认知-运动双任务训练在脑卒中患者康复中的研究进展
2024-08-18向丽莎张一
摘要:脑卒中后幸存者通常面临肢体运动障碍、平衡障碍和认知障碍,传统的康复训练不能支持其更好地回归家庭和社会生活。认知和运动训练的有效结合在脑卒中患者中的优势已在大量研究中证实,但其对认知功能和运动功能的恢复不全是积极作用,总结认知-运动双任务训练模式对脑卒中患者认知功能与运动功能的影响,探讨其在脑卒中患者康复进程中的应用进展。
关键词:认知;运动;脑卒中;双任务
DOI:10.3969/j.issn.1674490X.2024.03.002
中图分类号:R49"""" 文献标志码:A"""" 文章编号:1674490X(2024)03000810
Advance on cognitive-motor dual task training on the rehabilitation of stroke patients
XIANG Lisha1,2,ZHANG Yi2
(1.College of Clinical Medicine, Soochow University, Suzhou 215000, China; 2.Department of Rehabilitation Medicine, The Third Affiliated Hospital of Soochow University/The First Peoples Hospital of Changzhou, Changzhou 213000, China)
Abstract: Post-stroke survivors usually face limb movement disorders, balance disorders and cognitive impairment, and traditional rehabilitation training cannot support their better return to family and social life. The advantages of the effective combination of cognitive and motor training in stroke patients have been confirmed in a large number of studies, but its recovery of cognitive function and motor function is not always a positive effect. Therefore, this article summarizes the effects of cognitive motor dual task training mode on cognitive function and motor function in stroke patients, and discusses its application progress in the rehabilitation process of stroke patients.
Key words: cognition; motor; stroke; dual task
脑卒中是全球第二大死亡原因,也是导致残疾的主要原因,随着人口老龄化问题日益突出,脑卒中在发展中国家的发病率越来越高[1]。脑卒中的潜在危险因素与全球90%的脑卒中归因风险相关,包括高血压、吸烟、肥胖、饮食、缺乏运动、糖尿病、酒精摄入、心理社会因素、心脏病和载脂蛋白比率[2]。随着中国居民不健康生活方式流行,脑血管危险因素普遍暴露。最新全球疾病负担研究显示,中国
总体脑卒中终生发病风险为39.3%,位居全球首位,每年190余万人因脑卒中死亡[3],给社会和家庭带来沉重的负担。由于只有极少数人能够在脑卒中急性期得到溶栓或更进一步的介入治疗,有很多人会遗留各种功能障碍[4]。其中认知障碍和运动障碍可以严重阻碍日常活动和社区参与,并具有协同效应[5]。在街道上安全地行走需要足够的认知能力处理分心的事情,如广告、噪音和不平整的道路等[6]。传统的康复训练模式仅针对单一肢体运动功能的恢复甚至部分恢复,不能满足患者出院后在社区步行的同时执行多项并行任务的需要。最新的综述着眼于认知-运动双任务训练(cognitive-motor dual task training, CMDT)对脑卒中患者的平衡能力、步态和上肢功能的改善[7],及针对老年人群体CMDT对认知功能、执行功能及脑血流动力学的影响[8-9]。CMDT可作为脑卒中患者回归社区的有效康复手段。有研究[10-11]表示,CMDT干预能够使患者身体运动功能康复及认知康复的有效性最大化。因此,本文旨在通过对CMDT干预的相关文献进行梳理,探讨这种训练干预模式转化为临床康复实践的研究进展。
1 双任务相关理论
双任务指一个人同时执行两项不同的任务,可分为两大类:运动双任务和认知双任务[12]。前者指需要同时执行运动任务和姿势控制任务,后者指同时执行认知任务和运动任务或认知任务和姿势控制任务[13]。
