腹侧被盖区-内侧前额叶皮质神经环路在觉醒调控过程中作用的研究进展
2024-07-08郝孟楠梁小丽张益
郝孟楠 梁小丽 张益
摘要:腹侧被盖区(VTA)与内侧前额叶皮层(mPFC)之间存在相互神经投射,并形成环路,近年来的研究显示该环路在睡眠与全身麻醉的觉醒调控中发挥着重要的作用。本文通过对VTA与mPFC的解剖结构、二者中的各种神经元及投射通路在觉醒调控过程中的作用进行综述,期望为睡眠觉醒与全身麻醉机制研究提供新的思路。
关键词:中脑腹侧被盖区;内侧前额叶皮层;神经环路;觉醒
中图分类号: R614 文献标识码: A 文章编号:1000-503X(2024)03-0402-07
DOI:10.3881/j.issn.1000-503X.15693
Research Progress in the Role of the Ventral Tegmental Area-Medial Prefrontal Cortex Neural Circuit in the Regulation of Arousal
HAO Mengnan 2,LIANG Xiaoli3,ZHANG Yi 2
1Department of Anesthesiology,The Second Affiliated Hospital of Zunyi Medical University,Zunyi,Guizhou 563000,China
2Guizhou Key Laboratory of Anesthesia and Organ Protection,Zunyi Medical University,Zunyi,Guizhou 563000,China
3School of Anesthesiology,Zunyi Medical University,Zunyi,Guizhou 563000,China
Corresponding author:ZHANG Yi Tel:15329716676,E-mail:cherishher1998@126.com
ABSTRACT:There are mutual neural projections between the ventral tegmental area (VTA) and the medial prefrontal cortex (mPFC),which form a circuit.Recent studies have shown that this circuit is vital in regulating arousal from sleep and general anesthesia.This paper introduces the anatomical structures of VTA and mPFC and the roles of various neurons and projection pathways in the regulation of arousal,aiming to provide new ideas for further research on the mechanism of arousal from sleep and general anesthesia.
Key words:ventral tegmental area;medial prefrontal cortex;neural circuit;arousal
Acta Acad Med Sin,2024,46(3):402-408
腹侧被盖区(ventral tegmental area,VTA)是中脑内主要的多巴胺能促觉醒核团之一,参与动机与奖赏、焦虑、记忆、成瘾以及睡眠等生理行为过程[1-4]。内侧前额叶皮层(medial prefrontal cortex,mPFC)不仅在情绪调节、社交、动机、奖赏、记忆、决策等行为调控中发挥重要的作用,还与睡眠期间的意识状态改变密切相关[5-9]。mPFC是VTA投射的重要靶区之一,二者之间通过不同类型的投射通路相互影响,进而调节睡眠-觉醒过程。近年来,有关全身麻醉机制多项研究的结果显示,麻醉药物通过VTA-mPFC环路可调控意识的消失和恢复过程。因此,本文对VTA和mPFC之间的神经环路及其在睡眠觉醒与全身麻醉过程中的作用和机制研究进行综述。
