中,生发中心样结构的增加与类风湿因子、抗核糖核蛋白抗原SSA抗体(ribonucleoprotein complex, RNP RO/SSA)、抗La/SSB和IgG的产生有关。然而,另一项研究[17]发现,BAFF不能介导B细胞从生发中心中分化,表明其参与抑制性障碍通路。此外,BAFF通过与BAFF-R结合刺激单核细胞,促进IL-6的产生,从而诱导SS中B细胞异常产生IgG[19]。
1.5" "信号轴" "IL-33-ST2轴通过促进唾液腺上皮细胞中CD86和CCL2的转录激活和NF-κB通路的激活,参与SS的发病。IL-33分别与IL-12、IL-23联合,参与CD4+T细胞和IFN-γ的产生[20]。据报道[21],SS患者的血清中IL-33和ST2水平升高。IL-33是IL-1家族的成员,而ST2是IL-1受体家族的重要成员之一。IL-33诱导NF-κB通路的磷酸化,并通过与ST2相互作用激活MAP激酶,刺激下游与Th2相关的免疫反应。研究者[22]将IL-33描述为一种脱氧核苷酸,其表达的局部增加可诱导免疫反应,并导致器官损伤。IL-33-ST2轴是SS发病机制中的一种新模式,也是相关唾液腺疾病的潜在治疗靶点。
2" "SS的实验性治疗策略
2.1" "针对炎症因子" "Tregs/Th17在自身免疫性疾病的发病机制中起着至关重要的作用。目前已经设计多种药物来靶向参与Tregs/Th17极化和激活的分子机制,包括IL-17相关分子(IL-17、IL-23)、转录因子(RORγt、STAT3、FoxP3和FoxO1)和细胞内信号通路(ROCK和MAPK)[23]。然而,与RA、SLE、炎症性肠病(irritable bowel disease, IBD)和银屑病(psoriasis, PSO)相比,治疗SS的临床或临床前药物较少。IL-38是IL-1家族的一员,通过与IL-36受体结合,抑制Th17细胞相关细胞因子的分泌,包括IL-6、IL-8、IL-17、IL-22和IL-23。一项临床研究[24]报道了一种选择性抗IL-17A单抗,即司库奇尤单抗,通过阻断IL-17A的表达来减轻PSO的症状,而IL-1受体拮抗剂和IL-38表达下调。还有一项研究[14]检测了IL-38治疗对Th17细胞活性的影响,并发现在SS小鼠模型中,IL-17和IL-23的表达水平降低;IL-38通过NF-κB和MAPK信号通路抑制IL-17的表达,这提示抑制IL-17可能是治疗SS的潜在方法之一。
二甲双胍是一种AMPK依赖的mTOR-STAT3抑制剂,鉴于它的抗炎和免疫调节作用,研究人员[25]检测了其在SS小鼠模型中的治疗效果,发现它改善了唾液腺的炎症,并基于流式细胞术结果,它可以调节Th17/Tregs比值。但是,二甲双胍不仅能够调节Th17,同样也可以对其他免疫细胞发挥作用,而且近年来,其在SS中的研究较为稀少。因此,二甲双胍对于SS的治疗作用仍存在争议。Y.X.SHAO等[26]报道,从传统中药中提取的一种生物碱可通过抑制Akt/mTOR通路来抑制肿瘤性B淋巴细胞增殖,从而治疗SS。
间充质干细胞能调节抑制性Tregs细胞和炎性T辅助细胞(Th1、Th2、Th17和Tfh)之间的平衡,改善唾液腺的炎症浸润[27]。J.J.XU等[28]发现,在SS样小鼠模型中,间充质干细胞的免疫调节功能受损,人骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMMSCs)输注可抑制SS样炎症,显示BMMSCs对SS有治疗作用。此外,他们还阐明了基质细胞来源因子-1(stroma cell-derived factor, SDF-1)/CXCR4轴在间充质干细胞迁移和唾液腺恢复中起着重要作用。更重要的是,他们还用脐带间充质干细胞(umbilical cord-derived mesenchymal stem cells, UCMSCs)治疗SS患者,所有患者均症状减轻,异体UCMSCs耐受良好。Y.Y.LIU等[29]验证了UCMSCs的免疫调节作用,发现UCMSCs在体外诱导CD4+FoxP3+Tregs细胞,引起体内炎症相关T细胞无反应性,同时Tregs细胞数量增加。H.S.ALURI等[30]发现,一种涉及骨髓源性间充质干细胞的生物治疗策略通过抑制炎症反应,促进水通道蛋白5的表达和激活,减轻SS小鼠模型中的泪腺表现。B.Y.LI等[31]评估了唇腺来源的间充质干细胞及其外泌体对SS的影响,并发现它们通过抑制Th17细胞的极化,促进Tregs细胞的增殖来改善唾液腺的炎症浸润。此外,牙髓干细胞、小鼠胚胎间充质干细胞和嗅觉外源性间充质干细胞可通过干扰炎症相关细胞因子(IL-4、IL-6、IL-12和IL-17a)和抑制细胞因子(IL-10和TGF-β)来治疗SS[32]。