与单任务训练相比,两项任务的同时执行可引发感觉运动和认知系统的相互作用,可能导致其中一项或两项任务表现的恶化,这通常被称为认知-运动干扰[14],反映两项任务对访问中枢神经系统内有限注意力资源的竞争需求。以往的研究提出的一些认知-运动干扰机制:(1)有限容量理论[15-16],该理论假设大脑是一个注意力容量有限的处理器,该处理器会将注意力资源分配到需执行的任务,当由于任务难度增加或大脑病理性改变,共享相似资源的两项任务的注意力需求超过可用资源时,一项或两项任务的性能都会受到损害;(2)瓶颈理论[17-18],该理论认为当使用相同信息途径的两个任务同时竞争处理资源时,资源限制导致他们被一个接一个地串行处理,而不是并行处理,此时将会出现“瓶颈”现象,即一个任务将被延迟或以其他方式受损。Plummer等[14]曾在研究中将认知-运动双重任务模式可能存在的潜在干扰表现分为没有干扰、认知相关的运动干扰、与运动有关的认知干扰、认知促进、认知优先原则、运动促进、运动优先原则、相互干扰、相互促进九类。
以往研究为将这种双任务运动干扰模式以可计量的方式呈现,提出了双任务效应(dual-task effect, DTE)的概念,其表示与对应单任务比较,双任务性能所发生的相对变化。负DTE表示双任务性能相对于单任务性能下降(双任务成本),正DTE表示双任务性能相对于单任务性能提高(双任务收益)。
在两项任务均具有一定难度且注意力资源有限时,双任务的执行可出现一项任务的执行优先另一项任务的情况,这种情况被定义为任务优先级。机体为更安全地行走避免跌倒,通常采取两种任务优先级策略:(1)姿势优先策略[19],机体为更安全地行走避免跌倒,保持稳定的步态或平衡将优先于次要任务;(2)冻结策略[20-21],在注意力资源分配低于保持平衡所需注意力阈值时,机体除牺牲次要任务以保持姿势稳定,还将冻结注意力分配的自由度,以防止更多的平衡恶化。
2 双任务干预的策略
2.1 干预模式
双任务训练干预即针对不同的治疗目标制定不同的双任务训练方案,并在干预前后评估患者的双任务表现[22-23]。这种双任务训练模式基于卒中运动再学习程序理论[24],这种程序提倡四个步骤:基础任务练习(在未受干扰的安静区域进行运动或认知活动)、部分任务练习(动态姿势控制和单步训练等活动)、全任务练习(连续行走的活动)、日常生活训练(障碍协调和户外步行)。在双任务的设计中,Plummer等[25]提出,CMDT范式的良好训练效果在未经训练的双任务组合中可能呈现较差表现,他们认为双任务训练期间应包括更广泛的认知任务训练,将良好的训练效果最大限度地转移到不同的CMDT组合中。而一部分研究观察到未经训练的认知-运动双重任务的积极转移效应,这种效应表现为在应用与训练干预相同类型(即基于同一大脑认知或运动领域)的任务时可出现的正迁移效应。而对于应用与训练干预不同类型的任务,可能无法观察到明显的干预效果[26-28]。同时,有研究[29-30]表明,CMDT干预可以减少步态中的双任务干扰,这种双任务干扰的减少可能通过两种机制实现:(1)重复练习提高运动的自动化程度,运动自动化降低步行对注意力的需求,从而提高同时执行认知任务的能力;(2)通过特定任务训练改变患者的注意力分配策略,或提高患者在双任务间注意力转移的效率,进而提高双任务协调性。一些研究[31-33]表明,其运动功能、认知功能表现虽有所改善,但认知DTE和运动DTE无明显变化,即应对双任务的策略未发生改变。以上结果表明,双任务训练方案应针对不同患者的双任务表现进行个性化的定制,并且在双任务期间增加注意力需求有积极影响。
2.2 干预剂量
一项荟萃分析显示,CMDT干预的时程、频率或持续时间对认知功能和运动功能的改善没有影响[34],即使是4周的短剂量也能对认知功能和运动功能改善的有效性提供正向的提升作用[35]。本次纳入的文献中多采取在传统康复计划上进行额外的单任务训练和双任务训练,额外训练为期4~6周,每周3次,每次30 min,包括渐进难度的认知训练、上肢训练、步行训练和平衡训练干预。这样的干预剂量呈现较为均一的结论,即在提升双任务性能方面,CMDT比单一的认知训练或运动训练更有效。但有研究[31]提出,这种训练前后双任务效应的相对变化是由于双任务模式的短期固有可变性。此外,部分研究通过对干预前、干预中、干预完成时以及干预后2周~12个月的随访进行认知与运动表现评估,证实双任务干预训练的积极影响是可持续性的,具有较为突出的临床治疗作用[25,28,36]。也有研究[37]提出,在轻度认知障碍患者中,干预时间与对认知能力的影响呈负相关。但在两项研究中,为期8周的双任务训练干预对脑卒中患者认知与运动功能改善仍是有效的[12,27]。那么在脑卒中患者中过长的训练干预时程是否会使患者产生认知疲劳以及体力过度消耗,并且导致双任务表现的负面影响在未来的研究中值得进一步探索。
2.3 干预顺序
由于注意力资源有限,脑卒中患者在具有挑战性的环境中处理多个任务时,对任务进行优先级排序是不可避免的[38]。患者对任务优先级的策略制定基于两方面,包括最小化周围环境和任务执行中的潜在危险因素带来的影响和最大化自我选择的偏好和多任务表现[39]。本次纳入的文献中较多未对患者双任务的执行进行额外的干预,即未设置双任务优先级,而是实行可变优先级训练策略,根据患者的自我选择在认知和运动任务之间交替集中注意力。双任务的可变优先级指双任务执行时在任务间转移注意力,双任务的固定优先级指对不同的任务给予相等量的注意力。多项研究[40-41]表明,可变优先级的双任务训练策略相比固定优先级策略在改善患者的认知与运动能力方面更有效,前者更能促进患者注意力的灵活分配和自我引导,提高患者在专注多任务时协调并发任务的能力。这些都再次说明注意力资源和注意力分配的重要性,双任务条件下有效的任务整合将提高任务间执行的协调能力。
3 双任务干预的影响
3.1 上肢运动、步行与认知