1 VTA-mPFC环路的结构解剖
VTA位于中脑腹侧红核区中间,是一个由高度异质性细胞成分组成的脑区,其中50%~60%为多巴胺能神经元,约30%为γ-氨基丁酸(gamma-aminobutyric acid,GABA)能神经元,约5%为谷氨酸能神经元,以及一些释放一种以上神经递质的组合神经元。VTA主要分为以下几个部分:外侧臂旁色素核、吻侧黑质旁核、吻侧线状核、内侧束间核、尾侧线状核[10]。
VTA接受周围多个脑区,如中缝背核、蓝斑、桥脚和背侧被盖区、下丘脑等的兴奋性和抑制性传入投射,同时也发出两条主要的传出通路,一条为中脑边缘通路,投射至伏隔核、杏仁核和海马,另一条中脑皮层通路则投射至前额叶皮层[11]。
mPFC位于前额叶皮层的内侧,灵长类动物的mPFC可分为腹mPFC(ventral-mPFC,vmPFC)和背mPFC(dorsal-mPFC,dmPFC),目前的研究结果表明啮齿类动物与灵长类动物的mPFC在解剖和功能连接上具有同源性,根据细胞构筑的不同,将其划分为边缘下皮质、前边缘皮质和前扣带回三个部分[12-14]。mPFC是大脑中重要的整合执行中枢,与多个重要脑区存在广泛联系,主要依靠其神经网络中约90%的兴奋性谷氨酸能神经元和约10%的GABA能神经元来发挥作用,维持神经网络兴奋-抑制平衡的正常功能[10]。
VTA-mPFC环路存在多种复杂的神经通路联系。随着病毒示踪技术的发展,将荧光标记病毒注入目标脑区后,使用荧光显微镜对目标神经元及其顺向/逆向投射通路进行观察,发现约30%位于内侧的多巴胺能神经元(以下简称VTADA)可以投射至mPFC,并激活mPFC内的局部中间神经元,从而抑制mPFC内椎体神经元活性[1 15-16]。部分在内侧中线结构附近的VTA的GABA能神经元(以下简称VTAGABA)及VTA谷氨酸能神经元(以下简称VTAGlu)也可以投射至mPFC,但其具体下游神经元仍不明确[17]。mPFC在接受来自VTA神经投射的同时,也可以反向调控VTA内的部分神经元活性,投射至VTA的mPFC神经元有50%~60%位于皮层第5b层,35%~40%位于皮层第6层,也有研究结果提示VTAGABA和VTADA主要接受mPFC的谷氨酸能神经输入[18-19]。
2 VTA-mPFC环路与觉醒
2.1 VTA在自然睡眠觉醒以及全身麻醉致意识改变中的作用
VTA是大脑中重要的唤醒核团之一,并且VTADA在觉醒调控中有着重要的作用,早期临床研究发现,60%~98%的帕金森病患者会出现VTADA的变性、丢失,表现为睡眠障碍,而多巴胺能药物的使用可以改善帕金森病患者的睡眠障碍,并具有剂量依赖性,高剂量药物可以引起睡眠期间觉醒,低剂量药物则会减少觉醒改善睡眠,这可能是VTADA调控作用的结果[20]。在睡眠-觉醒过程中,VTADA钙信号活性发生变化,并通过化学遗传学可控地抑制其活性,增加小鼠快速眼动(rapid eye movement,REM)睡眠和非REM睡眠时间,从而促进睡眠,甚至当小鼠处于饥饿且被置于食物香味刺激环境下的兴奋状态时,抑制VTADA导致的促眠效应仍然明显[21]。相反,光遗传学或化学遗传学激活VTADA则可以使小鼠迅速从非REM睡眠转换为清醒状态,并且对处于睡眠剥夺状态的小鼠也同样有着迅速唤醒作用,还可显著延长觉醒时间,而在激活前应用多巴胺受体拮抗剂可阻断并消除这种促觉醒效应[21-22]。
VTAGlu大多位于VTA吻侧与中线部分,主要表达泡状谷氨酸转运蛋白2,有小部分VTAGlu可以共释放多巴胺[23]。化学遗传学和光遗传学可选择性激活VTAGlu,延长清醒时间,即便在激活VTAGlu前应用多巴胺受体拮抗剂,也对其促进清醒的作用无明显影响,而化学抑制以及损伤VTAGlu后,则会减少清醒时间,增加非REM睡眠。荧光钙信号记录变化结果显示VTAGlu活性在清醒和REM时期较高,在非REM睡眠时期较低。激活VTAGlu至伏隔核以及下丘脑外侧区(lateral hypothalamic area,LH)的投射通路,也能达到促进清醒的效果[24]。这些结果表明VTAGlu具有促觉醒作用,且这种促觉醒作用独立于VTADA存在。
