用于碳十四年代测定的古代灰浆样品分析与前处理方法述评
2024-03-15吴小红
王 玥,宫 玮,吴小红
[1.北京化工大学文法学院,北京 100029;2.文物保护领域科技评价研究国家文物局重点科研基地(北京化工大学),北京 100029;3.考古科学教育部重点实验室(北京大学),北京 100871;4.考古年代学国家文物局重点科研基地(北京大学),北京 100871;5.北京大学考古文博学院,北京 100871]
0 引 言
灰浆是以碳酸盐为主要成分的材料,或兼有骨料、添加剂等[1],常被用于建筑建造和装饰,如房址地面和墙面白灰面[2]、砖墙缝隙胶凝材料[3]、壁画地仗层[4]等。相较于常见的植物遗存和动物骨骼等居址使用时期的遗留物,灰浆的使用与建筑的建造、修葺和装饰行为直接相关,可以代表这些行为的发生时间。因此,古代灰浆是研究建筑修建年代的重要样品,其年代测定具有不可替代性。
然而,尽管自20世纪60年代起灰浆样品就被用于碳十四年代测定[5-6],但结果准确性存疑[7-8]。20世纪八九十年代以来,连续酸解碳回收方法的发展和加速器质谱法(AMS)的引入提高了灰浆样品碳十四年代测定的准确性[9-10]。但由于灰浆样品形成机理较复杂、干扰组分难去除等原因,不同实验室亦未对样品分析和前处理流程达成共识。近十余年来,古代灰浆样品年代测定方法成为国际上年代学研究的热点。随着对干扰组分的分析检测及分离方法有了新进展,灰浆样品的年代测定也逐渐积累了一些成功案例,或可形成成熟的分析检测和前处理流程。
1 古代灰浆样品年代测定原理
1.1 灰浆制造过程
不同时期、不同地区的灰浆的制造过程有所差异,大体可分为煅烧原料、加水搅拌和涂抹使用三大步骤。常见的原料有石灰石、料疆石、贝壳等,主要成分为碳酸钙,在高温煅烧过程中会分解为氧化钙和二氧化碳,此过程中原料原有的碳元素被释放。在之后加水搅拌均匀并涂抹使用的过程中,氧化钙遇水生成氢氧化钙,氢氧化钙结晶析出并吸收大气中的二氧化碳,形成新的碳酸钙[11],晶型以方解石为主,或有少量文石[12]。因此,灰浆固化时进入样品中的碳十四浓度即是当时大气中的碳十四浓度,这是灰浆样品可以被用于碳十四年代测定的基础。
在灰浆加水搅拌过程中,古人也可能加入碎石块、黏土、砂砾、火山灰等骨料,或加入动植物纤维、淀粉、桐油等有机添加剂[1],以改善灰浆性能。其中,夹杂的动植物纤维、淀粉、桐油等有机质的残留物或可被提取出来用于碳十四年代测定,但这部分内容不是本文讨论的重点,本文讨论的重点在于如何针对灰浆样品中的无机质组分开展碳十四年代测定,以及如何去除干扰组分以获得准确的年代测定结果。
1.2 灰浆碳十四年代测定干扰组分
灰浆的碳十四年代测定干扰组分较多,主要有原料中的老碳组分、固化过程中形成的干扰组分,以及在灰浆固化后埋藏过程中发生重结晶而产生的干扰组分等。
灰浆样品的老碳干扰主要有两大来源:其一是原料煅烧不充分,导致原有碳酸钙分解不完全,原料中的老碳被保留下来;其二是添加的骨料中含有老碳,如石灰岩碎块等[7,13]。由于干扰组分的生成方式并非人为成因,其结晶度与人工制造的有所区别(例如:原料是石灰石等则会保留有地质成因的方解石;原料是贝壳等生物来源则会保留生物成因的文石),因此,可以通过分析方解石和文石的结晶度加以鉴别,判断灰浆样品是否受到老碳干扰[14]。