JAK/STAT通路可调节ILs、TNFs、GMCSFs和IFN-γs的产生,这些通路与炎症和自身免疫相关。JAK抑制剂托法替尼、巴瑞替尼、奥拉替尼、非洛替尼和乌帕替尼已应用于自身免疫性疾病的治疗。据报道[12, 33],两种JAK1/2抑制剂AG490和鲁索替尼能逆转ROS诱导的10~11易位3和IFNα介导的DNA羟甲基化,并可能治疗SS。托法替尼也是SS的候选药物,因为它可以逆转自噬蛋白5缺陷的3D腺泡中IL-6的表达,从而抑制炎症[34]。
贝利尤单抗是一种抗BAFF单克隆抗体和潜在的治疗SLE和SS的生物治疗药物。一项双中心临床试验报告[35]称,在28周的贝利尤单抗方案后,30例患者中有18例达到了5个主要终点中的2个。欧洲风湿病协会联盟(European League Against Rheumatism, EULAR)SS患者报告指数(EULAR Sjögren's syndrome patients reported index, ESSPRI)和SS疾病活动度指数(EULAR Sjögren's syndrome disease activity index, ESSDAI)的均值和标准差均降低。伊利尤单抗是BAFF阻断单克隆抗体,可导致B细胞耗尽。另一项临床研究[36]发现,在SS中,伊利尤单抗降低了ESSDAI、ESSPRI和血清免疫球蛋白水平。
2.2" "针对表面分子" "最近的一项研究[27]报道,SSA/RO抗原特异性Tregs细胞可下调CD4+T细胞来源的IFN-γ产生,并抑制唾液腺炎症浸润。抗CD4单抗和自身抗原特异性肽Ro480联合治疗可诱导体内SSA/Ro抗原特异性Tregs,并抑制唾液中CD4+T细胞相关IFN-γ的产生,为SS的治疗提供一种潜在的新型免疫治疗策略[27]。
2.3" "针对信号轴" "T.L.ZHAN等[37]报道了最初用于治疗氯喹耐药疟疾的中草药衍生药物青蒿素(Artemisinin, ART),在SS样小鼠模型中具有免疫抑制作用。该研究表明,ART通过靶向TRAF6泛素化,下调BAFF诱导的B细胞中NF-κB活性,从而抑制B细胞的存活和增殖。经ART治疗后,SS样小鼠模型中B淋巴细胞相关免疫球蛋白和自身抗体水平减弱,唾液腺中的淋巴细胞浸润得到改善。
2.4" "其他" "各种生物治疗药物已被用于试验性治疗SS。其中一些已被用于治疗其他自身免疫性疾病(如利妥昔单抗)。利妥昔单抗是嵌合的单克隆抗CD20抗体,已被报道可诱导B细胞衰竭,并用于治疗自身免疫性疾病[38]。临床试验[39]研究了贝利尤单抗(抗BAFF)和利妥昔单抗(抗CD20)联合治疗的效果,结果表明同时靶向BAFF轴和B细胞是SS的很有前途的治疗策略。然而,并不是所有的药物都对治疗SS有预期的效果,在一项生物制剂治疗SS患者唾液腺功能的有效性和安全性的研究[40]中发现,生物制剂组和对照组之间的严重不良事件(severity adverse events, SAEs)发生率差异有统计学意义,生物制剂对pSS患者的SAEs明显多于对照组,但pSS患者的病程并没有影响两组之间SAEs发生率的差异。结果显示,所有类型的自身免疫性疾病SAEs发生率在生物制剂组和对照组之间差异无统计学意义。
3" "总结与讨论
SS作为一种全身性自身免疫性疾病,可引起多器官病变,特别是唾液腺和泪腺。唇腺活检由于具有较高的疾病特异性和较小的侵袭性,被广泛认为是目前诊断SS的最佳方法[41]。唾液腺纹状导管周围的淋巴细胞浸润,或所谓的导管周围灶,是诊断SS的一个关键标志[42]。IFN和IL-17/IL-23在炎症性病变的形成、B细胞导致浸润性损伤、Th17和树突状细胞对免疫系统的异常调节中发挥着关键作用。