VTAGABA可根据表达不同蛋白区分为表达泡状GABA转运蛋白或者表达谷氨酸脱羧酶异构体的两种神经元,虽然两者在睡眠期间的活性不同,但特异性激活这两种神经元均能够增加非REM睡眠时间,促进睡眠,而特异性抑制则会增加非REM和REM睡眠潜伏期,维持小鼠的清醒状态,还能促使面临高睡眠压力的小鼠从非REM睡眠中觉醒[24-25]。此外,VTAGABA可通过投射直接抑制LH的食欲素能神经元,从而产生促眠效应,也可通过局部抑制VTADA和VTAGlu促进睡眠[24-26]。
研究也发现VTA中不同神经元在全身麻醉导致意识的改变中同样扮演着重要的角色。异氟醚麻醉期间,超声刺激小鼠VTA区域,可以促使小鼠从异氟醚麻醉中苏醒,并且能够使脑外伤小鼠模型也产生觉醒反应;应用多巴胺受体拮抗剂抑制多巴胺能神经通路作用后,则观察到这种由超声刺激引起的唤醒反应明显减弱[27]。七氟醚麻醉后的觉醒期间会伴随着VTADA活性增强,光遗传学进一步激活VTADA,可导致小鼠翻正反射消失时间延长,翻正反射恢复时间缩短,且产生相应的唤醒行为以及脑电图变化[28]。VTADA上存在食欲素受体,在异氟醚麻醉期间向VTA注射食欲素A可以直接激活VTADA,降低脑电图中的爆发性抑制率,并且促进大鼠从麻醉中觉醒[29]。此外,最近的研究也发现,通过基因敲除技术降低VTA中多巴胺转运体,使细胞外多巴胺累积,能够促进大鼠从丙泊酚麻醉中觉醒[30]。
除了VTADA外,近年来有研究发现VTAGABA也能参与全身麻醉意识调控的过程,激活VTAGABA以及向LH的投射通路,不仅增加了小鼠对异氟醚麻醉药物的敏感性,还可促进小鼠的麻醉诱导,增加麻醉深度并延长小鼠从麻醉中苏醒的时间;抑制VTAGABA则产生相反的效果,抑制VTAGABA-LH通路则通过延长麻醉时间而在麻醉诱导过程起作用[31]。
2.2 mPFC在自然睡眠觉醒以及全身麻醉致意识改变中的作用
mPFC是默认模式网络中的一个主要区域,涉及意识调控过程,如对mPFC进行经颅聚焦超声刺激,可以引起脑电频谱功率发生变化[32]。有临床案例报告显示,在低意识状态患者的左侧前额叶应用经颅直流电刺激疗法,能够一定程度上改善患者意识障碍症状,这可能与丘脑皮层与前额叶皮层连接的增加有关[33-34]。
mPFC可参与睡眠调节过程,诱导发生不同的活动状态变化。有研究显示,在闭眼休息与睡眠期间恒河猴mPFC中的神经元放电率显著增加,在大鼠主动睡眠期间也发现mPFC神经活动明显增加[35-36]。mPFC的损伤可影响睡眠觉醒过程,脑损伤导致失眠症患者常有左侧dmPFC的损伤,而直接损伤大鼠的vmPFC和dmPFC神经元可以增加REM睡眠,尤其是vmPFC的损伤可以明显增加睡眠碎片化和缩短REM睡眠潜伏期[37-38]。mPFC也参与调节不同疾病引起的睡眠障碍,创伤后应激障碍可以引起的过度觉醒和睡眠障碍症状,如在创伤后应激障碍模型小鼠睡眠期间,非REM中的δ波功率活动急性降低,mPFC神经元的活性增加;当抑制mPFC神经元活性后,这种由单次长时间应激引起的睡眠觉醒脑电紊乱现象可以被逆转[39]。有临床研究提示失眠症患者的mPFC和伏隔核之间的静态功能连接增加,可显著降低睡眠质量评分[40]。
mPFC神经活动在全身麻醉过程中也有不同作用,与意识状态变化密切相关,氨基甲酸乙酯麻醉可以抑制大鼠mPFC的神经元在睡眠期间的活性,且在麻醉过程中mPFC的不同亚区的脑电位快速振荡的动力学也有差异[36,41]。mPFC的低频波动的分数振幅指数数值在清醒时大脑中的与意识记忆认知相关脑区会较高,但在丙泊酚麻醉的过程中,mPFC的低频波动的分数振幅指数数值与其他脑区相比会明显下降,随着意识的恢复该指数数值的下降趋势可被逆转,进一步研究发现这可能与低剂量丙泊酚对主mPFC 神经元兴奋性突触频率的抑制作用相关[42-43]。此外,mPFC神经元失活可加速七氟醚麻醉的诱导过程,并且延长觉醒[44]。
不同的神经递质系统能直接作用于mPFC,改变睡眠或者麻醉过程中的意识状态,如胆碱能刺激mPFC不仅可以改变大鼠的睡眠觉醒状态,还可以促使七氟烷麻醉的大鼠恢复意识并逆转麻醉状态[45-46]。来自基底前脑的胆碱能输入通路,可以通过作用于mPFC,影响丙泊酚或七氟烷麻醉过程,激活基底前脑投射至mPFC的胆碱能神经元则可改变小鼠mPFC的局部场电位,逆转丙泊酚麻醉的催眠作用;而在七氟烷麻醉下,向mPFC脑区显微注射河豚毒素使mPFC内神经元失活后,则会减弱刺激基底前脑后引发的促醒效应[47-48]。多巴胺系统也能通过mPFC促进七氟醚麻醉后的觉醒过程,大量多巴胺受体存在于mPFC的兴奋性椎体神经元上,在七氟醚麻醉期间向大鼠前边缘皮质注射多巴胺受体激动剂,可以明显延长麻醉诱导时间,并促进觉醒,而在使用抑制剂后,则会显著缩短诱导时间,并会延迟觉醒[49-50]。
