APP下载

光动力疗法在胆管癌诊疗中作用机制研究进展

2024-10-30齐硕陈康周磊刘昌军田秉璋彭创成伟

分子影像学杂志 2024年6期
关键词:作用机制胆管癌诊断

摘要:胆管癌是一种罕见但危险的肿瘤,具有早期诊断率低、预后不良等特点,临床上手术切除是根治胆管癌的有效手段,但术后复发率高,而放化疗、介入治疗疗效尚不尽满意。光动力疗法利用光敏剂和激光进行肿瘤治疗,在胆管癌应用中已取得了初步成效,但关于光动力疗法对癌细胞的作用机制还需要深入研究。本文通过对光动力疗法在胆管癌治疗中免疫治疗、血管生成抑制、抗氧化剂及热休克蛋白等机制,以及对光动力疗法联合靶向药物/放射治疗联合作用做一综述,旨在为临床上胆管癌的治疗提供理论依据参考,以期为临床上胆管癌的综合治疗提供安全、有效的治疗手段。

关键词:光动力疗法;胆管癌;诊断;作用机制;进展

Progress in the mechanism of photodynamic therapy in the diagnosis and treatment of cholangiocarcinoma

QI Shuo1, CHEN Kang1, ZHOU Lei1, LIU Changjun1, TIAN Binzhang1, PENG Chuang1, CHENG Wei1, 2

1Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha" 410005, China; 2Xiangyue Hospital Affiliated to Hunan Institute of Parasitic Diseases, Yueyang 414000, China

Abstract: Cholangiocarcinoma is a rare but dangerous tumor with low early diagnosis rate and poor prognosis. Surgical resection is an effective method for radical treatment of cholangiocarcinoma, but the postoperative recurrence rate is high. However, the curative effect of radiotherapy, chemotherapy and interventional therapy is not yet satisfactory. Photodynamic therapy, utilizes photosensitizers and laser for tumor treatment, has achieved initial results in the application of cholangiocarcinoma, but further research is needed on the mechanism of photodynamic therapy on cancer cells. This article reviewed the mechanism of photodynamic therapy in the treatment of cholangiocarcinoma and discusses the mechanisms of immunotherapy, angiogenesis inhibition, antioxidants and heat shock proteins. Subsequently, the combined effects of photodynamic therapy combined with targeted drugs/radiation therapy was explored to provide theoretical basis for clinical treatment of cholangiocarcinoma, aiming to provide safe and effective therapeutic measures for cholangiocarcinoma in clinical practice.

Keywords: photodynamic therapy; cholangiocarcinoma; diagnosis; mechanism of action; progress

胆管癌是一种临床上较为罕见但危险程度高的肿瘤,发病率不高,但常常因为诊断困难而延误治疗,虽然手术是治疗胆管癌的主要方式,但术后具有极高的复发率而导致其不良预后,总体5年生存率低于5%[1-3]。目前,临床上对于胆管癌的治疗手段主要包括手术切除、放化疗及介入治疗等,根治性手术切除是治疗胆管癌的最有效手段,而放化疗是对于单纯的手术切除疗效不理想、降低术后复发的常规辅助治疗,介入治疗如支架置入术是对于晚期无手术指征的患者的姑息性退黄治疗的主要手段,但其对肿瘤的治疗疗效欠佳[4-6]。光动力疗法(PDT)是一种局部治疗方法,它利用光敏剂和激光来进行肿瘤细胞破坏,目前已初步应用在胆管癌治疗中,并获得了不错的疗效[7, 8]。有研究证实了PDT治疗胆管癌患者中观察到了良好的治疗效果和生存率[9, 10],但治疗方式还需要更多的研究来证明其安全性和有效性,故关于PDT对癌细胞的作用机制还需要深入研究。本文通过对PDT在胆管癌诊疗中免疫治疗、血管生成抑制、抗氧化剂及热休克蛋白等机制作用机制进行综述,以期为临床上胆管癌的综合治疗提供先进的技术手段,提高胆管癌患者的5年生存率。

