microRNA与皮肤衰老的研究进展
2024-06-01包树明诺布央卓左蕊向小燕
包树明 诺布央卓 左蕊 向小燕
[摘要]皮肤衰老是人体衰老最直观的表现,目前已发现皮肤衰老过程中伴着microRNA(miRNA)表达的改变。这表明miRNA可能参与了皮肤衰老过程的调控,可能有用于作为皮肤衰老的标志物和抗衰老治疗策略。本文旨在探讨miRNA如何通过影响皮肤角质形成细胞、成纤维细胞、免疫细胞及黑素细胞的增殖、分化、细胞稳定、蛋白通路、细胞周期等方面导致皮肤的衰老。
[关键词]微小RNA;衰老;角质形成细胞;成纤维细胞;黑素细胞;免疫细胞
[中图分类号]R339.3+8 [文献标志码]A [文章编号]1008-6455(2024)04-0186-05
Research Progress of microRNA and Skin Aging
BAO Shuming1,2, NUOBU Yangzhuo1,2, ZUO Rui1,2, XIANG Xiaoyan1,2
(1.Department of Plastic, Cosmetic and Burn Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China; 2.North Sichuan Medical College, Nanchong 637000, Sichuan, China)
Abstract: Skin aging is the most intuitive manifestation of human aging. Currently, it has been found that the skin aging process is accompanied by the change of microRNA (miRNA) expression. This suggests that miRNA may be involved in the regulation of skin aging. This article aims to explore how miRNA can cause skin aging by affecting the aging of keratinocytes, fibroblasts, immune cells and melanocytes.
Key words: miRNA; senescence; keratinocytes; fibroblasts; melanocytes; immune cells
皮膚的衰老主要分为遗传基因调控的内在衰老和环境因素引起的外在衰老[1-3]。皮肤最直接的变化预示着人类衰老的进行,因此对皮肤衰老的研究于认识人类衰老而言至关重要。miRNA是一类小的非编码内源性进化保守的RNA(长度约为19~24个核苷酸),通常通过调节信使RNA(mRNA)的水平影响蛋白质的翻译。其主要功能与基因表达的转录后调控有关[4-5]。miRNA已被证明参与了人类多种病理生理过程,如细胞生物学行为、癌症和年龄相关疾病等[6]。令人欣喜的是,随着研究的积累,发现有miRNA参与了有衰老作用的信号通道和蛋白的调节[7]。此外,有研究表明,miRNA在调节细胞增殖和清除衰老因素之间的平衡中起着至关重要的作用[8]。综合目前的研究miRNA的表达也可能被认为是衰老的标志物之一[9]。遗憾的是,尚缺乏明确的实验数据证明miRNA参与衰老。本文重点关注近几年有关miRNA与皮肤衰老之间的研究,现报道如下。
1 miRNA可能作为衰老的生物标志物