虽然最近在SS的治疗方面已取得较多进展,但疾病特异性药物却仍较罕见,许多SS药物仍处于临床试验中。随着Th17和B细胞在SS发病机制中发挥重要作用,靶向Th17细胞和B细胞相关的信号通路和分子活动也受到越来越多的关注。目前在SS的发病机制中已经确定了许多潜在的治疗靶点,一些靶向药物在体内外实验条件下均显示出一定的疗效,但目前这些药物转化为临床应用仍很少见。另外,不适当的药物组合可能会导致免疫系统的过度抑制,导致意外的并发症,如继发感染等。因此,靶向性和低不良反应的药物应该是未来研究的重点。
[参考文献]
[1]" "CORNEC D, DEVAUCHELLE-PENSEC V, MARIETTE X, et al. Severe health-related quality of life impairment in active primary Sjögren's syndrome and patient-reported outcomes: data from a large therapeutic trial[J]. Arthritis Care Res, 2017, 69(4):528-535.
[2]" "LIAMPAS A, PARPERIS K, EROTOCRITOU M F, et al. Primary Sjögren's syndrome-related peripheral neuropathy: a systematic review and meta-analysis[J]. Eur J Neurol, 2023, 30(1):255-265.
[3]" "SAMBATARO G, FERRO F, ORLANDI M, et al. Clinical, morphological features and prognostic factors associated with interstitial lung disease in primary Sjögren's syndrome: a systematic review from the Italian Society of Rheumatology[J]. Autoimmun Rev, 2020, 19(2):102447.
[4]" "MIROUSE A, SEROR R, VICAUT E, et al. Arthritis in primary Sjögren's syndrome: characteristics, outcome and tre-atment from French multicenter retrospective study[J]. Aut-oimmun Rev, 2019, 18(1):9-14.
[5]" "NORDMARK G, WANG C, VASAITIS, et al. Association of genes in the NF-κB pathway with antibody-positive primary Sjögren's syndrome[J]. Scand Immunol, 2013, 78(5):447-454.
[6]" "RETAMOZO S, ACAR-DENIZLI N, RASMUSSEN A, et al. Systemic manifestations of primary Sjögren's syndrome out of the ESSDAI classification: prevalence and clinical relevance in a large international, multi-ethnic cohort of patients[J]. Clin Exp Rheumatol, 2019, 37 Suppl 118(3):97-106.
[7]" "NOCTURNE G, MARIETTE X. Advances in understanding the pathogenesis of primary Sjögren's syndrome[J]. Nat Rev Rheumatol, 2013, 9(9):544-556.
[8]" "MAVRAGANI C P, MOUTSOPOULOS H M. Sjögren's syndrome: Old and new therapeutic targets[J]. J Autoimmun, 2020, 110:102364.
