APP下载

西沙群岛“石屿二号”沉船遗址出水青花瓷器的测年研究

2024-03-15石玲玲范安川张凝灏辛礼学金正耀

文物保护与考古科学 2024年1期
关键词:热释光剂量率青花瓷

石玲玲,范安川,李 剑,张凝灏,李 媛,辛礼学,金正耀

[1.中国(海南)南海博物馆,海南琼海 571431;2.中国科学技术大学科技考古实验室,安徽合肥 230026;3.中国科学技术大学科技史与科技考古系,安徽合肥 230026]

0 引 言

青花瓷是中国陶瓷的主要品种之一,以其白瓷胎和钴蓝色的釉下彩而闻名[1]。这种瓷器以独特的艺术风格和高雅的造型,享有极高的审美评价。青花瓷的历史可以追溯到唐、宋时期,但其真正的繁荣和发展则始于元、明、清时期[2]365-381。在元代,十分繁荣的海上贸易使得青花瓷器不仅在中国国内受到追捧,而且被传播至日本、朝鲜、东南亚、南亚、西亚、中东乃至非洲等地[3]。到了明代,青花瓷的制作工艺达到了顶峰,并成为了当时瓷器的主流[4]。而清代的青花瓷外销也达到了发展的高峰,品种丰富多样[5]。

青花瓷的断代是研究陶瓷艺术史、古代贸易以及社会文化交流的基础。青花瓷的断代方法主要包括传统鉴定和科学测年。传统鉴定方法主要依赖于对器形、纹饰、胎釉、款识以及支烧方式等信息的综合分析,其准确性依赖于鉴定者对瓷器风格演变的深入理解。而科学测年,如释光测年法,则提供了一种更为精确的定年手段。该方法的原理是石英、长石等晶体矿物对放射性辐照存在剂量响应,通过测量矿物累积的剂量和受到的辐照剂量率,可以推算矿物最后一次受热或曝光的距今年代。当缺乏特征性款识、器形等信息时,科学测年法可以为青花瓷的年代判断提供不可替代的重要证据。

在西沙群岛“石屿二号”沉船遗址出水的青花瓷器中,所有的瓷器都是残片并缺少款识,缺乏完整器形,对该批青花瓷的断代造成了一定的困难。孟原召[6]根据残存的器形和纹饰等信息与已知年代的青花瓷器进行比对,初步推断这些瓷器产自元代。为了探索海洋出水青花瓷的科技测试方法,本研究采用了前剂量饱和指数法进行直接测年。由于瓷器在高温烧制过程中其晶体结构和热释光特性会发生显著变化,这使得瓷器的释光测年方法与陶器存在区别[7]。在陶器的年代测定中,光释光和热释光测年技术已被广泛采用[8-10],而瓷器的年代测定则以前剂量测年法为主。

瓷器的前剂量法测年技术自1969年Fleming[11]首次观察到石英110℃峰的灵敏度显著增加现象以来,便不断得到发展。Fleming和Thompson[12]在1970年发现了提高石英热释光灵敏度的方法,用以测量辐射剂量。1971年,Zimmerman[13]对前剂量效应的机理进行了研究并提出了理论模型。Stoneham[14]率先将前剂量技术应用于瓷器的年代测定,不仅详细介绍了取样方法、面临的问题及其解决方案,还使用该技术测定了瓷器的等效剂量。到了1979年,以色列特拉维夫大学的Chen[15]在Huxtable和Aitken[16]的工作基础上,采用指数拟合代替传统的线性拟合进行壁炉材料的热释光测年,进一步探究了石英110℃ TL峰的敏化饱和度及其在前剂量技术中的应用,并提出了灵敏度(S)与剂量(D)之间的饱和指数关系。1997年,梁宝鎏等[17]将前剂量饱和指数回归法付诸实践,发现其适用范围至少比标准方法扩大了两倍。王维达等[18-20]深入研究了瓷器前剂量非线性现象,发现即使在几个戈瑞的剂量范围内,灵敏度与剂量之间也呈现出次线性关系。为了解决这一问题,王维达[21]提出了两种测定瓷器古剂量的方法:激活法和熄灭法。王维达[7,22-23]、夏君定等[24-26]、吴婧玮等[27-29]开展了大量研究,将前剂量饱和指数法应用于出土或传世瓷器年代的测定。同时也有若干对出水瓷器进行热释光测年的相关研究案例[30-32],为反映沉船遗址年代提供了直接的证据。经过长期的瓷器测年研究经验的积累,王维达[7]提出的前剂量饱和指数法在测定出水瓷、出土和传世瓷的古剂量方面具有很强的适用性,并建立了国家标准[33]。然而,关于剂量率对于瓷器释光年代的影响,相关的研究较少,特别是海底打捞的瓷器由于其所处的复杂水下埋藏环境,可能会使得剂量率的精确估算变得更加具有挑战性。本研究在探讨西沙群岛“石屿二号”沉船遗址出水青花瓷器热释光性质的基础上,采用前剂量饱和指数法测定该批出水瓷器的古剂量,并综合考虑样品的矿物粒径、经纬度、埋藏深度、含水率以及放射性元素含量等参数对剂量率的影响,综合确定瓷器的绝对年代,为后续进一步探讨遗址性质提供年代依据。