在高龄人群中,发现127个miRNA随时间的积累差异表达,同时发现这些miRNA通过调节蛋白质翻译、转录、免疫反应与衰老机制产生联系[10]。Kinser HE等[11]发现lin-4、let-7、miR-17和miR-34在长寿人群中显著表达,认为这些miRNA是长寿基因,促进寿命延长,对抗衰老。同时,众多研究团队对不同年龄段人群组织或血清中miRNA进行分析鉴定后发现:miR-29b、miR-106b、miR-130b、miR-142-5p、miR-340、miR-340-3p,miR-374a-5p、miR-376c、miR-151a-5p、miR-181a-5p和miR-1248随年龄增加表达显著下调,miR-92a、miR-222、miR-375、miR-211-5p、miR-1225-3p、miR-5095、let-7a-5p、miR-30b-5p、miR-30c-5p、miR-126-3p、miR-142-3p和miR-210、miR-126-3p则随年龄增加表达显著上调[12-16]。此外,Storci G等[17]在百岁老人的外周血单核细胞和真皮成纤维细胞中发现了有抗衰老作用的miR-335-5p、miR-532-5p和miR-508-3p。紫外线的持续暴露是皮肤过早衰老的原因之一,长期UVB照射后皮肤中let-7家族、miR-23a、miR-22、miR-200b、miR-34a、miR-27a家族、miR-1246及miR-101表达上调[18-22]。综上,在衰老皮肤中miRNA的表达差异可能表明其参与衰老的调控,并可能有用于作为衰老的标志物和抗衰老治疗策略。然而,关于miRNA参与机体衰老的各种机制,尤其是皮肤衰老的调控,仍然不明确。
2 miRNA在皮肤衰老中的作用
随着研究的积累,miRNA通过调节基因的表达调节皮肤发育已被证实。然而,miRNA在调节皮肤发育、成熟、功能和衰老中的作用尚未完全清楚。目前许多关于miRNA与衰老的研究仍然在进行。以下将总结近几年来miRNA与参与皮肤结构的细胞(即角质形成细胞、真皮成纤维细胞、免疫细胞、黑素细胞等)调节皮肤衰老的分子机制。
2.1 miRNA影响角质形成细胞的衰老:角质形成细胞是组成皮肤表皮的主要细胞,主要为皮肤及其附件提供硬度和耐水能力,表皮硬度弹性降低是衰老直观的表现[23]。UVB的暴露会导致皮肤的衰老这是现在已达成的共识。2012年,Zhou BR等[24]首次报道了UVB辐射后正常人角质形成细胞中的miRNA表达,总共有44个miRNA表达变化,其中15个下调,29个上调。这些miRNA中最高上调了33倍,最高下调了19倍,miR-30a是其中上调最显著的miRNA之一。2019年,Muther C[25]的团队对不同年龄段的人角质形成细胞60个与衰老调节有关的miRNA进行了鉴定,随后从中选择了6个miRNA(miR-30a-3p、miR-30a-5p、miR-30c-5p、miR-30c-3p、miR-365a-5p、miR-4443)进行实时PCR验证,结果证实老化皮肤的角质形成细胞中除miR-4443表达显著降低外其余miRNA均显著过表达。随后,作者选择了高表达的miR-30a进行相关机制研究发现,miR-30a与抗衰老相关的LOX(编码赖氨酰氧化酶调节剂),IDH1(编码异柠檬酸脱氢酶)和AVEN(编码半胱天冬酶抑制剂)之间的强直接相关性。最新的研究发现,miR-30a通过靶向有丝分裂受体BNIP3L,导致角质形成细胞终末分化过程中线粒体缺陷,使得细胞分化能力降低老化,因此,他们认为miR-30a随着时间积累损害表皮稳态使表皮衰老[26]。近期,Yang Z等[27]通过动物实验发现,经1 064 nm Nd:YAG激光作用后小鼠角质形成细胞系HaCaT中miR-24-3p表达下调,胶原蛋白合成和皮肤屏障的保护作用增强,而过表达miR-24-3p则会抑制激光照射对胶原蛋白合成和皮肤屏障的保护作用。此外,miR-24-3p也在内皮细胞中被发现有衰老诱导抑制增殖的作用[28]。