由于脑卒中后可用的注意力资源有限,与单任务步行相比,同时执行认知任务时步行性能受损,包括步速、步幅、步长、步幅持续时间和步频等步态参数的恶化[42-43]。随着认知负荷的增加,导致注意力需求的增加可在不同程度上干扰步行[44],但这种认知-运动干扰的差异是由于所属认知领域的不同或是认知任务难度水平的差异,也是当下探讨的热点[45-46]。执行功能被认为在脑卒中后存在显著损害并与步态损伤高度相关,专注执行功能(如工作记忆)的认知任务表现出更高的运动成本和认知成本[42,47],Baek等[48]也提到认知-运动的相互干扰可能表明执行功能受损程度更大。同时,步态本身的缺陷也会导致注意力增加[49-50],运动恢复能力的差异对步速可有影响[51],下肢运动损伤较大和步速较慢的个体更易受到与步态相关的认知-运动干扰[52-53]。在次要认知任务难度较低时,脑卒中个体可采取在任务间来回转移注意力资源的方式保持良好的任务性能[54]。为更接近社区生活行走的真实状态,更多的研究着眼于加入避障等步行任务或更复杂的步行环境[55]。以往研究[45-56]表明,康复良好的脑卒中患者在克服障碍时需要额外的注意力成本,增加高认知成本的认知任务后步态表现可受到双任务干扰。但脑卒中个体在避障任务中常采取“姿势优先”策略,优先考虑避障任务从而使认知任务表现出更大的损失[56-57]。最后,相比步行等粗大运动活动,上肢运动需要更精细的运动控制[33],即使是临床功能恢复良好的脑卒中患者在完成更复杂的运动任务或执行双任务时也可出现持续性的缺陷[58]。上肢运动作为更依赖于认知驱动的自动执行动作,双任务范式能够有效检出其运动控制的自动化程度[59-60]。Denneman等[61]提到,意识控制倾向较强的脑卒中患者克服双任务干扰的稳定性更低。所以在临床康复训练中减少对肢体学习技能的过度关注,结合双任务训练对运动控制自动化程度的量化,对促进其运动自动性的恢复值得在未来进一步研究。
3.2 认知、步行与平衡
平衡指在不同情况和环境下保持身体直立的能力,平衡功能可分为静态姿势控制、动态意向平衡和反应性平衡。研究[62-63]显示,由于脑卒中患者注意力资源有限,在平衡控制中,患者同样采用“姿势优先策略”,即牺牲认知反应将更多的注意力资源分配给平衡任务,减少跌倒风险[64]。而对意向性平衡控制则表现出相互认知-运动干扰的模式,在进一步对动态意向平衡控制中不同认知领域及不同人群(健康老年人、脑卒中老年人、年轻人)对其影响的研究中表示,脑卒中个体优先考虑平衡而非认知,其认知-运动干扰模式为与认知相关的运动干扰模式[65]。脑卒中患者在直立时常表现出不对称的姿势和体质量负荷不平衡,其在维持直立姿势期间出现的异常姿势摇摆也是脑卒中常出现的后果之一[66]。传统的康复训练也着重于改善肢体间的姿势稳定性和减少体质量分布的不对称,但Bourlon等[67]认为,这种增加健侧肢体的负重可被看作是维持姿势稳定性的一种补偿策略,在双任务中的认知负荷很高时,这种逆向过程更为明显。姿势控制是由无意识或反射过程引起的机体自动反应,有研究提出保持直立姿势的同时执行认知任务有助于转移注意力焦点到外部刺激,从而改善姿势控制的自动过程[68-69]。
3.3 双任务神经机制研究
关于双任务训练的研究认为,其相比单一任务对认知功能的改善具有更大优势,这种优势源于运动训练可增强神经可塑性[70-71],神经可塑性是中枢神经损伤后大脑通过未受损的神经细胞间有效的侧支循环形成,补偿重建受损区域的神经元功能及神经通路传导,从而改善大脑损伤程度[72-73]。如海马神经元的可塑性增强与运动过程中脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的高表达相关[74-75],且大量重复的运动训练可促进神经细胞间通过形成新突触建立新的神经环路突触链[76-77],这些都能有效促进神经功能的恢复。
步行过程中下肢肌肉活动与额叶区及运动区皮质激活可存在显著相关性,在受到运动能力受损和/或认知能力下降因素影响时,可出现皮质过度激活甚至其他皮质区域的补偿性激活,这种神经补偿机制有利于步态模式调控以及平衡维持[78-81]。Al-Yahya等[82]通过近红外光谱仪和核磁共振成像的监测,表明脑卒中患者在步行期间前额叶活动的需求增加,在执行认知任务时进一步增加,这种自上而下的运动控制与传统康复使患者将注意力资源集中在安全移动上的观点不同。脑卒中患者的运动自动性受到损害,就会将更多的注意力资源分配到熟悉但功能受损的任务驱动中。因此,脑卒中幸存者成功的认知-运动康复的核心理念应该通过激活储备注意力资源来补偿受损的皮质区域。Liu等[83]进一步证实这样的观点,他们的结果表明,脑卒中患者在双任务行走时进一步招募双侧前额叶皮质和未受损伤的辅助运动区执行认知或运动双任务。但有研究提出,在复杂的步行任务中,前额叶资源利用水平可接近步行障碍患者可用资源水平的上限,这种有效的前额叶资源与过度激活前额叶相结合反而会导致双任务性能下降[84-86]。
目前对脑卒中患者经双任务训练后功能改善的神经康复机制尚无明确定论,双任务神经机制的研究仍受到国内外科研工作者的广泛关注。众多假说和理论主要集中在两方面,一方面是神经功能的再生和功能障碍的恢复可归因于大脑强大的重组重建能力,即神经可塑性;另一方面是受损大脑区域的特异性激活或与其他补偿激活脑区联合形成新的脑功能神经网络。
4 结论
总体而言,CMDT能有效地提高患者的上肢运动功能、步行能力、执行功能、平衡能力等,最大限度地帮助患者回归家庭,但认知-运动干扰也可导致认知表现和/或运动表现恶化,未来的研究应更多关注CMDT减少认知-运动干扰方面的临床实践,并从脑卒中患者之间的差异性作为基本出发点,从可行性、最适训练强度、最佳任务组合等方面制定个性化的康复训练计划。
参考文献:
[1]
CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70. DOI: 10.1038/s41572-019-0118-8.
[2]ODONNELL M J, CHIN S L, RANGARAJAN S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study[J]. Lancet, 2016, 388(10046): 761-775. DOI: 10.1016/S0140-6736(16)30506-2.
[3]《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2019》概要[J]. 中国脑血管病杂志, 2020, 17(5): 272-281. DOI: 10.3969/j.issn.1672-5921.2020.05.008.
[4]惠艳娉, 席悦, 张巧俊. 脑卒中康复治疗进展[J]. 华西医学, 2018, 33(10): 1295-1302. DOI: 10.7507/1002-0179.201805118.
[5]VERMEIJ A, VAN BEEK A H E A, REIJS B L R, et al. An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly[J]. Front Aging Neurosci, 2014, 6: 303. DOI: 10.3389/fnagi.2014.00303.
[6]DONOVAN K, LORD S E, MCNAUGHTON H K, et al. Mobility beyond the clinic: the effect of environment on gait and its measurement in community-ambulant stroke survivors[J]. Clin Rehabil, 2008, 22(6): 556-563. DOI: 10.1177/0269215507085378.
[7]ZHOU Q, YANG H C, ZHOU Q F, et al. Effects of cognitive motor dual-task training on stroke patients: a RCT-based meta-analysis[J]. J Clin Neurosci, 2021, 92: 175-182. DOI: 10.1016/j.jocn.2021.08.009.
[8]WOLLESEN B, WILDBREDT A, VAN SCHOOTEN K S, et al. The effects of cognitive-motor training interventions on executive functions in older people: a systematic review and meta-analysis[J]. Eur Rev Aging Phys Act, 2020, 17: 9. DOI: 10.1186/s11556-020-00240-y.
[9]UDINA C, AVTZI S, DURDURAN T, et al. Functional near-infrared spectroscopy to study cerebral hemodynamics in older adults during cognitive and motor tasks: a review[J]. Front Aging Neurosci, 2020, 11: 367. DOI: 10.3389/fnagi.2019.00367.
[10]PICHIERRI G, WOLF P, MURER K, et al. Cognitive and cognitive-motor interventions affecting physical functioning: a systematic review[J]. BMC Geriatr, 2011, 11: 29. DOI: 10.1186/1471-2318-11-29.
[11]HUBER S K, KNOLS R H, ARNET P, et al. Motor-cognitive intervention concepts can improve gait in chronic stroke, but their effect on cognitive functions is unclear: a systematic review with meta-analyses[J]. Neurosci Biobehav Rev, 2022, 132: 818-837. DOI: 10.1016/j.neubiorev.2021.11.013.
[12]AN H J, KIM J I, KIM Y R, et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke[J]. J Phys Ther Sci, 2014, 26(8): 1287-1291. DOI: 10.1589/jpts.26.1287.
[13]MCISAAC T L, LAMBERG E M, MURATORI L M. Building a framework for a dual task taxonomy[J]. Biomed Res Int, 2015, 2015: 591475. DOI: 10.1155/2015/591475.