2.3 VTA-mPFC环路在自然觉醒以及全身麻醉意识调控中的作用
VTA-mPFC之间存在多种神经投射通路,电刺激小鼠VTA可以同时引起mPFC内平均神经元内的Ca2+浓度增加,证明VTA对mPFC的神经元有调节作用[51]。环路中各类型的投射系统作用各不相同,VTA至mPFC的多巴胺能通路主要在疼痛、记忆、社会活动、奖赏与情绪调节过程中发挥作用,而最近的研究结果提示多巴胺能通路也参与了觉醒调控过程[6,52-55]。在睡眠过程中,对VTA投射到mPFC的多巴胺能神经元末梢进行光刺激,虽然对于非REM睡眠时间无明显影响,但能够减少REM睡眠到觉醒的时间,从而产生一定的促觉醒作用[21]。电刺激VTA区域会导致大鼠mPFC的局部场电位从麻醉后引起的非REM慢波活动转变为类似REM睡眠的低幅快波活动,注射多巴胺受体拮抗剂则可完全阻断这种变化,提示激活VTA神经元可通过向mPFC传递多巴胺递质,进而促进大鼠从睡眠转向更为活跃的状态[56]。进一步特异性激活VTADA-mPFC通路,能够延长七氟醚麻醉下大鼠的诱导时间,从而缩短觉醒时间,皮层脑电结果也正好显示睡眠相关低频波段功率减弱,觉醒高频波段功率增强[50]。另外,食欲素可以激活VTADA,并促进异氟醚麻醉觉醒过程,食欲素A同时增加投射至mPFC的VTADA的放电频率,也与唤醒正相关[57]。
谷氨酸能系统在睡眠稳态中起重要作用。内侧隔、桥脚被盖核谷氨酸能神经元具有唤醒活性,可直接将小鼠从非REM睡眠中唤醒;而腹外侧髓质中谷氨酸能神经元则是在睡眠时活跃,可促进睡眠发生[58-60]。在异氟醚麻醉过程中,外侧僵核谷氨酸能神经元发挥促进异氟醚麻醉、延缓觉醒作用,而下丘脑室旁核谷氨酸能神经元则是发挥促觉醒作用[61-62]。激活VTAGlu以及其向LH、伏隔核的投射通路也能引发促觉醒效应,提示VTA可以通过谷氨酸能神经元投射至下游靶点,进而促进觉醒[24]。VTA与mPFC之间也存在中脑皮质谷氨酸能通路,但该通路在觉醒过程中是否起作用仍有待深入研究[63]。
mPFC谷氨酸能神经元(以下简称mPFCGlu)也可以投射至VTA[18,64]。目前研究者发现mPFCGlu可以通过投射作用于其他脑内核团,发挥其觉醒调控作用,如光遗传学可激活mPFCGlu向蓝斑GABA能以及去甲肾上腺素能神经元的投射通路,引起唤醒水平的不同变化[65]。mPFCGlu还可以投射并支配下丘脑背内侧区的谷氨酸能神经元,从而产生促进觉醒、抑制睡眠的作用[66]。最近的研究已证实mPFCGlu-VTA神经通路在奖赏中的作用,表明应用吗啡可导致mPFCGlu向VTADA的谷氨酸能输入增加,使小鼠的运动活动增加以及条件位置偏好改变[67]。Cao等[68]的研究发现,通过投射并作用于VTA神经元上的N-甲基-D-天冬氨酸受体促进小鼠从七氟烷麻醉中觉醒,这进一步明确了mPFCGlu-VTA神经通路在全身麻醉觉醒调控中的促觉醒作用。
3 总结与展望
综上,VTADA与VTAGlu在睡眠与全身麻醉觉醒过程中可发挥促觉醒作用,而VTAGABA则表现为促进睡眠与增强麻醉效应。mPFC神经元活性会随着睡眠与全身麻醉意识变化而发生改变,在麻醉期间对mPFC特异性操控可影响麻醉诱导与觉醒进程。随着病毒示踪以及光/化学遗传学等神经环路操控技术的发展,目前研究已明确VTA中各种神经元均可投射于mPFC神经元上,其中VTADA-mPFC通路有显著促觉醒作用。同时,VTADA可接收来自mPFC的谷氨酸能输入,mPFCGlu-VTA通路活性与觉醒呈正相关联。VTA-mPFC环路中存在双向投射通路,但环路中VTAGABA与VTAGlu和mPFC建立的神经通路在睡眠与全身麻醉觉醒调控中的作用仍然未知,今后可对这些神经通路进行特异性调控,并借助脑电记录、全细胞膜片钳记录等在体/离体电生理技术进行深入分析,将有助于从神经网络电活动的角度阐明睡眠觉醒与全身麻醉过程中意识改变的机制。
利益冲突 所有作者声明无利益冲突