2.2 miRNA影响成纤维细胞的衰老:成纤维细胞是组成皮肤真皮层的主要细胞,具有产生胶原蛋白和弹性纤维蛋白的能力,是皮肤保持结构和拉伸运动的重要细胞。成纤维细胞的功能退化将会导致皮肤松弛、皱纹,皮肤伤口愈合减慢等皮肤衰老表现[2]。迄今为止,诸多文献结果显示miRNA也参与调节成纤维细胞的发育和功能。成纤维细胞的衰老与miRNA差异表达及细胞失去代谢和复制活性,导致细胞外基质的不平衡周转、胶原蛋白、弹性蛋白和透明质酸含量降低有关。Tan J等[29]在老年小鼠皮肤中鉴定出29种异常表达的miRNA(如:miR-302b-3p、miR-291a-5p、miR-139-3p、miR-467c-3p、miR-186-3p),发现miR-302b-3p能诱导小鼠真皮成纤维细胞衰老,实际上miR-302-3p通过直接靶向N末端激酶2(JNK2)抑制长寿相关基因Sirtuin 1(Sirt1)表达加速皮肤成纤维细胞衰老。Sirtuin 1是参与细胞增殖调控的基因[30]。miR-34a能够靶向抑制Sirtuin1大大加速皮肤的纤维化,皮肤纤维化是衰老的标志[31]。此外,最新的研究发现衰老细胞中上调的miR-146a也通过SIRT通路参与衰老的调节[32]。与转化生长因子β(TGF-β)的作用相反,miR-30a在皮肤中下调成纤维细胞增殖,而miR-30a水平的升高与细胞老化和紫外线暴露相关。在衰老的皮肤中胶原蛋白含量是减少的,2019年,Mamalis A等[33]发现在老化皮肤中miRNA-29、miRNA-196a和Let-7a上调,miRNA-21、miRNA-23b和miRNA-31下调,这些miRNA可以通过TGF-β/SMAD途径,导致真皮成纤维细胞增殖和胶原蛋白沉积减缓成纤维细胞的衰老。小细胞囊泡(SEV)是塑造皮肤生理和病理发育的关键协调器,有趣的是在衰老成纤维细胞中SEV随年龄增加而减少[34]。
最新的研究也报道,miR-218能够靶向SEV,进而通过激活下游TGF-β1-SMAD2/3途径促进成纤维细胞的活性增加了小鼠皮肤的厚度和胶原I的含量[32,35]。真皮成纤维细胞的衰老过程也与下调的miRNA有关,去年的研究报道房颤导致的心肌纤维化的成纤维细胞中miR-4443的表达显著降低。抗纤维化因子血小板豆素1和TGF-β1的表达进一步促进miR-4443下调,增强心肌成纤维细胞的活性和胶原蛋白的产生,从而对纤维化和心肌損伤发挥保护作用[36]。参与细胞周期和增殖的因子p53、p21、p16、p38、哺乳动物雷帕霉素靶蛋白(mTOR)、丝分裂激活蛋白激酶(MAPK)也参与了miRNAs与衰老过程之间的联系[37]。有证据表明,p53会诱发衰老[38]。已有研究证明p53下游基因CDKN1A/p21在衰老过程中被上调[39]。Lezzi A等[40]在2021年报道了p53与p21和CDKN1A之间呈反向趋势,衰老成纤维细胞中miR-16-5p、miR-454-3p、miR-17-5p、miR-30655的上调,促进p21和CDKN1A表达和p53表达上调,导致细胞周期蛋白依赖性激酶的作用被上调的p53停滞,从而触发细胞周期停滞和永久性细胞衰老。
2.3 miRNA影响黑素细胞的衰老:黑素细胞是皮肤抵御紫外线损害的重要细胞,其产生的黑色素能够分泌到角质成形细胞中分布,吸收紫外线,避免光老化。中年以后,随着年龄的积累,黑素细胞逐渐减少[41]。目前的研究认为,miRNA在黑色素生成调节中起着至关重要的作用。在衰老皮肤中黑素细胞分泌和降解黑色素的能力降低,最直观的表现就是皮肤色素的沉着,光老化加速。Shen Z等[42]用UVB照射体外培养的黑素细胞后测定miRNA谱的表达变化,与未照射相比有15个miRNA上调,包括miR-448、miR-1246、miR-423-5p、miR-320a-3p、miR-320c、miR-320d、miR-320b、miR-375-3p、miR-125b-1-3p、miR-193a-5p、miR-485-5p、miR-7704、let-7a-3p、miR-22-3p和miR-744-5p。其中miR-4488,miR-320d和miR-7704升高最显著。小眼炎相关转录因子(MITF)通过调节各种基因作为黑素细胞功能、发育和存活的主要调节剂[43]。miR-7013在衰老的皮肤组织中上升,MITF是miR-7013-3p的靶基因,miR-7013-3p的过表达会抑制MITF的mRNA和蛋白表达,使得黑素细胞增殖、色素降解、氧化应激的能力降低[44]。相反,miR-340、miR-181a-5p和miR-199a上调通过靶向MITF来减少皮肤色素沉着[45-46]。