1" PDT在胆管癌精准诊断中的进展

胆管癌的早期精准诊断仍然是临床难点之一,PDT是一种新型的治疗方法,已经在癌症治疗领域得到了广泛应用,同时也在胆管癌的术中精准诊断中发挥了非常关键的作用[11]。在胆管癌的精准诊断中,PDT主要以内镜下光动力学检查和踩刹车光动力学检查两种形式出现[12-13]。内镜下光动力学检查是将光敏剂注入患者体内,在内窥镜下清晰地观察癌组织的形态和特征,已经被广泛应用于胆囊和胆管癌的早期诊断和治疗[14, 15];踩刹车光动力学检查是一种通过相关光学信号实现癌细胞区域的精确定位的检查方法,该方法可以更加准确地确定癌组织的范围和位置,该方法已经在胆管癌的治疗和手术前定位等方面得到广泛应用[16, 17]。

PDT在胆管癌的精准诊断中具有较高的准确性和精度,对于提高疾病的早期诊断和治疗效果具有重要的意义[18]。一项研究证实,内镜下光动力学检查通过使用光敏剂Porfimer钠和光源激发器,能够直接观察到胆管癌及其周围的组织,提高胆道镜下的肿瘤的诊断准确性及定位的精确性,从而能够进一步提高早期肿瘤的检出率和诊断的准确性[19];亦有研究发现,踩刹车光动力学检查通过在患者体内注射二氧化芘(PpIX)光敏剂,然后使用蓝色LED光源激发器,将PpIX在肝内或胆管内产生强烈的荧光信号,从而能够实现胆囊癌、胆管癌及其周围的血管、胆管等进行有效的定位和诊断[20]。PDT在胆管癌的精准诊断中具有广泛应用前景,并能够为临床疾病诊断提供重要的帮助和指导。

2" PDT在胆管癌治疗中的作用机制

PDT对胆管癌治疗中的作用机制具有多样性与丰富性,其主要的作用机制主要包括免疫治疗、血管生成抑制、抗氧化剂及热休克蛋白等机制。

2.1 PDT对胆管癌免疫治疗机制

PDT在在胆管癌治疗中能够诱导肿瘤细胞凋亡,同时也通过激发免疫反应来增强机体的免疫力,促进免疫治疗的实现[21, 22]。PDT对于胆管癌免疫治疗的作用机制较为复杂,主要包括以下内容:提高抗原提呈细胞的功能:PDT能增强树突状细胞、巨噬细胞等抗原提呈细胞的功能,从而促进肿瘤抗原的呈递和识别[23];活化T淋巴细胞:PDT还能够激活T淋巴细胞,增强它们的杀伤功能,提高体内肿瘤清除效率[24];抗肿瘤免疫记忆效应:PDT诱导肿瘤细胞凋亡时会释放大量的肿瘤抗体形成长期的抗肿瘤免疫记忆效应,预防肿瘤复发[25];免疫调节作用:PDT能够激活吞噬细胞、自然杀伤细胞及淋巴细胞等免疫细胞,增强机体的抵抗力和免疫监视能力,能有效地促使机体清除肿瘤细胞[26]。总之,PDT能够通过诱发肿瘤细胞的凋亡、诱导肿瘤细胞释放受体配体以及其他免疫介质,从而调节免疫应答、改善抗肿瘤免疫反应,增强机体的免疫能力,是一种有潜力的免疫治疗方法[27, 28]。

2.2" PDT对胆管癌血管生成抑制机制

血管生成是胆管癌肿瘤发展过程中重要的环节,PDT通过光敏剂吸收光子能量释放活性氧与肿瘤细胞及其周围的血管组织发生反应,从而抑制肿瘤生长和扩散[29, 30]。PDT对胆管癌的血管生成抑制机制是多方面的,通过诱导细胞凋亡、收缩血管和调节细胞因子表达等多种机制,达到抑制肿瘤生长和扩散的效果[31]。

细胞凋亡:PDT可诱导肿瘤细胞凋亡并释放的细胞内物质通过诱导其周围的血管内皮细胞凋亡,从而抑制肿瘤血管生成[32];血管收缩:PDT还可以通过收缩血管来抑制血管生成,PDT激活的活性氧可以将内皮细胞与周围的肌肉层分离,从而收缩血管,抑制血管生成[33];细胞因子表达:PDT激活的活性氧可以诱导肿瘤及其周围的炎症细胞分泌VEGF、PDGF等大量抗血管生成细胞因子,从而能有效地抑制新生血管的生成[34]。另外,PDT还能够通过直接杀伤肿瘤细胞或诱导肿瘤细胞的外部自发性凋亡来减少肿瘤细胞对血管生成因子的产生,从而抑制肿瘤细胞的血管生成。