固化过程主要有两大干扰因素:其一,涂抹灰浆时厚度过大,导致大气中的二氧化碳难以快速渗入内部——有可能需要几十年[15]甚至上百年[7]才能完全固化,使得灰浆样品的年代测定结果与实际使用时间有较大偏差;其二,原料中掺杂有影响年代测定准确性的成分,例如:掺有较多白云石等,煅烧生成的氧化镁在遇水后不仅反应速度较慢,还易生成水菱镁矿[Mg5(CO3)4(OH)2·4H2O],从而影响年代测定结果[16];火山灰、陶瓷碎块等骨料的加入可能会促进水化反应,部分产物会交换环境中的二氧化碳,可能在样品前处理时引入现代碳,进而影响年代测定结果[17]。因此,需要谨慎选用过厚的和水硬性灰浆样品。
受保存环境影响,灰浆在保存过程中有可能会发生溶解和重结晶。碳酸钙可在酸性的地下水或雨水中与水和二氧化碳生成碳酸氢钙,待干燥时碳酸氢钙再分解为碳酸钙、水和二氧化碳[18]。此过程中保存环境中的碳元素被引进灰浆,样品的年代测定结果偏差取决于保存环境中的碳元素同位素比例[19]。但是,由于溶解反应只发生在表层[12],对于保存较好的灰浆,可以除去表层后再进行年代测定。
2 碳十四年代测定干扰组分的检测方法
由于干扰组分会影响碳十四年代测定的准确性,故需在灰浆样品进行前处理之前首先分析样品是否含有干扰组分,如果含有,则需要去除污染,并对提纯后的样品再次分析。年代测定干扰组分的分析主要包括结构和成分检测,判断是否有水菱镁矿等水化反应产物或非人为成因的方解石、文石。常用的方法包括薄片鉴定法、扫描电子显微镜观察、X射线衍射分析、红外光谱分析、稳定同位素测定等。
2.1 薄片鉴定法
通过薄片鉴定法可以了解样品的岩相构成,初步判断其生成方式,并观察到各种物相的大致分布范围,排除非人为烧造制成的样品,例如Ponce-Antón等[20]通过偏光显微镜观察到西班牙纳瓦拉Irulegi城堡灰浆样品中包裹着砂岩、泥灰岩、生物碎片和木炭等杂质。
然而,光学显微镜下薄片放大倍数有限,且只能观察少部分样品。而灰浆样品往往不均匀,因此薄片鉴定法无法用来判定样品是否含有少量干扰组分。
2.2 扫描电子显微镜观察
扫描电子显微镜可以被用于观察样品晶型,与能量色散谱、阴极荧光谱等联用还可以分析样品的元素成分,进而推测是否含有年代测定干扰组分,例如Toffolo等[21]用扫描电子显微镜与阴极荧光谱联用对前处理后的灰浆上清液进行分析,认为少量橙红色信号的出现表明样品含有少量石灰石,因此判断重液分离无法全部去除地质成因的碳酸盐。然而,对于含量较少的组分,扫描电子显微镜也可能无法观察到,例如Toffolo等[12]对固化阶段的灰浆进行观察,22 d时在扫描电子显微镜下只观察到了方解石,但通过红外光谱分析得知样品中还含有少量文石。
2.3 X射线衍射分析
通过X射线衍射分析可以了解样品矿物成分,并大致计算出主要矿物成分的所含比例。对于方解石、文石、白云石、水菱镁矿、水滑石等常见物相,X射线衍射分析可以有效检测鉴别[22-25]。
2.4 热分析
热重分析、差热分析等热分析方法可以被用于检测样品质量随温度变化的改变。灰浆样品中,不同组分的分解温度不同,因此热分析可以被用于判断样品的无机质、有机质组分及相对含量,如Paama等[26]采用热分析、同步红外光谱和电感耦合等离子体原子发射光谱等方法对取自13—14世纪教堂的灰浆样品进行分析,发现在125~425℃引起质量变化的主要是水合物,在425~625℃分解的主要是水菱镁矿、水镁石和碳酸镁,在625~875℃分解的为碳酸钙。但是对于化学成分相同的组分,热分析很难明确区分出晶型和晶粒大小的差别。