作者贡献声明 所有作者均参与文章选题;郝孟楠:文献搜集、筛选与整理,文章起草;梁小丽:文章审阅和修订;郝孟楠、张益:按编辑部的修改意见进行核修,对学术问题进行解答,文章的修订、质量控制及终审和定稿,并同意对研究工作诚信负责
参 考 文 献
[1]Galaj E,Ranaldi R.Neurobiology of reward-related learning[J].Neurosci Biobehav Rev,202 124:224-234.DOI:10.1016/j.neubiorev.2021.02.007.
[2]Douma EH,de Kloet ER.Stress-induced plasticity and functioning of ventral tegmental dopamine neurons[J].Neurosci Biobehav Rev,2020,108:48-77.DOI:10.1016/j.neubiorev.2019.10.015.
[3]Bimpisidis Z,Wallén-Mackenzie .Neurocircuitry of reward and addiction:potential impact of dopamine-glutamate co-release as future target in substance use disorder[J].J Clin Med,2019,8(11):1887.DOI:10.3390/jcm8111887.
[4]Venner A,Todd WD,Fraigne J,et al.Newly identified sleep-wake and circadian circuits as potential therapeutic targets[J].Sleep,2019,42(5):zsz023.DOI:10.1093/sleep/zsz023.
[5]Chen YH,Wu JL,Hu NY,et al.Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear[J].J Clin Invest,202 131(14):e145692.DOI:10.1172/JCI145692.
[6]Gallo FT,Zanoni Saad MB,Silva A,et al.Dopamine modulates adaptive forgetting in medial prefrontal cortex[J].J Neurosci,2022,42(34):6620-6636.DOI:10.1523/JNEUROSCI.0740-21.2022.
[7]Howland JG,Ito R,Lapish CC,et al.The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands[J].Neurosci Biobehav Rev,2022,135:104569.DOI:10.1016/j.neubiorev.2022.104569.
[8]Visser E,Matos MR,Mitric′ MM,et al.Extinction of cocaine memory depends on a feed-forward inhibition circuit within the medial prefrontal cortex[J].Biol Psychiatry,2022,91(12):1029-1038.DOI:10.1016/j.biopsych.2021.08.008.
[9]Huang WC,Zucca A,Levy J,et al.Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry[J].Cell Rep,2020,32(2):107899.DOI:10.1016/j.celrep.2020.107899.
[10]Trutti AC,Mulder MJ,Hommel B,et al.Functional neuroanatomical review of the ventral tegmental area[J].Neuroimage,2019,191:258-268.DOI:10.1016/j.neuroimage.2019.01.062.