[9]" "FINOTTI G, TAMASSIA N, CALZETTI F, et al. Endogenously produced TNF-α contributes to the expression of CXCL10/IP-10 in IFN-λ3-activated plasmacytoid dendritic cells[J]. J Leukoc Biol, 2016, 99(1):107-119.
[10]" "FINOTTI G, TAMASSIA N, CASSATELLA M A. Interferon-λs and plasmacytoid dendritic cells: a close relationship[J]. Front Immunol, 2017, 8:1015.
[11]" "ZHOU J, JIN J O, KAWAI T, et al. Endogenous programmed death ligand-1 restrains the development and onset of Sjögren's syndrome in non-obese diabetic mice[J]. Sci Rep, 2016, 6:39105.
[12]" "ROUX C, JAFARI S M, SHINDE R, et al. Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1[J]. Proc Natl Acad Sci U S A, 2019, 116(10):4326-4335.
[13]" "CHARRAS A, ARVANITI P, LE DANTEC C, et al. JAK inhibitors and oxidative stress control[J]. Front Immunol, 2019, 10:2814.
[14]" "LUO D Y, CHEN Y, ZHOU N G, et al. Blockade of Th17 response by IL-38 in primary Sjögren's syndrome[J]. Mol Immunol, 2020, 127:107-111.
[15]" "WAGNER A, WANG C, FESSLER J, et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity[J]. Cell, 2021, 184(16):4168-4185.e21.
[16]" "HWANG S H, PARK J S, YANG S, et al. Metabolic abnormalities exacerbate Sjögren's syndrome by and is associated with increased the population of interleukin-17-producing cells in NOD/ShiLtJ mice[J]. J Transl Med, 2020, 18(1):186.
[17]" "JANG D I, LEE A H, SHIN H Y, et al. The role of tumor necrosis factor alpha(TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics[J]. Int J Mol Sci, 2021, 22(5):2719.
[18]" "DING J, ZHANG W, HASKETT S, et al. BAFF overexpression increases lymphocytic infiltration in Sjögren's target tissue, but only inefficiently promotes ectopic B-cell differentiation[J]. Clin Immunol, 2016, 169:69-79.
[19]" "YOSHIMOTO K, SUZUKI K, TAKEI E, et al. Elevated expression of BAFF receptor, BR3, on monocytes correlates with B cell activation and clinical features of patients with primary Sjögren's syndrome[J]. Arthritis Res Ther, 2020, 22(1):157.
[20]" "DONG Y J, MING B X, GAO R F, et al. The IL-33/ST2 axis promotes primary Sjögren's syndrome by enhancing salivary epithelial cell activation and type 1 immune response[J]. J Immunol, 2022, 208(12):2652-2662.
[21]" "ZHAO L, YAO L T, YUAN L, et al. Potential contribution of interleukin-33 to the development of interstitial lung disease in patients with primary Sjogren’s syndrome[J]. Cyt-okine, 2013, 64(1):22-24.
[22]" "TAO S S, CAO F, SAM N B, et al. Dickkopf-1 as a promising therapeutic target for autoimmune diseases[J]. Clin Immunol, 2022, 245:109156.
[23]" "FASCHING P, STRADNER M, GRANINGER W, et al. Therapeutic potential of targeting the Th17/treg axis in autoimmune disorders[J]. Molecules, 2017, 22(1):134.
[24]" "KOLBINGER F, LOESCHE C, VALENTIN M A, et al. β-Defensin 2 is a responsive biomarker of IL-17A-driven skin pathology in patients with psoriasis[J]. 2017, 139(3):923-932.e8.
[25]" "KIM J W, KIM S M, PARK J S, et al. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren's syndrome[J]. Arthritis Res Ther, 2019, 21(1):136.
[26]" "SHAO Y X, FU J Y, ZHAN T L, et al. Fangchinoline inhibited proliferation of neoplastic B-lymphoid cells and alleviated Sjögren's syndrome-like responses in NOD/ltj mice via the Akt/mTOR pathway[J]. Curr Mol Pharmacol, 2022, 15(7):969-979.