2.3" PDT对胆管癌激活抗氧化剂及热休克蛋白机制

研究表明,PDT可以增加氧化应激及活性氧的水平促进肿瘤细胞凋亡;PDT还能激活抗氧化剂及热休克蛋白等反应增强PDT的杀伤作用[35-37]。PDT可以通过以下几个机制激活抗氧化剂和热休克蛋白:激活Nrf2信号通路:Nrf2信号通路是细胞内重要的抗氧化剂途径,PDT可通过激活Nrf2信号通路,增加细胞内抗氧化剂的产生,从而对肿瘤细胞造成损害[38];激活热休克蛋白:热休克蛋白是细胞内重要的分子伴侣,PDT可使热休克蛋白释放,从而促进其清除受损蛋白和防止进一步损伤[39];局部高温:在PDT过程中,由于光敏剂的活化会造成局部高温,从而使热休克蛋白大量释放,并且增强了其保护细胞作用[40]。总之,PDT可增强细胞内抗氧化剂的产生,保护细胞免受受损的进一步损害,从而对胆管癌的治疗起到了积极的作用。

2.4" PDT联合靶向药物/放射治疗联合作用机制

PDT可通过诱导肿瘤细胞坏死或凋亡、促使肿瘤细胞周期停滞,从而能有效地提高其他治疗方式的效果,有研究证实PDT之前或之后给予靶向药物或放射治疗,可以增强或协同PDT的治疗效果[41, 42]。

PDT联合靶向药物治疗是一种新型综合治疗方法,其作用机制主要包括以下几个方面:破坏肿瘤细胞:PDT可以诱导肿瘤细胞内产生大量的反应性氧化物,对肿瘤组织产生一定的热效应,靶向药物可以结合肿瘤细胞的特定受体或靶点,可以针对性地进行肿瘤细胞的定向杀伤作用,促使PDT的疗效得到提高[43];抑制肿瘤细胞生长:靶向药物可以有效地抑制肿瘤细胞的信号通路及基因表达,进而阻止肿瘤细胞的生长、分裂,而PDT可以诱导肿瘤细胞活性氧生成,进而抑制肿瘤细胞的增殖和转移[44];触发免疫效应:PDT可以引起肿瘤细胞的凋亡和坏死,释放肿瘤相关抗原,从而激活肿瘤特异性免疫反应,靶向药物可以诱导肿瘤细胞合并细胞死亡,二者相结合可以增强肿瘤免疫反应,从而增强治疗效果[45-46]。

PDT联合放疗是一种常用于胆管癌的组合治疗方案,PDT联合放疗的作用机制主要涉及到以下几个方面:破坏肿瘤组织:PDT通过产生高能量的激光,激发治疗区域的光敏剂分子,并生成一种毒性极强的单线态氧分子,单线态氧分子对肿瘤组织有较强的杀伤作用,放疗则通过电离辐射的作用,直接或者间接地进行DNA分子结构的破坏,起到抑制癌细胞的增殖的作用[47, 48];增强免疫活性:PDT对肿瘤组织的光化反应可以导致肿瘤细胞自身的特异性免疫应答,放疗则通过诱导肿瘤细胞凋亡和坏死,间接诱导肿瘤特异性免疫应答,故PDT联合放疗通过增强免疫活性提高治疗效果[49];改善组织微循环:PDT治疗的光学效应不仅能够杀灭癌细胞,还能够改善肿瘤周边的组织微循环,从而使得放疗时更多的药物和氧气能够到达肿瘤部位,提高了治疗效果[50]。

研究表明,PDT除了具有单独治疗肿瘤的能力之外,它还可以通过调节代谢、促进DNA修复、调控信号传导等多种途径与其他治疗手段相结合,提高肿瘤治疗的效果[51-53]。