此外,Zhang Z等[47]的新近综述中也报道了miR-508-3p、miR-218、miR-141-3p、miR-200a-3p能通过MITF途径影响黑色素的产生。MITF也是编码酪氨酸酶(TYR)和透明质酸酶的关键基因。Du B等[48-49]研究发现,衰老过程中过表达的miR-183在黑色素B16细胞中可以直接靶向MITF来降低TYR的表达,调节B16细胞中的黑色素生成。同时,过表达的miR-183也降低了细胞增殖调节因子丝裂原活化蛋白激酶1(MEK1)、细胞外调节蛋白激酶L/2(ERK1/2)和cAMP应答元件结合蛋白(CREB)的表达,使得黑素细胞发育受阻。
2.4 miRNA影響皮肤免疫细胞的衰老:朗格汉斯细胞(LC)和树突状细胞(DC)是皮肤中参与免疫反应的主要细胞,其功能主要为识别呈递抗原至淋巴结中的T细胞,启动适应性免疫反应或诱导耐受性。目前的研究多认为,皮肤衰老与皮肤免疫能力的降低与LC和DC中miRNA的差异表达降低了LC和DC的增殖和功能导致皮肤对细菌、病毒和真菌感染的敏感性降低有关[50]。几种miRNA被确定与LC和DC发育(miR-22和miR-142)、成熟和分化(miR-21、miR-34a、miR-99b、miR-223及miR-511)和免疫功能(miR-10、miR-21、miR-142-3p、miR-146a及miR-155)有关[51]。早在2012年,Xu YP等[52]发现LC细胞的衰老与miR-709、miR-449和miR-9表达的上调和miR-200c、miR-10a表达下调有关,进一步研究发现,这些差异表达的miRNA能够靶向TGF-β、RUNX、C/EBP、RANK、CSF、Gfi1、IRF8、AhR阻断LC的功能和发育。此外,miR-21和miR-34a在DC分化和调控抗原中发挥关键因素,在衰老DC中miR-21和miR-34a下调了JAG1和WNT1的表达,导致DC发育和功能缺陷[53]。另一项研究发现,体外FMS样酪氨酸激酶3配体(Flt3-L)参与DC的分化,并且是miR-142的靶标,有趣的是衰老皮肤中miR-142表达上调会抑制Fit3-L阻断DC的分化[54]。miR-6875-5p在衰老皮肤中过表达,最近miR-6875-5p也被证明参与了DC的分化,但却是通过靶向E蛋白家族成员E2-2,E2-2能在转录水平上调控DC的发育,过表达的miR-6875-5p抑制STAT3/E2信号通路降低DC的分化[55]。除此之外,DC的成熟依赖于特异性细胞间黏附分子3(ICAM-3)和捕获非整合蛋白(SIGN),DC的免疫作用依赖于人细胞因子信号转导抑制因子1(SOCS-1),它们是miR-155的靶点。因此,衰老DC中miR-155的下调,阻碍了DC的成熟,促进SOCS-1的表达,抑制DC释放炎性因子IL-12[56-57]。DC的凋亡也受miRNA调控,如miR-146、miR-29、miR-126,其在衰老DC中的过表达显著促进了DC的凋亡[58]。综上,随年龄调节变化的miRNA可能通过影响靶向多种调节LC和DC发育或功能的信号通路,使得皮肤免疫能力降低来参与皮肤衰老。
3 小结
综上,与衰老相关的miRNA的表达会影响皮肤组织结构细胞中各种基因的功能,并可能促进或抵消细胞衰老。本文总结了部分已发表miRNA与皮肤组成细胞之间衰老的研究。发现许多miRNA在不同年龄人群中表达差异,这使得它们在调节与年龄相关信号通路时导致皮肤在不同年龄段有不同的外观表现。虽然一些研究已明确了某一特定miRNA在特定皮肤细胞中的衰老调节机制,但仍难以全面解释皮肤衰老。因此,miRNAs调节皮肤衰老的过程仍需进一步探索,这或许将为抗衰老提供一种治疗策略。
[参考文献]
[1]Xie X Y, Wang Y N, Zeng Q T, et al. Characteristic features of neck skin aging in Chinese women[J]. J Cosmet Dermatol, 2018,17(5):935-944.