1 遗址和样品简介

“石屿二号”沉船遗址(北纬16°33′,东经111°45′)位于西沙群岛永乐环礁东部石屿礁盘内侧,其覆盖面积大约为2万m2。在2009至2010年间,中国国家博物馆水下考古研究中心与海南省文物局等单位对该地区开展了两次较为系统的水下考古调查[34]。2021年5月至6月,国家文物局考古研究中心和中国(海南)南海博物馆等单位联合进行了进一步的调查和试掘,发现了包括杯、盘等147件瓷片,其中85件为青花瓷残片。从中选取了16件青花瓷残片(图1)进行热释光特性及年代学研究,样品编号为:Arch-NH002、Arch-NH003、Arch-NH004、Arch-NH005、Arch-NH006、Arch-NH007、Arch-NH009、Arch-NH010、Arch-NH011、Arch-NH013、Arch-NH015、Arch-NH017、Arch-NH019、Arch-NH021、Arch-NH022、Arch-NH024。

图1 “石屿二号”沉船遗址出水青花瓷样品

2 分析方法与结果

2.1 分析仪器

古剂量测试采用丹麦生产的Risø TL/OSL-DA-20释光测年仪器,该仪器配备有90Sr/90Y β放射源。

综合矿物分析(TIMA)能够快速、定量、全面地提供矿物组成、含量和粒径分布等信息。它是通过配置有四个能谱探头(EDAX Element 30)的Mira-3扫描电子显微镜(SEM)完成的。在试验开始之前,薄片样品(靶材)需进行喷碳处理。试验过程中,加速电压设定为25 kV,电流为9 nA,工作距离保持在15 mm。电流和背散射电子(BSE)信号强度通过铂法拉第杯自动校准程序进行调整,而能谱(EDS)信号则以锰(Mn)标准样品进行校准。在测试中,采用解离模式以同时收集BSE图像和EDS数据,每个测量点的X射线计数目标为1000。所采集图像的像素大小设置为2.5 μm,而能谱的采集步长则为7.5 μm。

2.2 热激活特性测定

在采用前剂量饱和指数法对样品进行古剂量测定之前,首先要确定每个样品的热激活温度[7]。对每个样品,选取3个测片,并将其从300℃起以50℃的间隔加热至700℃。在达到每个预定温度后,对样品施加一个小剂量的辐射,从而测量其在石英110℃热释光峰的灵敏度。灵敏度通常随温度升高而增加,达到峰值后下降。该峰值所对应的温度被称为热激活温度,它被用于后续的古剂量测定[35]。在这16个样品中,样品Arch-NH015的热激活温度为550℃,而其余样品的热激活温度均为700℃。图2展示了代表性样品Arch-NH007和Arch-NH015的热激活特性曲线。

图2 样品Arch-NH007和Arch-NH015热激活特性曲线

2.3 古剂量测试

本研究采用王维达[7]提出的前剂量饱和指数熄灭法进行年代测定。需要注意的是,出水瓷器与出土或传世瓷器埋藏环境不同,“石屿二号”沉船遗址出水的瓷器由于长期浸泡在海底,其表面附着了凝结物、珊瑚等污染物,这些可能对释光测年产生影响。因此,在制备样品前,需要清除表面的污染物和釉层。将制备好的粉末样品按照表1[7]的程序进行测试。