3" 展望

近年来,PDT已经广泛应用于在胆管肿瘤的精准诊疗中,并得到了广泛的关注,PDT主要应用于早期胆管癌、胆管良性狭窄和胆管癌术后复发等情况。在未来的研究中,PDT在胆管癌诊疗中将从集中以下几个方面攻克其作用机制:深入探究特异性光敏剂的种类及组成成分,提高其肿瘤的靶向性、降低其细胞毒性以减轻不良反应及并发症;深化对不同照射条件下PDT治疗效果和机制的研究,寻找最佳治疗方案以提高治疗效率;研究PDT对免疫功能的影响及其机制,探索PDT诱导的免疫反应与肿瘤抗性相关的机制。同时,在临床应用方面,应当提高医生的技术水平,完善治疗方案,优化治疗过程,降低治疗风险,提高治疗成功率。总之,PDT作为一种新型治疗方法,在胆管癌的诊疗中具有广阔的发展前景,未来还需加强基础研究,不断完善其作用机制,并将其应用于临床实践中,为胆管癌的治疗提供更加有效的方法,为临床上胆管癌的综合治疗提供先进的技术手段,提高胆管癌患者的五年生存率,并改善其生活质量。

参考文献:

[1]" "Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-49.

[2]" "Valle JW, Kelley RK, Nervi B, et al. Biliary tract cancer[J]. Lancet, 2021, 397(10272): 428-44.

[3]" "Brindley PJ, Bachini M, Ilyas SI, et al. Cholangiocarcinoma[J]. Nat Rev Dis Primers, 2021, 7: 65.

[4]" "Shroff RT, Kennedy EB, Bachini M, et al. Adjuvant therapy for resected biliary tract cancer: ASCO clinical practice guideline[J]. J Clin Oncol, 2019, 37(12): 1015-27.

[5]" "Ilyas SI, Khan SA, Hallemeier CL, et al. Cholangiocarcinoma‑evolving concepts and therapeutic strategies[J]. Nat Rev Clin Oncol, 2018, 15(2): 95-111.

[6]" Gravely AK, Vibert E, Sapisochin G. Surgical treatment of intrahepatic cholangiocarcinoma[J]. J Hepatol, 2022, 77(3): 865-7.

[7]" "Mohan BP, Chandan S, Khan SR, et al. Photodynamic therapy (PDT), radiofrequency ablation (RFA) with biliary stents in palliative treatment of unresectable extrahepatic cholangiocarcinoma: a systematic review and meta‑analysis[J]. J Clin Gastroenterol, 2022, 56(2): e153-e160.

[8]" Chen PC, Yang T, Shi PD, et al. Benefits and safety of photodynamic therapy in patients with hilar cholangiocarcinoma: a meta‑analysis[J]. Photodiagnosis Photodyn Ther, 2022, 37: 102712.

[9]" "周留馨, 曾江潮, 于文昊, 等. 光动力治疗在胆管癌中应用研究进展[J]. 中国实用外科杂志, 2023, 43(3): 348-53.

[10]" 刘淞淞, 谭一舟, 卢" 鹏. 胆管癌光动力治疗的基础与临床研究新进展[J]." 临床外科杂志, 2022, 30(11): 1094-7.

[11] Renzulli M, Ramai D, Singh J, et al. Locoregional treatments in cholangiocarcinoma and combined hepatocellular cholangiocarcinoma[J]. Cancers, 2021, 13(13): 3336.

[12]" Nanashima A, Hiyoshi M, Imamura N, et al. Recent advances in photodynamic imaging and therapy in hepatobiliary malignancies: clinical and experimental aspects[J]. Curr Oncol, 2021, 28(5): 4067-79.

[13]" 张晓刚, 耿智敏, 王健东, 等. 胆管癌光动力治疗临床应用技术规范专家共识[J]. 中国普通外科杂志, 2023, 32(4): 1-13.

[14]" Saumoy M, Kumta NA, Kahaleh M. Digital cholangioscopy for targeted photodynamic therapy of unresectable cholangiocarcinoma[J]. Gastrointest Endosc, 2016, 84(5): 862.

[15]" 张洪战, 张" 明, 庄东海, 等. 内镜下光动力疗法治疗壶腹部肿瘤的临床疗效[J]. 中国内镜杂志, 2022, 28(2): 86-90.