[11]Derdeyn P,Hui M,Macchia D,et al.Uncovering the connectivity logic of the ventral tegmental area[J].Front Neural Circuits,2022,15:799688.DOI:10.3389/fncir.2021.799688.
[12]Preuss TM,Wise SP.Evolution of prefrontal cortex[J].Neuropsychopharmacology,2022,47(1):3-19.DOI:10.1038/s41386-021-01076-5.
[13]Carlén M.What constitutes the prefrontal cortex[J].Science,2017,358(6362):478-482.DOI:10.1126/science.aan8868.
[14]Uylings HB,Groenewegen HJ,Kolb B.Do rats have a prefrontal cortex[J].Behav Brain Res,2003,146(1-2):3-17.DOI:10.1016/j.bbr.2003.09.028.
[15]Kabanova A,Pabst M,Lorkowski M,et al.Function and developmental origin of a mesocortical inhibitory circuit[J].Nat Neurosci,2015,18(6):872-882.DOI:10.1038/nn.4020.
[16]Beier K.Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells[J].Elife,2022,11:e76886.DOI:10.7554/eLife.76886.
[17]Beier KT,Gao XJ,Xie S,et al.Topological organization of ventral tegmental area connectivity revealed by viral-genetic dissection of input-output relations[J].Cell Rep,2019,26(1):159-167.e6.DOI:10.1016/j.celrep.2018.12.040.
[18]Babiczky ,Matyas F.Molecular characteristics and laminar distribution of prefrontal neurons projecting to the mesolimbic system[J].Elife,2022,11:e78813.DOI:10.7554/eLife.78813.
[19]Morales M,Margolis EB.Ventral tegmental area:cellular heterogeneity,connectivity and behaviour[J].Nat Rev Neurosci,2017,18(2):73-85.DOI:10.1038/nrn.2016.165.
[20]Taximaimaiti R,Luo X,Wang XP.Pharmacological and non-pharmacological treatments of sleep disorders in parkinsons disease[J].Curr Neuropharmacol,202 19(12):2233-2249.DOI:10.2174/1570159X19666210517115706.
[21]Eban-Rothschild A,Rothschild G,Giardino WJ,et al.VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J].Nat Neurosci,2016,19(10):1356-1366.DOI:10.1038/nn.4377.
[22]Oishi Y,Suzuki Y,Takahashi K,et al.Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice[J].Brain Struct Funct,2017,222(6):2907-2915.DOI:10.1007/s00429-017-1365-7.
[23]Cai J,Tong Q.Anatomy and function of ventral tegmental area glutamate neurons[J].Front Neural Circuits,2022,16:867053.DOI:10.3389/fncir.2022.867053.
[24]Yu X,Li W,Ma Y,et al.GABA and glutamate neurons in the VTA regulate sleep and wakefulness[J].Nat Neurosci,2019,22(1):106-119.DOI:10.1038/s41593-018-0288-9.
[25]Chowdhury S,Matsubara T,Miyazaki T,et al.GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice[J].Elife,2019,8:e44928.DOI:10.7554/eLife.44928.
[26]Eban-Rothschild A,Borniger JC,Rothschild G,et al.Arousal state-dependent alterations in VTA-GABAergic neuronal activity[J].eNeuro,2020,7(2):ENEURO.0356-19.2020.DOI:10.1523/ENEURO.0356-19.2020.
[27]Bian T,Meng W,Qiu M,et al.Noninvasive ultrasound stimulation of ventral tegmental area induces reanimation from general anaesthesia in mice[J].Research (Wash D C),202 2021:2674692.DOI:10.34133/2021/2674692.
[28]Gui H,Liu C,He H,et al.Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J].Front Cell Neurosci,202 15:671473.DOI:10.3389/fncel.2021.671473.
[29]Li J,Li H,Wang D,et al.Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats[J].Br J Anaesth,2019,123(4):497-505.DOI:10.1016/j.bja.2019.07.005.
[30]Guo J,Xu K,Yin JW,et al.Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats[J].J Chem Neuroanat,2022,121:102083.DOI:10.1016/j.jchemneu.2022.102083.
[31]Yin L,Li L,Deng J,et al.Optogenetic/chemogenetic activation of GABAergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice[J].Front Neural Circuits,2019,13:73.DOI:10.3389/fncir.2019.00073.