表1 前剂量饱和指数熄灭法测试程序[7]

2.4 古剂量计算

根据热激活之后的释光灵敏度,本研究的样品分为两类:一类灵敏度较高,如图3中展示的样品Arch-NH007的热释光灵敏度曲线,这类样品每件测试约26个测片;一类灵敏度较低,如图3中展示的样品Arch-NH021的热释光灵敏度曲线,该类样品热激活后的释光信号仍然不能与背景值分离,这类样品并未进一步进行古剂量测试。

图3 样品Arch-NH007和Arch-NH021热释光灵敏度曲线

选择每个样品的热释光灵敏度曲线上恰当的积分区间对于获得准确的古剂量至关重要。为了获得恰当的积分区间,绘制了样品Arch-NH002的古剂量随积分区间变化的关系图,如图4所示。其中,红色坪区表明该样品的古剂量在95~115℃保持相对恒定,此区间被用作计算该样品的古剂量的积分区间。在为每个样品确定了适当的积分区间之后,根据式1~式3计算古剂量P[7]。王维达[7]研究表明,熄灭率低于1%的样品难以利用前剂量技术准确测定年代,即便进行测量,所得年代的误差也可能过大。因此本研究在计算每个测片的古剂量后,去除熄灭率小于1%的测片。

图4 样品Arch-NH002的古剂量随积分区间变化的关系图

(1)

(2)

(3)

式中:S∞代表饱和灵敏度;B是一个常数;a表示由两组数据(ΔS1,SN↓)和(ΔS2,SN+β↓)进行线性回归得到的截距(其中ΔS1=SN+β-SN↓,ΔS2=SN+2β-SN+β↓);b则是这条直线的斜率;β表示已知的标定剂量;β′为实验中施加的试验剂量。

图5展示了灵敏度较高样品不同测片古剂量的概率密度分布图,最终的古剂量是通过中心年代模型[36-37]计算得到的。

图5 古剂量的概率密度分布图

2.5 剂量率计算

由于前剂量峰对α粒子的响应很低,α粒子对剂量率的贡献通常可以忽略[35]。瓷器的剂量率D主要包括三部分:瓷胎所贡献的β辐射剂量Dβ(porcelain),周围环境贡献的γ辐射剂量Dγ(sediment)以及宇宙射线贡献的剂量Dc。可以通过式4进行计算。

D=Dβ(porcelain)+Dγ(sediment)+Dc

(4)

采用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)分析样品的放射性元素U、Th、40K的含量。由于水下考古工作的困难性,未能获取周围环境样品,γ辐射剂量Dγ(sediment)通过瓷胎的γ剂量进行估算,相对误差为50%。宇宙射线剂量Dc根据Prescott和Hutton[38-39]的方法进行计算。含水率校正参照了Aitken和Xie[40]以及Zimmerman[41]的公式。对代表性样品进行饱水状态下的含水率测量,绝对误差设定为5%。

瓷器胎体中石英粒径的差异为剂量率的准确计算带来了挑战。研究显示在瓷器烧制过程中:当温度达到1 250℃时,直径小于10 μm的长石颗粒会消失;当温度上升到1 350℃时,直径小于20 μm的石英颗粒将完全溶解[7,14]。相应地,在前剂量测定中,通常关注直径大于12 μm的结晶石英[35]。以往研究数据揭示了不同时期和种类的瓷器胎体中石英粒径存在差异,如:元代枢府白釉瓷胎中石英粒径一般为20 μm左右;明代永乐甜白釉瓷胎中则以2~10 μm的颗粒为主;景德镇五代白釉、宋代青白釉、明代万历白釉瓷胎的石英粒径平均值均为40 μm;清代雍正时期景德镇白釉瓷胎的石英粒径平均值为20 μm,最大值仅为30 μm[2]334-335。这些数据表明,石英粒径的差异需要在计算剂量率时予以考虑,以提高估算的准确性。