2.5 傅里叶变换红外光谱分析
傅里叶变换红外光谱可以反映矿物晶体无序度的信息,因此部分学者尝试使用红外光谱判别方解石和文石的成因[27-28],并有学者模拟了煅烧、加水并固化的灰浆制作过程,制作了方解石、文石标准样品,同时采集了地质成因、沉积成因、生物矿化成因等其他生成方式生成的石灰石、文石标准样品,并对这些标准样品采用溴化钾压片法进行红外光谱分析[29-30],并提出可以按照方解石和文石含量比例分配ν4峰值,并计算方解石、文石各自的ν2峰值和分配的ν4峰值相对于ν3峰值的比值,归一化后作成二维散点图,并将同一样品不同研磨程度得到的坐标点相连形成研磨曲线[31]。结果表明,结晶度越高,研磨曲线越靠近ν4/ν3坐标轴,人工成因与地质成因、生物成因等的方解石、文石研磨曲线在研磨度较低的区域不重叠(图1和图2)。因此,可以研磨考古遗址出土的石灰灰浆样品并用溴化钾压片法进行红外光谱分析,观察其ν2、ν4相对于ν3特征峰的峰高坐标点位置,进而判断样品是否为人工成因。需要注意的是,该方法反映的是所测样品的平均结果,即未落在人工成因研磨曲线的样品应是含有非人工成因组分,但落在人工成因研磨曲线上的样品不代表其不含微量的其他成因干扰组分。尽管如此,该方法仍然为有效分析灰浆样品是否含有非人工成因的方解石、文石组分提供了可能。
改绘自参考文献[14],“n.a.u.”为归一化吸光度单位;(a)草木灰经900℃煅烧后加水固化形成的火成方解石;(b)白垩岩高温煅烧后加水固化形成的火成方解石;(c)白垩岩;(d)草木灰低温烧制后加水固化形成的方解石;(e)石灰岩;(f)冰洲石
改绘自参考文献[14],“n.a.u.”为归一化吸光度单位;(a)地质蒸发岩;(b)贝壳经900℃煅烧后加水固化形成的火成文石;(c)多年未清洗的水壶中的水垢;(d)地质文石;(e)贝壳中的生物文石
2.6 稳定同位素测定
由于灰浆在固化过程中对碳和氧元素的吸收存在分馏效应,因此对于纯净的样品,可以通过δ13C值判定是否为人为成因。模拟试验研究发现,不同煅烧温度制成的方解石δ13C值通常在-16‰至-25‰之间[32-34]。因此,对于以方解石为主要成分的考古遗址出土灰浆样品,可以提纯后测定其碳稳定同位素以确定成因。
3 灰浆样品前处理方法
古代灰浆样品的前处理流程多是先用物理方法去除大部分干扰组分,再用化学方法排除少部分干扰组分的影响。
3.1 物理方法
对于质地较为纯净的气硬性白灰面,通常采用砂轮磨除表层泥土,或钻取内部纯净部分粉末,以排除表层可能的环境污染或重结晶组分,例如北京大学碳十四年代测定实验室以此方法获取兴县碧村遗址出土的白灰面中的洁净部分,所得年代测定结果与该层白灰面下的草拌泥中炭化草屑的年代测定结果在1σ内平行[35]。
对于矿物组成较为复杂和质地坚硬的水硬性灰浆样品,除了去除表面污染,还需要采用低温粉碎、过筛、超声处理、密度分离等方法对不同组分、不同粒径的颗粒进行分离,例如意大利坎帕尼亚大学实验室采用的CryoSoniC流程[36],为去除样品中的老碳污染,先后采用了液氮与80℃循环多次的低温粉碎、超滤初筛样品、超声震荡分离出悬浮颗粒、淋洗离心和烘干的步骤。这套流程处理的800~1 100℃下制作的气硬性灰浆样品获得了准确的年代测定结果,但是对于考古出土的含有骨料的水硬性灰浆样品,部分样品结果在2σ下具有一致性,在1σ一致性较差,需要调整超声震荡步骤才可能获得更准确的结果。