[2]Russell-Goldman E, Murphy G F. The pathobiology of skin aging new insights into an old dilemma[J]. Am J Pathol, 2020,190(7):1356-1369.
[3]Schneider S, Pollet M, Majora M, et al. Intrinsic versus extrinsic skin aging: Extrinsically differ from intrinsically aged human skin fibroblasts in their metabolic adaptive responses and by carrying a signature of catastrophic failure[J]. J Invest Dermatol, 2022,142(8):S105.
[4]Alles J, Fehlmann T, Fischer U, et al. An estimate of the total number of true human miRNAs[J]. Nucleic Acids Res, 2019,47(7):3353-3364.
[5]Karagkouni D, Paraskevopoulou M D, Tastsoglou S, et al. DIANA-LncBase v3: indexing experimentally supported miRNA targets on non-coding transcripts[J]. Nucleic Acids Res, 2020,48(D1):D101-D110.
[6]Matsubara K, Matsubara Y, Uchikura Y, et al. Pathophysiology of preeclampsia: the role of exosomes[J]. Int J Mol Sci, 2021,22(5):2572.
[7]Grillari J, Hackl M, Grillari-Voglauer R. miR-17-92 cluster: ups and downs in cancer and aging[J]. Biogerontology, 2010,11(4):501-506.
[8]Pokorski M, Barassi G, Bellomo R G, et al. Bioprogressive paradigm in physiotherapeutic and antiaging strategies: a review[J]. Adv Exp Med Biol, 2018,1116:1-9.
[9]Ortiz G G R, Mohammadi Y, Nazari A,et al. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity[J]. Cell Commun Signal, 2023,21(1):85.
[10]Huan T, Chen G, Liu C, et al. Age-associated microRNA expression in human peripheral blood is associated with all-cause mortality and age-related traits[J]. Aging Cell, 2018,17(1):e12678.
[11]Kinser H E, Pincus Z. MicroRNAs as modulators of longevity and the aging process[J]. Hum Genet, 2020,139(3):291-308.
[12]Zhang H, Yang H, Zhang C, et al. Investigation of microRNA expression in human serum during the aging process[J]. J Gerontol A Biol Sci Med Sci, 2015,70(1):102-109.
[13]Ameling S, Kacprowski T, Chilukoti R K, et al.Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study[J]. BMC Med Genomics, 2015,8:61.
[14]Olivieri F, Bonafe M, Spazzafumo L, et al. Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells[J]. Aging (Albany NY), 2014,6(9):771-787.
[15]Szemraj M, Oszajca K, Szemraj J, et al. MicroRNA Expression Analysis in Serum of Patients with Congenital Hemochromatosis and Age-Related Macular Degeneration (AMD)[J]. Med Sci Monit, 2017,23:4050-4060.
[16]Noren H N, Martin-Montalvo A, Dluzen D F, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence[J]. Aging Cell, 2016,15(3):572-581.
[17]Storci G, De Carolis S, Papi A, et al. Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians[J]. Cell Death Differ, 2019,26(9):1845-1858.