[27]" "XU J J, LIU O S, WANG D D, et al. In vivo generation of SSA/ro antigen-specific regulatory T cells improves experimental Sjögren's syndrome in mice[J]. Arthritis Rheumatol, 2022, 74(10):1699-1705.
[28]" "XU J J, WANG D D, LIU D Y, et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren's syndrome[J]. Blood, 2012, 120(15):3142-3151.
[29]" "LIU Y Y, LI C L, WANG S Y, et al. Human umbilical cord mesenchymal stem cells confer potent immunosuppressive effects in Sjögren's syndrome by inducing regulatory T cells[J]. Mod Rheumatol, 2021, 31(1):186-196.
[30]" "ALURI H S, SAMIZADEH M, EDMAN M C, et al. Delivery of" bone marrow-derived mesenchymal stem cells improves tear production in a mouse model of Sjögren's syndrome[J]. Stem Cells Int, 2017, 2017:3134543.
[31]" "LI B Y, XING Y X, GAN Y H, et al. Labial gland-derived mesenchymal stem cells and their exosomes ameliorate murine Sjögren's syndrome by modulating the balance of Treg and Th17 cells[J]. Stem Cell Res Ther, 2021, 12(1):478.
[32]" "SHI B Y, QI J J, YAO G H, et al. Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells[J]. Stem Cell Res Ther, 2018, 9(1):308.
[33]" "CHARRAS A, ARVANITI P, LE DANTEC C, et al. JAK inhibitors suppress innate epigenetic reprogramming: a promise for patients with Sjögren's syndrome[J]. Clin Rev Allergy Immunol, 2020, 58(2):182-193.
[34]" "BARRERA M J, AGUILERA S, CASTRO I, et al. Tofacitinib counteracts IL-6 overexpression induced by deficient autophagy: implications in Sjögren's syndrome[J]. Rheumatology(Oxford), 2021, 60(4):1951-1962.
[35]" "MARIETTE X, SEROR R, QUARTUCCIO L, et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase II study[J]. Ann Rheum Dis, 2015, 74(3):526-531.
[36]" "D?魻RNER T, POSCH M G, LI Y, et al. Treatment of primary Sjögren's syndrome with ianalumab(VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity[J]. Ann Rheum Dis, 2019, 78(5):641-647.
[37]nbsp; "ZHAN T L, WANG B L, FU J Y, et al. Artesunate inhibits Sjögren's syndrome-like autoimmune responses and BAFF-induced B cell hyperactivation via TRAF6-mediated NF-κB signaling[J]. Phytomedicine, 2021, 80:153381.
[38]" "GODEAU B, PORCHER R, FAIN O, et al. Rituximab efficacy and safety in adult splenectomy candidates with chronic immune thrombocytopenic purpura: results of a prospective multicenter phase 2 study[J]. Blood, 2008, 112(4):999-1004.
[39]" "GANDOLFO S, DE VITA S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren's syndrome[J]. Clin Exp Rheumatol, 2019, 37 Suppl 118(3):199-208.
[40]" "WANG X Y, LIN X, SU Y Y, et al. Systematic review with meta-analysis: efficacy and safety of biological treatment on salivary gland function in primary Sjögren's syndrome[J]. Front Pharmacol, 2023, 14:1093924.
[41]" "JONSSON R, BROKSTAD K A, JONSSON M V, et al. Current concepts on Sjögren's syndrome-classification criteria and biomarkers[J]. Eur J Oral Sci, 2018, 126 Suppl 1(Suppl Suppl 1):37-48.
[42]" "KROESE F G M, HAACKE E A, BOMBARDIERI M. The role of salivary gland histopathology in primary Sjögren's syndrome: promises and pitfalls[J]. Clin Exp Rheumatol, 2018, 36 Suppl 112(3):222-233.
[收稿日期] 2023-12-30