[32]Kim YG,Kim SE,Lee J,et al.Neuromodulation using transcranial focused ultrasound on the bilateral medial prefrontal cortex[J].J Clin Med,2022,11(13):3809.DOI:10.3390/jcm11133809.
[33]Thibaut A,Wannez S,Donneau AF,et al.Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state[J].Brain Inj,2017,31(4):466-474.DOI:10.1080/02699052.2016.1274776.
[34]Jang SH,Seo YS,Lee SJ.Increased thalamocortical connectivity to the medial prefrontal cortex with recovery of impaired consciousness in a stroke patient:a case report[J].Medicine (Baltimore),2020,99(18):e19937.DOI:10.1097/MD.0000000000019937.
[35]Gabbott PL,Rolls ET.Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex[J].Eur J Neurosci,2013,37(11):1737-1746.DOI:10.1111/ejn.12171.
[36]Gómez LJ,Dooley JC,Blumberg MS.Activity in developing prefrontal cortex is shaped by sleep and sensory experience[J].Elife,2023,12:e82103.DOI:10.7554/eLife.82103.
[37]Koenigs M,Holliday J,Solomon J,et al.Left dorsomedial frontal brain damage is associated with insomnia[J].J Neurosci,2010,30(47):16041-16043.DOI:10.1523/JNEUROSCI.3745-10.2010.
[38]Chang CH,Chen MC,Qiu MH,et al.Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat[J].Neuropharmacology,2014,86:125-132.DOI:10.1016/j.neuropharm.2014.07.005.
[39]Lou T,Ma J,Wang Z,et al.Hyper-activation of mPFC underlies specific traumatic stress-induced sleep-wake EEG disturbances[J].Front Neurosci,2020,14:883.DOI:10.3389/fnins.2020.00883.
[40]Shao Z,Xu Y,Chen L,et al.Dysfunction of the NAc-mPFC circuit in insomnia disorder[J].Neuroimage Clin,2020,28:102474.DOI:10.1016/j.nicl.2020.102474.
[41]Gretenkord S,Rees A,Whittington MA,et al.Dorsal vs.ventral differences in fast up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat[J].J Neurophysiol,2017,117(3):1126-1142.DOI:10.1152/jn.00762.2016.
[42]Liu X,Lauer KK,Douglas Ward B,et al.Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness[J].Neuroimage,2017,147:295-301.DOI:10.1016/j.neuroimage.2016.12.043.
[43]Jiang J,Jiao Y,Gao P,et al.Propofol differentially induces unconsciousness and respiratory depression through distinct interactions between GABAA receptor and GABAergic neuron in corresponding nuclei[J].Acta Biochim Biophys Sin (Shanghai),202 53(8):1076-1087.DOI:10.1093/abbs/gmab084.
[44]Huels ER,Groenhout T,Fields CW,et al.Inactivation of prefrontal cortex delays emergence from sevoflurane anesthesia[J].Front Syst Neurosci,202 15:690717.DOI:10.3389/fnsys.2021.690717.
[45]Parkar A,Fedrigon DC,Alam F,et al.Carbachol and nicotine in prefrontal cortex have differential effects on sleep-wake states[J].Front Neurosci,2020,14:567849.DOI:10.3389/fnins.2020.567849.
[46]Pal D,Dean JG,Liu T,et al.Differential role of prefrontal and parietal cortices in controlling level of consciousness[J].Curr Biol,2018,28(13):2145-2152.e5.DOI:10.1016/j.cub.2018.05.025.
[47]Wang L,Zhang W,Wu Y,et al.Cholinergic-induced specific oscillations in the medial prefrontal cortex to reverse propofol anesthesia[J].Front Neurosci,202 15:664410.DOI:10.3389/fnins.2021.664410.
[48]Dean JG,Fields CW,Brito MA,et al.Inactivation of prefrontal cortex attenuates behavioral arousal induced by stimulation of basal forebrain during sevoflurane anesthesia[J].Anesth Analg,2022,134(6):1140-1152.DOI:10.1213/ANE.0000000000006011.