[18]Blackstone B N, Wilgus T A, Roy S, et al. Skin biomechanics and mirna expression following chronic UVB irradiation[J]. Adv Wound Care (New Rochelle), 2020,9(3):79-89.
[19]Zhang Y, Yang C, Yang S, et al. MiRNA-27a decreases ultraviolet B irradiation-induced cell damage[J]. J Cell Biochem, 2020,121(2):1032-1038.
[20]Li W, Wu Y F, Xu R H, et al. miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells[J]. Mol Cell Biochem, 2014,394(1-2):299-306.
[21]Gao W, Yuan L M, Zhang Y, et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-beta/Smad and attenuation of MAPK/AP-1 pathway[J]. Photochem Photobiol Sci, 2023,22(1):135-146.
[22]Greussing R, Hackl M, Charoentong P, et al. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts[J]. BMC Genomics, 2013,14:224.
[23]Min M, Chen X B, Wang P, et al. Role of Keratin 24 in human epidermal keratinocytes[J]. PLoS One, 2017,12(3):e0174626.
[24]Zhou B R, Xu Y, Permatasari F, et al. Characterization of the miRNA profile in UVB-irradiated normal human keratinocytes[J]. Exp Dermatol, 2012,21(4):317-319.
[25]Muther C, Jobeili L, Garion M, et al. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis[J]. Aging (Albany NY), 2017,9(11):2376-2396.
[26]Chevalier F P, Rorteau J, Ferraro S, et al. Mir-30a-5p alters epidermal terminal differentiation during aging by regulating bnip3l/nix-dependent mitophagy[J]. Cells, 2022,11(5):836.
[27]Yang Z, Duan X, Wang X, et al. The effect of Q-switched 1 064 nm dymium-doped yttrium aluminum garnet laser on the skin barrier and collagen synthesis through miR-24-3p[J]. Lasers Med Sci, 2022,37(1):205-214.
[28]Min X, Cai M Y, Shao T, et al. A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR-24-3p/CDK4/pRb axis[J]. Aging Cell, 2022,21(1):e13529.
[29]Tan J, Hu L, Yang X, et al. miRNA expression profiling uncovers a role of miR-302b-3p in regulating skin fibroblasts senescence[J]. J Cell Biochem, 2020,121(1):70-80.
[30]Bielach-Bazyluk A, Zbroch E, Mysliwiec H, et al. Sirtuin 1 and skin: implications in intrinsic and extrinsic aging-a systematic review[J]. Cells, 2021,10(4):813.
[31]Park J, Kim J, Chen Y Q, et al. CO ameliorates cellular senescence and aging by modulating the miR-34a/Sirt1 pathway[J]. Free Radic Res, 2020,54(11-12):848-858.
[32]Gong H, Chen H, Xiao P, et al. miR-146a impedes the anti-aging effect of AMPK via NAMPT suppression and NAD(+)/SIRT inactivation[J]. Signal Transduct Target Ther, 2022,7(1):66.
[33]Mamalis A, Koo E, Tepper C, et al. MicroRNA expression analysis of human skin fibroblasts treated with high-fluence light-emitting diode-red light[J]. J Biophotonics, 2019,12(5):e201800207.
[34]O'Loghlen A. The potential of aging rejuvenation[J]. Cell Cycle, 2022,21(2):111-116.
[35]Zou Q, Zhang M, Yuan R, et al. Small extracellular vesicles derived from dermal fibroblasts promote fibroblast activity and skin development through carrying miR-218 and ITGBL1[J]. J Nanobiotechnol, 2022,20(1):296.
[36]Xiao J, Zhang Y, Tang Y, et al. hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-β1/α-SMA/collagen signaling in atrial fibrillation[J]. Braz J Med Biol Res, 2021,54(4):e10692.