[14]PLUMMER P, ESKES G, WALLACE S, et al. Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research[J]. Arch Phys Med Rehabil, 2013, 94(12): 2565-2574.e6.DOI: 10.1016/j.apmr.2013.08.002.
[15]PASHLER H. Dual-task interference in simple tasks: data and theory[J]. Psychol Bull, 1994, 116(2): 220-244. DOI: 10.1037/0033-2909.116.2.220.
[16]MEYER D E, KIERAS D E. A computational theory of executive cognitive processes and multiple-task performance: part 1. Basic mechanisms[J]. Psychol Rev, 1997, 104(1): 3-65. DOI: 10.1037//0033-295x.104.1.3.
[17]FUJITA H, KASUBUCHI K, WAKATA S, et al. Role of the frontal cortex in standing postural sway tasks while dual-tasking: a functional near-infrared spectroscopy study examining working memory capacity[J]. Biomed Res Int, 2016, 2016: 7053867. DOI: 10.1155/2016/7053867.
[18]MASLOVAT D, CHUA R, SPENCER H C, et al. Evidence for a response preparation bottleneck during dual-task performance: effect of a startling acoustic stimulus on the psychological refractory period[J]. Acta Psychol, 2013, 144(3): 481-487. DOI: 10.1016/j.actpsy.2013.08.005.
[19]WOOLLACOTT M, SHUMWAY-COOK A. Attention and the control of posture and gait: a review of an emerging area of research[J]. Gait Posture, 2002, 16(1): 1-14. DOI: 10.1016/s0966-6362(01)00156-4.
[20]MANAF H, JUSTINE M, GOH H T. Axial segmental coordination during turning: effects of stroke and attentional loadings[J]. Motor Control, 2017, 21(1): 42-57. DOI: 10.1123/mc.2015-0040.
[21]NEGAHBAN H, EBRAHIMZADEH M, MEHRAVAR M. The effects of cognitive versus motor demands on postural performance and weight bearing asymmetry in patients with stroke[J]. Neurosci Lett, 2017, 659: 75-79. DOI: 10.1016/j.neulet.2017.08.070.
[22]YUAN Z W, PENG Y, WANG L S, et al. Effect of BCI-controlled pedaling training system with multiple modalities of feedback on motor and cognitive function rehabilitation of early subacute stroke patients[J]. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 2569-2577. DOI: 10.1109/TNSRE.2021.3132944.
[23]PARK M O, LEE S H. Effect of a dual-task program with different cognitive tasks applied to stroke patients: a pilot randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(2): 239-249. DOI: 10.3233/NRE-182563.
[24]PLUMMER-DAMATO P, KYVELIDOU A, STERNAD D, et al. Training dual-task walking in community-dwelling adults within 1 year of stroke: a protocol for a single-blind randomized controlled trial[J]. BMC Neurol, 2012, 12: 129. DOI: 10.1186/1471-2377-12-129.
[25]PLUMMER P, VILLALOBOS R M, VAYDA M S, et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series[J]. Stroke Res Treat, 2014, 2014: 538602. DOI: 10.1155/2014/538602.
[26]LIU Y C, YANG Y R, TSAI Y A, et al. Cognitive and motor dual task gait training improve dual task gait performance after stroke: a randomized controlled pilot trial[J]. Sci Rep, 2017, 7(1): 4070. DOI: 10.1038/s41598-017-04165-y.
[27]PANG M Y C, YANG L, OUYANG H X, et al. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke[J]. Stroke, 2018, 49(12): 2990-2998. DOI: 10.1161/STROKEAHA.118.022157.
[28]KIM G Y, HAN M R, LEE H G. Effect of dual-task rehabilitative training on cognitive and motor function of stroke patients[J]. J Phys Ther Sci, 2014, 26(1): 1-6. DOI: 10.1589/jpts.26.1.
[29]YANG Y R, WANG R Y, CHEN Y C, et al. Dual-task exercise improves walking ability in chronic stroke: a randomized controlled trial[J]. Arch Phys Med Rehabil, 2007, 88(10): 1236-1240. DOI: 10.1016/j.apmr.2007.06.762.
[30]SUBRAMANIAM S, WAN-YING HUI-CHAN C, BHATT T. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors[J]. J Neurol Phys Ther, 2014, 38(4): 216-225. DOI: 10.1097/NPT.0000000000000056.
[31]PLUMMER P, ZUKOWSKI L A, FELD J A, et al. Cognitive-motor dual-task gait training within 3 years after stroke: a randomized controlled trial[J]. Physiother Theory Pract, 2022, 38(10): 1329-1344. DOI: 10.1080/09593985.2021.1872129.
[32]LEE K J, PARK G, SHIN J H. Differences in dual task performance after robotic upper extremity rehabilitation in hemiplegic stroke patients[J]. Front Neurol, 2021, 12: 771185. DOI: 10.3389/fneur.2021.771185.