为了解决这个问题,本研究首次采用综合矿物分析(TIMA)技术对代表性样品Arch-NH002、Arch-NH007和Arch-NH015的瓷胎进行了粒径分布分析。结果显示,三个样品瓷胎中的石英粒径在1σ置信区间内分布在22~70 μm、18~56 μm和18~62 μm之间,平均粒径范围为19~63 μm(图6)。基于TIMA测得的瓷胎的平均粒径范围计算了该批瓷器的剂量率。

图6 样品Arch-NH002、Arch-NH007、Arch-NH015石英粒径分布

最后,综合考虑了样品采集地点的经纬度、埋藏深度、含水率、石英粒径以及放射性元素含量等参数,利用DRAC v1.2剂量率计算器[42]计算剂量率,具体结果详见表2。

表2 剂量率计算参数及结果

2.6 年代结果

本研究对西沙群岛“石屿二号”沉船遗址出水的16件青花瓷进行测年,其中6件瓷器样品灵敏度较低,未获得年代数据。对于释光灵敏度较好的10件瓷器样品,应用式5计算释光年代,结果如表3所示(释光年代,表示距离试验年份2021年的时间)。

表3 测年结果

(5)

图7展示了这10件瓷器的年代(以公元纪年表示),结果显示:6件瓷器的年代落在元代至明代早期的范围内;1件瓷器的测定年代略晚于此年代范围;3件瓷器的年代略早。综上所述,这批出水瓷器根据释光年代的误差范围,属于元代至明代早期。孟原召等[6,34]采用传统鉴定方法推断该批瓷器为元代外销瓷,并将该遗址判定为元代。而本研究中这批出水瓷器的释光年代范围更宽,这可能与海洋沉船埋藏环境放射性元素含量的不均匀分布和环境γ剂量率的缺失有关。通常来说,外销瓷是当代的产品,虽然瓷器的释光年代测定的是瓷器的烧制年代,但在一定程度上也可以反映遗址年代。本研究中这批瓷器的释光年代结果是相对保守的,但仍然与该遗址属于元代这一结论不冲突。

图7 样品年代(采用公元纪年)

3 结 论

本研究采用前剂量饱和指数熄灭法深入研究了西沙群岛“石屿二号”沉船遗址出水的16件青花瓷残片的热释光特性,并据此进行了年代测定。为确保古剂量测量的准确性与可靠性,采取了三项关键措施:1)对每件样品测试约26个测片,以增强统计分析的严谨性并最小化任一测片的随机误差对总体结果的影响;2)精确选定样品的热释光积分区间以适应古剂量的计算;3)采用中心年代模型估算样品的古剂量,这种先进的统计方法提供了一个比传统估算方式更准确的古剂量值。

在计算剂量率时,本研究运用ICP-MS和ICP-OES分析了样品的放射性元素U、Th、40K的含量,并全面考虑了样品采集地点的经纬度、埋藏深度、含水率等关键参数。此外,本研究首次应用TIMA技术对瓷胎的石英粒径分布情况进行了研究,从而显著提高了剂量率估算的准确性。由于准确估算瓷器环境剂量率的困难性,我们将该批瓷器的年代保守地确定为元代至明代早期,这仍然支持此前传统鉴定方法所得出的该遗址属于元代这一结论。这些方法的综合应用,显著提高了该遗址年代测定的科学性,在后续的水下考古发掘中,我们将注意提取瓷器周围的环境样品,进一步提高瓷器测年结果的准确性。

致 谢:感谢中国科学技术大学科技考古实验室廖晓婷、蒙柳汶同学在文物摄影,方立、张宝帅、张媛媛、闫雪芹、徐冉、张云逸、王弘毅同学在样品前处理等方面提供的帮助。

猜你喜欢

热释光剂量率青花瓷
焕活青花瓷国风之美
石英热释光年代测定中测量条件优化研究
甲状腺乳头状癌患者术后首次131Ⅰ治疗后辐射剂量率的影响因素及出院时间的探讨
纯净的青花瓷
耀州窑瓷器的热释光特性研究及年代测定
X线照射剂量率对A549肺癌细胞周期的影响
日本南海海槽IODP C0004C岩芯样品热释光信号特征及其对古气候变化的响应
ITER极向场线圈PF4维修区域停堆剂量率分析
青花瓷
如何有效调整ELEKTA PRECISE加速器的剂量率