此外,密度分离法也可以去除大部分的年代测定干扰组分,或可将地质成因的污染物比例降低至1%以内。鉴于灰浆样品中不同矿物组分的密度不同,且人为成因的方解石、文石密度略轻于地质成因的方解石、文石[37],可以选用密度介于两者之间的溶液对不同矿物颗粒进行分离,例如Toffolo等[38]通过使用多钨酸钠[Na6(H2W12O40)]溶液对人工制作的文石和其他组分进行密度分离,同时用磷酸盐缓冲液保持溶液中性,以防样品溶解,并在液体分层后用液氮冷冻,将不同层切分,待融化后再通过淋洗、离心、烘干等步骤,从而获得纯净的人为成因的文石组分。
3.2 化学方法
3.2.1酸解法 多数实验室采用磷酸[39-44]或盐酸[45]通过连续酸解法获得经过物理方法提纯的灰浆样品中的二氧化碳。由于地质成因的碳酸钙会较晚分解,故理论上先释放出的二氧化碳年代更接近灰浆形成年代,而后释放出的二氧化碳年代往往偏老[8]。但是,由于样品差异较大,如何确定收集时间是影响连续酸解法处理的样品年代测定准确度的决定性因素。通常会先取少部分样品进行酸解试验,选取生成速度最快的时段收集二氧化碳气体进行年代测定,同时以较晚时段生成的气体作为对照组。然而,连续酸解法不一定能够有效去除所有灰浆样品的老碳污染,Hajdas等[46]分析了来自世界各地的7个实验室对4例样品的测试结果,尽管不同实验室间结果平行性较好,但只有2例样品结果与实际年代一致,另2例组成更复杂的样品年代测定结果则明显偏老。
由于样品酸解速度极快,生成速度最快的时段通常只有几秒,难以精确操控,因此部分实验室在连续酸解法的基础之上做了调整,采用逐步注酸法[47-48]对样品进行酸解,即首先取少部分样品进行酸解试验以确定二氧化碳回收率,再计算得出每次释放特定比例的二氧化碳所需的稀盐酸用量,通过严格控制稀盐酸注射量来控制二氧化碳释放比例。此种方法相比于连续酸解法更易操作,且稀盐酸相比于黏稠的85%磷酸更利于更细粒度的样品粉末溶解[49]。Daugbjerg等[50]采用逐步注酸法分析的灰浆样品年代与木炭样品结果在2σ下具有较好的一致性,相比连续酸解法获得的结果具有更高比例的正确率[49],表明该方法具有较好的应用前景。
3.2.2逐步热解法 近年来,个别实验室尝试使用逐步热解法分解提纯后的灰浆样品[21,51]。由于地质成因的碳酸钙晶粒较大,其分解主要发生在高温区间,因此可以通过逐步升温的方式,收集较低温度区间时产生的二氧化碳进行年代测定。由于不同样品因组分不同而随温度升高的分解速率不同,因而往往需要在制备前对样品进行热重分析。例如Toffolo等[21]根据样品热重分析结果,选取开始快速分解之前的温度作为要收集二氧化碳气体的反应温度,所测的3例样品中,1例气硬性灰浆样品与建筑年代一致,而2例水硬性灰浆的年代测定结果则1例早于纤维素对照组结果,1例晚于纤维素对照组结果。这表明逐步热解法同样无法完全去除水力产物或地质成因的碳酸盐污染,而且这一方法的缺陷在于无法确定某一温度下分解的碳酸钙有多少比例为地质成因。
4 古代灰浆样品碳十四年代测定方法总结
4.1 古代灰浆样品碳十四年代测定方法研究成果
综上所述,近十余年来,国际上对灰浆样品碳十四年代测定方法的主要研究成果包括:
1) 明确了年代测定干扰组分的生成机理并提出了以红外光谱研磨曲线为主的方解石、文石生成方式判定方法;
2) 前处理方法中研发了以多钨酸钠和磷酸盐缓冲液调配的中性溶液对矿物进行密度分离;