[33]SHIN J H, PARK G, CHO D Y. Cognitive-motor interference on upper extremity motor performance in a robot-assisted planar reaching task among patients with stroke[J]. Arch Phys Med Rehabil, 2017, 98(4): 730-737. DOI: 10.1016/j.apmr.2016.12.004.
[34]GHEYSEN F, POPPE L, DESMET A, et al. Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis[J]. Int J Behav Nutr Phys Act, 2018, 15(1): 63. DOI: 10.1186/s12966-018-0697-x.
[35]BRUDERER-HOFSTETTER M, RAUSCH-OSTHOFF A K, MEICHTRY A, et al. Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition: a systematic review and network meta-analysis[J]. Ageing Res Rev, 2018, 45: 1-14. DOI: 10.1016/j.arr.2018.04.002.
[36]CHOI J H, KIM B R, HAN E Y, et al. The effect of dual-task training on balance and cognition in patients with subacute post-stroke[J]. Ann Rehabil Med, 2015, 39(1): 81-90. DOI: 10.5535/arm.2015.39.1.81.
[37]LI H J, LI J, LI N X, et al. Cognitive intervention for persons with mild cognitive impairment: a meta-analysis[J]. Ageing Res Rev, 2011, 10(2): 285-296. DOI: 10.1016/j.arr.2010.11.003.
[38]赵依双. 双重任务训练改善脑卒中后步行能力的应用进展[J]. 中华物理医学与康复杂志, 2020, 42(8): 752-754. DOI: 10.3760/cma.j.issn.0254-1424.2020.08.021.
[39]PLUMMER P, ESKES G. Measuring treatment effects on dual-task performance: a framework for research and clinical practice[J]. Front Hum Neurosci, 2015, 9: 225. DOI: 10.3389/fnhum.2015.00225.
[40]LUSSIER M, BUGAISKA A, BHERER L. Specific transfer effects following variable priority dual-task training in older adults[J]. Restor Neurol Neurosci, 2017, 35(2): 237-250. DOI: 10.3233/RNN-150581.
[41]SENGAR S, RAGHAV D, VERMA M, et al. Efficacy of dual-task training with two different priorities instructional sets on gait parameters in patients with chronic stroke[J]. Neuropsychiatr Dis Treat, 2019, 15: 2959-2969. DOI: 10.2147/NDT.S197632.
[42]PATEL P, BHATT T. Task matters: influence of different cognitive tasks on cognitive-motor interference during dual-task walking in chronic stroke survivors[J]. Top Stroke Rehabil, 2014, 21(4): 347-357. DOI: 10.1310/tsr2104-347.
[43]CHEN H I, FU S Y, LIU T W, et al. Changes in cognitive-motor interference during rehabilitation of cane walking in patients with subacute stroke: a pilot study[J]. PLoS One, 2022, 17(10): e0274425. DOI: 10.1371/journal.pone.0274425.
[44]PLUMMER-DAMATO P, ALTMANN L J, SARACINO D, et al. Interactions between cognitive tasks and gait after stroke: a dual task study[J]. Gait Posture, 2008, 27(4): 683-688. DOI: 10.1016/j.gaitpost.2007.09.001.
[45]YANG L, LAM F M, HUANG M Z, et al. Dual-task mobility among individuals with chronic stroke: changes in cognitive-motor interference patterns and relationship to difficulty level of mobility and cognitive tasks[J]. Eur J Phys Rehabil Med, 2018, 54(4): 526-535. DOI: 10.23736/S1973-9087.17.04773-6.
[46]RICE J, CORP D T, SWAROWSKY A, et al. Greater cognitive-motor interference in individuals post-stroke during more complex motor tasks[J]. J Neurol Phys Ther, 2022, 46(1): 26-33. DOI: 10.1097/NPT.0000000000000379.
[47]ESCHWEILER M, BOHR L, KESSLER J, et al. Combined cognitive and motor training improves the outcome in the early phase after stroke and prevents a decline of executive functions: a pilot study[J]. Neuro Rehabilitation, 2021, 48(1): 97-108. DOI: 10.3233/NRE-201583.
[48]BAEK C Y, YOON H S, KIM H D, et al. The effect of the degree of dual-task interference on gait, dual-task cost, cognitive ability, balance, and fall efficacy in people with stroke: a cross-sectional study[J]. Medicine, 2021, 100(24): e26275. DOI: 10.1097/MD.0000000000026275.
[49]BAETENS T, KEGEL A D, PALMANS T, et al. Gait analysis with cognitive-motor dual tasks to distinguish fallers from nonfallers among rehabilitating stroke patients[J]. Arch Phys Med Rehabil, 2013, 94(4): 680-686. DOI: 10.1016/j.apmr.2012.11.023.
[50]MUCI B, KESER I, MERIC A, et al. What are the factors affecting dual-task gait performance in people after stroke?[J]. Physiother Theory Pract, 2022, 38(5): 621-628. DOI: 10.1080/09593985.2020.1777603.