[16]" Zhao YJ, Liu X, Liu XY, et al. Combination of phototherapy with immune checkpoint blockade: theory and practice in cancer[J]. Front Immunol, 2022, 13: 955920.

[17]" Luan X, Guan YY, Liu HJ, et al. A tumor vascular‑targeted interlocking trimodal nanosystem that induces and exploits hypoxia[J]. Adv Sci, 2018, 5(8): 1800034.

[18]" 李黎波, 李文敏, 项蕾红, 等. 光动力疗法在中国的应用与临床研究[J]. 中国激光医学杂志, 2012, 21(5): 278-307.

[19] Wagner A, Wiedmann M, Tannapfel A, et al. Neoadjuvant down-sizing of hilar cholangiocarcinoma with photodynamic therapy: long-term outcome of a phase II pilot study[J]. Int J Mol Sci, 2015, 16(11): 26619-28.

[20] Liu K, Yan J, Sachar M, et al. A metabolomic perspective of griseofulvin-induced liver injury in mice[J]. Biochem Pharmacol, 2015, 98(3): 493-501.

[21]Chen ZX, Jiang XF, Xue P, et al. Long‑term efficacy of percutaneous transhepatic cholangioscopy-guided photodynamic therapy for postoperative recurrent extrahepatic cholangiocarcinoma[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103122.

[22] Kim DH, Im BN, Hwang HS, et al. Gemcitabine‑loaded DSPE-PEG-PheoA liposome as a photomediated immune modulator for cholangiocarcinoma treatment[J]. Biomaterials, 2018, 183: 139-50.

[23] Xu XL, Deng GJ, Sun ZH, et al. A biomimetic aggregation-induced emission photosensitizer with antigen-presenting and hitchhiking function for lipid droplet targeted photodynamic immunotherapy[J]. Adv Mater, 2021, 33(33): e2102322.

[24]" Zhang LJ, Pan KW, Huang SY, et al. Graphdiyne oxide-mediated photodynamic therapy boosts enhancive T‑cell immune responses by increasing cellular stiffness[J]. Int J Nanomedicine, 2023, 18: 797-812.

[25]Wang HJ, Wang K, He LH, et al. Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy[J]. Biomaterials, 2020, 244: 119964.

[26]" Li YL, Jiao JJ, Qi YZ, et al. Curcumin: a review of experimental studies and mechanisms related to periodontitis treatment[J]. J Periodontal Res, 2021, 56(5): 837-47.

[27]" Zhang ZJ, Wang KP, Huang YP, et al. Comprehensive analysis of the potential immune‑related biomarker ATG101 that regulates apoptosis of cholangiocarcinoma cells after photodynamic therapy[J]. Front Pharmacol, 2022, 13: 857774.

[28]" 许" 博, 席大勇, 蒲唯高, 等. 双金属支架联合光动力治疗及靶向、免疫治疗在远端胆管癌中的应用[J]. 肝胆胰外科杂志, 2021, 33(7): 427-33.

[29] Carpino G, Cardinale V, Di Giamberardino A, et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma[J]. J Hepatol, 2021, 75(6): 1377-86.

[30]" Valle JW, Lamarca A, Goyal L, et al. New horizons for precision medicine in biliary tract cancers[J]. Cancer Discov, 2017, 7(9): 943-62.

[31]" Dolmans DE, Kadambi A, Hill JS, et al. Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy[J]. Cancer Res, 2002, 62(7): 2151-6.

[32] Wang M, Wu M, Liu XG, et al. Pyroptosis remodeling tumor microenvironment to enhance pancreatic cancer immunotherapy driven by membrane anchoring photosensitizer[J]. Adv Sci, 2022, 9(29): e2202914.

[33] de Bruijn HS, Mashayekhi V, Schreurs TJL, et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody‑photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging[J]. Theranostics, 2020, 10(5): 2436-52.

[34]" Nowak-Sliwinska P, van Beijnum JR, van Berkel M, et al. Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane[J]. Angiogenesis, 2010, 13(4): 281-92.

[35] Weijer R, Broekgaarden M, van Golen RF, et al. Low‑power photodynamic therapy induces survival signaling in perihilar cholangiocarcinoma cells[J]. BMC Cancer, 2015, 15: 1014.