3) 制备方法中,以逐步注酸法改进了连续酸解法,降低了试验操作难度;同时开发了逐步热解法以去除微量污染的影响,并可通过模拟计算的方式计算符合AMS测量精度要求的热解温度区间。
现有研究结果表明,能否准确测定灰浆样品的碳十四年代,很大程度上取决于样品组分的复杂程度。建议采取图3的流程对样品进行分析和前处理。
其中,对于含有水化反应相关物相的样品,尚无较好的前处理方法去除其影响[16]。对于红外光谱研磨曲线判定出的非人工成因的样品,如果偏离人工成因标准曲线很少,尚可以尝试采用连续酸解或逐步热解法制备样品,如果偏离较多或明确落在其他成因的标准样品研磨曲线上,则建议弃用该样品。
4.2 古代灰浆样品年代测定方法探索方向
鉴于古代灰浆样品的年代对建筑建造、修葺与装饰及遗址的系列年代测定研究有重要意义,其年代测定方法仍需进一步研究。可以从以下几方面进行探索。
1) 现有的古代灰浆样品的年代测定主要对象是其碳酸盐部分(关键在于干扰组分的去除,尤以水化反应相关物相的去除为难点)。未来需要对样品分析和前处理方法进一步进行探索,研究微量物相的检测和定量方法,并配合以计算机模拟计算,确定干扰组分对年代测定结果的影响大小。此外,有机添加物的加入会影响碳酸钙的结晶程度[53],可能影响干扰组分的判断,需要进一步研究确认。
2) 部分古代灰浆样品的石英含量较高,可以考虑使用释光测年法。21世纪以来,国外已有多篇关于释光测年法对古代灰浆年代测定的相关研究,包括多粒技术[54-56]和单粒技术[57-58],目前年代测定结果的准确性仍然有待提升。未来可进一步研究,作为无法使用碳酸盐进行碳十四年代测定的灰浆样品的替代方法。
3) 我国的古代灰浆样品中常常加入淀粉、桐油、蛋白等有机添加剂,目前已有快速方便的鉴别方法[59],而国际上对有机残留物提取测年也取得了重大突破[60],未来可以尝试浓缩提纯灰浆中的有机添加剂进行碳十四年代测定,作为无法使用碳酸盐进行碳十四年代测定的灰浆样品的替代方法。除方法探索以外,为检验用于碳十四年代测定的组分是否可靠,还需要大量案例数据的积累。现有研究成果中,很多案例的对照时间来自建筑形制断代或文献记载,碳十四年代测定结果还需要经过树轮校正曲线校正才可比较,有可能因校正曲线处于平台期年代范围较大而使年代测定结果看似正确。建议采集与灰浆样品同期的动植物遗存作为对照样品,并直接比较可靠样品与灰浆样品的年代测定结果,以此研究灰浆的碳十四年代测定干扰组分分析和前处理方法是否可靠。
5 我国古代灰浆样品年代测定方法展望
不难看出,以往的古代灰浆样品碳十四年代测定成果大多来自国外,我国古代灰浆样品的年代测定案例较少。实际上,我国有着丰富的灰浆样品年代测定研究材料,例如被广泛发现于先秦时期考古遗址的房址白灰面和各历史时期壁画白灰地仗层,基底往往是草拌泥和泥质地仗层,其与白灰面、白灰地仗层的制造时间相同,且通常内含较多的植物纤维,是碳十四年代测定对照研究所需的理想材料。而且我国古代灰浆中有相当大的比例未添加骨料,组分相对简单,故通过简单的前处理即可能获得准确的年代测定结果。
灰浆样品如能成为可靠的常规年代测定样品,对解决我国土遗址建筑遗存的年代研究意义重大——因为此类遗存往往缺乏可供碳十四测年的有机类样品保存。未来我国如能进一步对灰浆样品的碳十四年代测定进行研究,简化并验证适合我国古代灰浆工艺特点的样品分析和前处理方法,或能更好地为相关考古研究提供更多年代学信息。