[51]LEE K B, KIM J H, LEE K S. The relationship between motor recovery and gait velocity during dual tasks in patients with chronic stroke[J]. J Phys Ther Sci, 2015, 27(4): 1173-1176. DOI: 10.1589/jpts.27.1173.
[52]PLUMMER-DAMATO P, ALTMANN L J. Relationships between motor function and gait-related dual-task interference after stroke: a pilot study[J]. Gait Posture, 2012, 35(1): 170-172. DOI: 10.1016/j.gaitpost.2011.08.015.
[53]COLLETT J, FLEMING M K, MEESTER D, et al. Dual-task walking and automaticity after stroke: insights from a secondary analysis and imaging sub-study of a randomised controlled trial[J]. Clin Rehabil, 2021, 35(11): 1599-1610. DOI: 10.1177/02692155211017360.
[54]TIMMERMANS C, ROERDINK M, JANSSEN T W J, et al. Dual-task walking in challenging environments in people with stroke: cognitive-motor interference and task prioritization[J]. Stroke Res Treat, 2018, 2018: 7928597. DOI: 10.1155/2018/7928597.
[55]ZUKOWSKI L A, FELD J A, GIULIANI C A, et al. Relationships between gait variability and ambulatory activity post stroke[J]. Top Stroke Rehabil, 2019, 26(4): 255-260. DOI: 10.1080/10749357.2019.1591038.
[56]SMULDERS K, VAN SWIGCHEM R, DE SWART B J, et al. Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles[J]. Gait Posture, 2012, 36(1): 127-132. DOI: 10.1016/j.gaitpost.2012.02.002.
[57]OHZUNO T, USUDA S. Cognitive-motor interference in post-stroke individuals and healthy adults under different cognitive load and task prioritization conditions[J]. J Phys Ther Sci, 2019, 31(3): 255-260. DOI: 10.1589/jpts.31.255.
[58]MULLICK A A, BANIA M C, TOMITA Y, et al. Obstacle avoidance and dual-tasking during reaching while standing in patients with mild chronic stroke[J]. Neurorehabil Neural Repair, 2021, 35(10): 915-928. DOI: 10.1177/15459683211023190.
[59]HOUWINK A, STEENBERGEN B, PRANGE G B, et al. Upper-limb motor control in patients after stroke: attentional demands and the potential beneficial effects of arm support[J]. Hum Mov Sci, 2013, 32(2): 377-387. DOI: 10.1016/j.humov.2012.01.007.
[60]KIM H, KIM H K, KIM N, et al. Dual task effects on speed and accuracy during cognitive and upper limb motor tasks in adults with stroke hemiparesis[J]. Front Hum Neurosci, 2021, 15: 671541. DOI: 10.3389/fnhum.2021.671541.
[61]DENNEMAN R P M, KAL E C, HOUDIJK H, et al. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke[J]. Gait Posture, 2018, 62: 206-213. DOI: 10.1016/j.gaitpost.2018.03.008.
[62]SUBRAMANIAM S, HUI-CHAN C W Y, BHATT T. Effect of dual tasking on intentional vs. reactive balance control in people with hemiparetic stroke[J]. J Neurophysiol, 2014, 112(5): 1152-1158. DOI: 10.1152/jn.00628.2013.
[63]KIZONY R, LEVIN M F, HUGHEY L, et al. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment[J]. Phys Ther, 2010, 90(2): 252-260. DOI: 10.2522/ptj.20090061.
[64]KANNAN L, VORA J, BHATT T, et al. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial[J]. Neuro Rehabilitation, 2019, 44(4): 493-510. DOI: 10.3233/NRE-182683.
[65]BHATT T, SUBRAMANIAM S, VARGHESE R. Examining interference of different cognitive tasks on voluntary balance control in aging and stroke[J]. Exp Brain Res, 2016, 234(9): 2575-2584. DOI: 10.1007/s00221-016-4662-0.
[66]TISSERAND R, ARMAND S, ALLALI G, et al. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals[J]. Hum Mov Sci, 2018, 58: 175-184. DOI: 10.1016/j.humov.2018.01.012.
[67]BOURLON C, LEHENAFF L, BATIFOULIER C, et al. Dual-tasking postural control in patients with right brain damage[J]. Gait Posture, 2014, 39(1): 188-193. DOI: 10.1016/j.gaitpost.2013.07.002.
[68]JU S K, YOO W G. The effect of somatosensory and cognitive-motor tasks on the paretic leg of chronic stroke patients in the standing posture[J]. J Phys Ther Sci, 2014, 26(12): 1869-1870. DOI: 10.1589/jpts.26.1869.
[69]JU S, YOO W G, OH J S, et al. Effects of visual cue and cognitive motor tasks on standing postural control following a chronic stroke[J]. J Phys Ther Sci, 2018, 30(4): 601-604. DOI: 10.1589/jpts.30.601.