[36]" 仲丽晴, 刘" 芹, 刘宝瑞. 肿瘤光动力免疫治疗的研究进展[J]. 中华肿瘤防治杂志, 2023, 30(6): 341-6.

[37] Lee HM, Chung CW, Kim CH, et al. Defensive mechanism in cholangiocarcinoma cells against oxidative stress induced by chlorin e6-based photodynamic therapy[J]. Drug Des Devel Ther, 2014, 8: 1451-62.

[38]" Zhang C, Wang XJ, Liu GQ, et al. CRISPR/Cas9 and chlorophyll coordination micelles for cancer treatment by genome editing and photodynamic therapy[J]. Small, 2023, 19(17): e2206981.

[39]" Xia YQ, Wu YK, Cao JX, et al. Liposomal glucose oxidase for enhanced photothermal therapy and photodynamic therapy against breast tumors[J]. ACS Biomater Sci Eng, 2022, 8(5): 1892-906.

[40]Kang Y, Kong N, Ou MT, et al. A novel cascaded energy conversion system inducing efficient and precise cancer therapy[J]. Bioact Mater, 2023, 20: 663-76.

[41]" 何普毅, 李雪梅, 王云鹏, 等. 光动力联合治疗在不可切除肝外胆管癌中的应用进展[J]. 肿瘤防治研究, 2021, 48(9): 893-7.

[42]Hu X, Zhang YS, Liu YC, et al. Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges[J]. J Nanobiotechnology, 2022, 20(1): 437.

[43]" Wu C, Jiao QS, Wang CL, et al. Nanofibrillar peptide hydrogels for self‑delivery of lonidamine and synergistic photodynamic therapy[J]. Acta Biomater, 2023, 155: 139-53.

[44]" Zhang DS, Meng YF, Song YZ, et al. Precision therapy through breaking the intracellular redox balance with an MOF‑based hydrogel intelligent nanobot for enhancing ferroptosis and activating immunotherapy[J]. Nanoscale, 2022, 14(23): 8441-53.

[45] Huang RQ, Zhang CY, Bu YY, et al. A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@CuS: Photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis[J]. Biomaterials, 2021, 277: 121088.

[46]" Huang XB, Chen TN, Mu N, et al. Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia‑activated chemotherapy[J]. Acta Biomater, 2021, 131: 483-92.

[47]" 曹金发, 刘" 宏, 熊康萍. 放疗联合光动力疗法治疗肿瘤的研究进展[J]. 国际医学放射学杂志, 2016, 39(6): 666-70.

[48] Ni KY, Luo TK, Nash GT, et al. Nanoscale metal‑organic frameworks for cancer immunotherapy[J]. Acc Chem Res, 2020, 53(9): 1739-48.

[49]" Heier SK, Rothman KA, Heier LM, et al. Photodynamic therapy for obstructing esophageal cancer: light dosimetry and randomized comparison with Nd: YAG laser therapy[J]. Gastroenterology, 1995, 109(1): 63-72.

[50]" Ni KY, Lan GX, Lin WB. Nanoscale metal‑organic frameworks generate reactive oxygen species for cancer therapy[J]. ACS Cent Sci, 2020, 6(6): 861-8.

[51] Zhao LZ, Li JY, Su YQ, et al. MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy[J]. Sci Adv, 2020, 6(10): eaaz0575.

[52]" Ji HT, Chien LT, Lin YH, et al. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP‑activated protein kinase[J]. Mol Cancer, 2010, 9: 91.

[53]" Xue LY, He J, Oleinick NL. Promotion of photodynamic therapy-induced apoptosis by stress kinases[J]. Cell Death Differ, 1999, 6(9): 855-64.

(编辑:孙昌朋)

猜你喜欢

作用机制胆管癌诊断
肝脏里的胆管癌
B7-H4在肝内胆管癌的表达及临床意义
通过技术创新促进我镇农业结构调整
CT及MRI对肝内周围型胆管癌综合诊断研究
冠心丹参方及其有效成分治疗冠心病的研究进展
大数据对高等教育发展的推动研究
浅谈猪喘气病的病因、诊断及防治
信息技术与传统技术在当代汽车维修中的应用分析
红外线测温仪在汽车诊断中的应用
窄带成像联合放大内镜在胃黏膜早期病变诊断中的应用