我国儿童耐碳青霉烯类肠杆菌科细菌感染的研究进展
2023-12-26胡月王涛罗小丽
胡月?王涛?罗小丽
摘要:近年来,随着碳青霉烯类抗生素的广泛使用,耐碳青霉烯类肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae,CRE)越来越常见,严重威胁公众健康,为社会经济带来极大负担。在儿童患者中,CRE感染通常十分凶险,且在碳青霉烯酶构成谱、用药选择等方面存在一定特殊性,给治疗带来巨大的挑战。本文就儿童CRE感染的流行病学特点、治疗策略展开综述,为临床工作提供一定参考。
关键词:儿童;耐碳青霉烯类肠杆菌科细菌;流行病学;治疗方案
中图分类号:R978.1文献标志码:A
Research of progress on the infection caused by carbapenem-resistant Enterobacteriaceae in Chinese children
Hu Yue, Wang Tao, and Luo Xiaoli
(Pediatric Intensive Care Unit, The Affiliated Chengdu Womens and Childrens Central Hospital, University of Electronic Science and Technology of China, School of Medicine, Chengdu 611731)
Abstract In recent years, with the widespread use of carbapenem antibiotics, carbapenem-resistant Enterobacteriaceae (CRE) have become more common, posing a severe threat to public health and bringing great economic burden. In pediatric patients, CRE infection is usually very dangerous, and there are certain particularities in the composition spectrum of carbapenemases and drug selection that bring great challenges to treatment. This article reviewed the epidemiological characteristics and treatment strategies of CRE infection in children, and provide some reference for clinical work.
Key words Children; Carbapenem-resistant Enterobacteriaceae; Epidemiology; Treatment
耐碳青霉烯类肠杆菌科细菌(carbapenem-resistant Enterobacteriaceae,CRE)指对碳青霉烯类抗生素不敏感的肠杆菌科细菌,即美罗培南、亚胺培南的最低抑菌浓度(minimum inhibitory concentration,MIC)≥4mg/L或厄他培南的MIC≥2 mg/L。CRE感染通常十分凶险,治疗时面临诸多困难,而儿童作为一个特殊群体,由于缺乏大量临床研究作为支撑,加之其生长发育特点限制了部分药物的选择,使得CRE治疗变得更加棘手。本文将对我国儿童CRE感染的流行病学特点及治疗策略进行综述。
1 流行病学特点
1.1 感染率
由全国11所三级甲等儿童教学医院组成的中国儿童细菌耐药监测组的数据显示[1],2016-2020年我国儿童CRE总体检出率为6.8%,2018年最高(8%),近年来呈逐渐下降趨势,至2020年最低(4.7%),可能与医院感染防控措施加强有关。我国儿童CRE检出率存在地域差异,2017年北京市高达25.2%,同年上海市为12.1%,江西省为8%,山西省则仅为1%[2],不同地区制定抗感染方案时可适当参考当地CRE监测数据。