[70]KRAMER A F, ERICKSON K I. Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function[J]. Trends Cogn Sci, 2007, 11(8): 342-348. DOI: 10.1016/j.tics.2007.06.009.
[71]CABRAL D F, FRIED P, KOCH S, et al. Efficacy of mechanisms of neuroplasticity after a stroke[J]. Restor Neurol Neurosci, 2022, 40(2): 73-84. DOI: 10.3233/RNN-211227.
[72]CALEO M. Rehabilitation and plasticity following stroke: insights from rodent models[J]. Neuroscience, 2015, 311: 180-194. DOI: 10.1016/j.neuroscience.2015.10.029.
[73]DIMYAN M A, COHEN L G. Neuroplasticity in the context of motor rehabilitation after stroke[J]. Nat Rev Neurol, 2011, 7: 76-85. DOI: 10.1038/nrneurol.2010.200.
[74]VON BOHLEN UND HALBACH O, VON BOHLEN UND HALBACH V. BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018, 373(3): 729-741. DOI: 10.1007/s00441-017-2782-x.
[75]VAYNMAN S, GOMEZ-PINILLA F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity[J]. J Neurosci Res, 2006, 84(4): 699-715. DOI: 10.1002/jnr.20979.
[76]付晓燕, 李爱丽. 认知-运动控制双重任务训练应用于老年脑卒中后认知障碍的临床价值[J]. 实用临床医学, 2021, 22(1): 43-45, 49. DOI: 10.13764/j.cnki.lcsy.2021.01.015.
[77]DBROWSKI J, CZAJKA A, ZIELIN""" ′SKA-TUREK J, et al. Brain functional reserve in the context of neuroplasticity after stroke[J]. Neural Plast, 2019, 2019: 9708905. DOI: 10.1155/2019/9708905.
[78]KIM J, LEE J, LEE G, et al. Relationship between lower limb muscle activity and cortical activation among elderly people during walking: effects of fast speed and cognitive dual task[J]. Front Aging Neurosci, 2022, 14: 1059563. DOI: 10.3389/fnagi.2022.1059563.
[79]BEURSKENS R, BOCK O. Does the walking task matter? Influence of different walking conditions on dual-task performances in young and older persons[J]. Hum Mov Sci, 2013, 32(6): 1456-1466. DOI: 10.1016/j.humov.2013.07.013.
[80]WARD N S. Compensatory mechanisms in the aging motor system[J]. Ageing Res Rev, 2006, 5(3): 239-254. DOI: 10.1016/j.arr.2006.04.003.
[81]TEO W P, RANTALAINEN T, NUZUM N, et al. Altered prefrontal cortex responses in older adults with subjective memory complaints and dementia during dual-task gait: an fNIRS study[J]. Eur J Neurosci, 2021, 53(4): 1324-1333. DOI: 10.1111/ejn.14989.
[82]AL-YAHYA E, JOHANSEN-BERG H, KISCHKA U, et al. Prefrontal cortex activation while walking under dual-task conditions in stroke: a multimodal imaging study[J]. Neurorehabil Neural Repair, 2016, 30(6): 591-599. DOI: 10.1177/1545968315613864.
[83]LIU Y C, YANG Y R, TSAI Y A, et al. Brain activation and gait alteration during cognitive and motor dual task walking in stroke-a functional near-infrared spectroscopy study[J]. IEEE Trans Neural Syst Rehabil Eng, 2018, 26(12): 2416-2423. DOI: 10.1109/TNSRE.2018.2878045.
[84]HAWKINS K A, FOX E J, DALY J J, et al. Prefrontal over-activation during walking in people with mobility deficits: interpretation and functional implications[J]. Hum Mov Sci, 2018, 59: 46-55. DOI: 10.1016/j.humov.2018.03.010.
[85]HERMAND E, TAPIE B, DUPUY O, et al. Prefrontal cortex activation during dual task with increasing cognitive load in subacute stroke patients: a pilot study[J]. Front Aging Neurosci, 2019, 11: 160. DOI: 10.3389/fnagi.2019.00160.
[86]LIM S B, PETERS S, YANG C L, et al. Frontal, sensorimotor, and posterior parietal regions are involved in dual-task walking after stroke[J]. Front Neurol, 2022, 13: 904145. DOI: 10.3389/fneur.2022.904145.
(责任编辑:高艳华)
本文引用:向丽莎,张一.认知-运动双任务训练在脑卒中患者康复中的研究进展[J].医学研究与教育,2024,41(3):817.DOI:10.3969/j.issn.1674490X.2024.03.002.
第一作者:向丽莎(1999—),女,四川德阳人,在读硕士,主要从事认知康复研究。E-mail: Xiangss@163.com
通信作者:张一(1975—),男,江苏常州人,主任医师,博士,博士生导师,主要从事神经康复与认知研究。E-mail: zhangyizhe1975@163.com