[37]孫丽娥,金国琴.微小RNA在衰老及衰老性疾病发生发展中的调控作用[J].生命的化学,2018,38(2):200-206.
[38]Xu S, Zhang B, Zhu Y M, et al. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts[J]. Cell Biol Int, 2017,41(3):249-257.
[39]Papismadov N, Gal H, Krizhanovsky V. The anti-aging promise of p21[J]. Cell Cycle, 2017,16(21):1997-1998.
[40]Lezzi A, Caiola E, Colombo M, et al. Molecular determinants of response to PI3K/akt/mTOR and KRAS pathways inhibitors in NSCLC cell lines[J]. Am J Cancer Res, 2020,10(12):4488.
[41]Waller J M, Maibach H I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure[J]. Skin Res Technol, 2006,12(3):145-154.
[42]Shen Z, Sun J, Shao J, et al. Ultraviolet B irradiation enhances the secretion of exosomes by human primary melanocytes and changes their exosomal miRNA profile[J]. PLoS One, 2020,15(8):e237023.
[43]Gelmi M C, Houtzagers L E, Strub T, et al. MITF in normal melanocytes, cutaneous and uveal melanoma: a delicate balance[J]. Int J Mol Sci, 2022,23(11):6001.
[44]Huang Y J, Gao Y, Wang C J, et al. Hydroxyurea regulates the development and survival of B16 Melanoma Cells by upregulating MiR-7013-3p[J]. Int J Med Sci, 2021,18(8):1877-1885.
[45]Yang Y, Wei X J, Bai J, et al. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis[J]. J Int Med Res, 2020,48(11):300060520971510.
[46]Wang X Y, Guan X H, Yu Z P, et al. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively[J]. Stem Cell Res Ther, 2021,12(1):501.
[47]Zhang Z, Shen W, Liu W, et al. Role of miRNAs in melanin metabolism: Implications in melanin-related diseases[J]. J Cosmet Dermatol, 2022,21(10):4146-4159.
[48]Du B, Liu X, Khan A, et al. miRNA-183 approximately 96 approximately 182 regulates melanogenesis, cell proliferation and migration in B16 cells[J]. Acta Histochem, 2020,122(3):151508.
[49]Jawaid A, Woldemichael B T, Kremer E A, et al. Memory decline and its reversal in aging and neurodegeneration involve mir-183/96/182 biogenesis[J]. Mol Neurobiol, 2019,56(5):3451-3462.
[50]Zegarska B, Pietkun K, Giemza-Kucharska P, et al. Changes of Langerhans cells during skin ageing[J]. Postepy Dermatol Alergol, 2017,34(3):260-267.
[51]Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017,8(7):501-513.
[52]Xu Y P, Qi R Q, Chen W, et al. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile[J]. Aging (Albany NY), 2012,4(11):742-754.
[53]Hashimi S T, Fulcher J A, Chang M H, et al. MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation[J]. Blood,2009,114(2):404-414.
[54]Kuipers H, Schnorfeil F M, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development[J]. Mol Immunol, 2010,48(1-3):333-340.
[55]Zhu X X, Yin X Q, Hei G Z, et al. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion[J]. Mol Hum Reprod, 2021,27(8):gaab044.
[56]Martinez-Nunez R T, Louafi F, Friedmann P S, et al. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN)[J]. J Biol Chem, 2009,284(24):16334-16342.
[57]Lu C, Huang X, Zhang X, et al. miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1[J]. Blood, 2011,117(16):4293-4303.
[58]Hong Y, Wu J, Zhao J, et al. miR-29b and miR-29c are involved in Toll-like receptor control of glucocorticoid-induced apoptosis in human plasmacytoid dendritic cells[J]. PLoS One, 2013,8(7):e69926.
[收稿日期]2022-10-26
本文引用格式:包樹明,诺布央卓,左蕊,等.microRNA与皮肤衰老的研究进展[J].中国美容医学,2024,33(4):186-190.