[49]Radnikow G,Feldmeyer D.Layer-and Cell type-specific modulation of excitatory neuronal activity in the neocortex[J].Front Neuroanat,2018,12:1.DOI:10.3389/fnana.2018.00001.
[50]Song Y,Chu R,Cao F,et al.Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia[J].Neurosci Bull,2022,38(4):417-428.DOI:10.1007/s12264-021-00809-2.
[51]Park K,Clare K,Volkow ND,et al.Cocaines effects on the reactivity of the medial prefrontal cortex to ventral tegmental area stimulation:optical imaging study in mice[J].Addiction,2022,117(8):2242-2253.DOI:10.1111/add.15869.
[52]Huang S,Zhang Z,Gambeta E,et al.Dopamine inputs from the ventral tegmental area into the medial prefrontal cortex modulate neuropathic pain-associated behaviors in mice[J].Cell Rep,2020,31(12):107812.DOI:10.1016/j.celrep.2020.107812.
[53]Sotoyama H,Inaba H,Iwakura Y,et al.The dual role of dopamine in the modulation of information processing in the prefrontal cortex underlying social behavior[J].FASEB J,2022,36(2):e22160.DOI:10.1096/fj.202101637R.
[54]Lak A,Okun M,Moss MM,et al.Dopaminergic and prefrontal basis of learning from sensory confidence and reward value[J].Neuron,2020,105(4):700-711.e6.DOI:10.1016/j.neuron.2019.11.018.
[55]Jacobs DS,Allen MC,Park J,et al.Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA[J].Elife,2022,11:e78912.DOI:10.7554/eLife.78912.
[56]Gretenkord S,Olthof BMJ,Stylianou M,et al.Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1-like receptors[J].Eur J Neurosci,2020,52(2):2915-2930.DOI:10.1111/ejn.14665.
[57]Kalló I,Omrani A,Meye FJ,et al.Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens[J].Brain Struct Funct,2022,227(3):1083-1098.DOI:10.1007/s00429-021-02449-8.
[58]An S,Sun H,Wu M,et al.Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit[J].Curr Biol,202 31(7):1379-1392.e4.DOI:10.1016/j.cub.2021.01.019.
[59]Kroeger D,Thundercliffe J,Phung A,et al.Glutamatergic pedunculopontine tegmental neurons control wakefulness and locomotion via distinct axonal projections[J].Sleep,2022,45(12):zsac242.DOI:10.1093/sleep/zsac242.
[60]Teng S,Zhen F,Wang L,et al.Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area[J].Nat Commun,2022,13(1):4748.DOI:10.1038/s41467-022-32461-3.
[61]Liu C,Liu J,Zhou L,et al.Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice[J].Front Mol Neurosci,202 14:628996.DOI:10.3389/fnmol.2021.628996.
[62]Yin J,Qin J,Lin Z,et al.Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice[J].FASEB J,2023,37(3):e22762.DOI:10.1096/fj.202200974RR.
[63]Yamaguchi T,Wang HL,Li X,et al.Mesocorticolimbic glutamatergic pathway[J].J Neurosci,201 31(23):8476-8490.DOI:10.1523/JNEUROSCI.1598-11.2011.
[64]Hui M,Beier KT.Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain[J].Front Mol Neurosci,2022,15:971349.DOI:10.3389/fnmol.2022.971349.
[65]Breton-Provencher V,Sur M.Active control of arousal by a locus coeruleus GABAergic circuit[J].Nat Neurosci,2019,22(2):218-228.DOI:10.1038/s41593-018-0305-z.
[66]Zhong H,Xu H,Li X,et al.A role of prefrontal cortico-hypothalamic projections in wake promotion[J].Cereb Cortex,2023,33(6):3026-3042.DOI:10.1093/cercor/bhac258.
[67]Yang L,Chen M,Ma Q,et al.Morphine selectively disinhibits glutamatergic input from mPFC onto dopamine neurons of VTA,inducing reward[J].Neuropharmacology,2020,176:108217.DOI:10.1016/j.neuropharm.2020.108217.
[68]Cao F,Guo Y,Guo S,et al.Prelimbic cortical pyramidal neurons to ventral tegmental area projections promotes arousal from sevoflurane anesthesia[J].CNS Neurosci Ther,2024,30(3):e14675.DOI:10.1111/cns.14675.
(收稿日期:2023-05-26)