CRE定植或感染多发生于NICU(neonatal intensive care unit)、PICU(pediatric intensive care unit)血液肿瘤病房。虽然定植并不需要治疗,但由于上述病房收治的患儿常常免疫功能低下、伴有严重的基础疾病,需警惕定植细菌移位引起感染。在成人ICU患者中,CRE定植者发生相关感染的风险高于非定植者两倍[3]。Xu等[4]的报道显示上海地区CRE定植的住院患儿约45.6%来自于NICU。Yin等[5]则评估了上海地区NICU患儿CRE定植后发生感染的风险约为17.4%。Kong等[6]的报道显示江苏地区儿童CRE感染多见于重症监护室,约26.6%CRE病例来自于PICU,约13.9%病例来自于CCU(cardiac care unit)。Dong等[7]指出在2011—2014年北京市儿童医院收治的耐碳青霉烯类肺炎克雷伯菌(carbapenem-resistant K. pneumoniae,CRKP)血流感染的患儿中,约78.8%自于血液肿瘤病房。该研究团队还对比了CRKP血流感染与碳青霉烯类敏感的肺炎克雷伯菌(carbapenem-susceptible K. pneumoniae,CSKP)血流感染的临床特点,前者7 d死亡率、28 d死亡率分别达到了16.7%、18.5%,而后者分别为1.2%、2.4%,CRKP组死亡率高出CSKP组7~14倍,CRKP已成为肺炎克雷伯菌血流感染致死的一项独立高危因素[8]。
CRE的流行之所以常见于上述科室,除其收治的儿童病情重,多有基础疾病等因素外,还因为这部分儿童常常暴露于多种CRE感染或定植的高危因素下。一项多中心对照研究[9]显示,3月内曾使用广谱抗生素(如头孢吡肟、头孢他啶、哌拉西林-他唑巴坦、替卡西林-克拉维酸、环丙沙星、左氧氟沙星、亚胺培南和美罗培南等)、近期接受外科手术、机械通气是3个十分重要的CRE定植或感染的高危因素。林碧玉等[10]的Meta分析显示,除机械通气外,中心静脉置管、留置胃管、留置尿管等侵入性操作同样可增加儿童CRE定植或感染的风险,另外,对于新生儿而言,生后1 min Apgar评分≤7亦为一项高危因素。可见对儿科重点科室CRE的监测十分重要。
1.2 碳青霉烯酶构成特点
我国儿童CRE感染以肺炎克雷伯菌最为多见,2020年其在儿童CRE中占比接近一半(47.9%),其后依次为大肠埃希菌(20.3%)、阴沟肠杆菌(11.9%)和产气肠杆菌(7.5%)[11]。产生碳青霉烯酶是CRE耐药的主要机制。根据Ambler分子分类法[12],碳青霉烯酶可分为A、B、D 3类。A类为丝氨酸碳青霉烯酶,包含blaKPC、blaGES、blaIMI、blaNMC-A、blaSME等,B类为金属β-内酰胺酶,主要为blaNDM、blaIMP、blaVIM,D类为苯唑西林酶,以bla OXA-48、blaOXA-181和bla OXA-232亚型为主[13]。
我国成人CRE中最常检出的碳青霉烯酶为blaKPC,之后为blaNDM,blaOXA-48相对较少;而我国儿童CRE则以blaNDM最多见,主要为blaNDM-1、blaNDM-5亚型,其次为blaKPC,主要为blaKPC-2亚型,最后为blaOXA-232亚型[14]。近10年来,我国儿科病房内CRE暴发感染大多与blaNDM相关。2014年云南昆明[15]、2016年江苏南京[16]的NICU病房内均暴发了由携带blaNDM-1的CRKP菌株引起的院内感染。昆明的报道显示,17例新生儿被感染,1例最终死亡,暖箱的水箱可能是细菌滋生及播散处。南京的报道显示,6例新生儿中有5例患新生儿败血症,血培养均为阳性,1例考虑为新生儿呼吸窘迫综合征,并从痰中分离出阳性菌,6例患儿最终在有效治疗后痊愈。2015年江苏徐州[17]则报道了一起由携带blaNDM-5的CRKP菌株引起的院内感染,某院NICU病房自收治了1例新生儿呼吸窘迫综合征的患儿并从其痰中检出产blaNDM-5的CRKP菌株后,在之后1年时间里陆续检出11例阳性患儿,通过分析菌株的克隆关系发现前后12株分离株起源相同,最开始收治的患儿可能是感染的源头。
除上述型别之外,我国儿童患者的临床标本中还检出了少量携带blaIMP的CRE菌株,相对常见的亚型为blaIMP-4、blaIMP-38等[18~20]。
碳青霉烯酶的构成特点并非一成不变,可随时间推移发生动态变化,且不同地区有不同特点。例如,blaOXA-232于2016年首次在我国上海地区
检出[21],随后即成为上海市儿童医院CRKP中最常见的酶亚型[22],报道显示2016—2017年该院CRKP菌株中产blaOXA-232者占42.35%,而产blaNDM者则占36.06%,其中blaNDM-1、blaNDM-5分别为20.59%、16.47%,产blaKPC-2者为17.65%,另外还检出了少量的blaIMP-4亚型(1.18%)。然而至2018年该院CRKP监测数据则显示,碳青霉烯酶构成顺序依次为blaKPC-2(58.1%)、blaNDM-5(32.6%)、blaNDM-1(4.7%)、blaIMP-4 (1.2%),全年仅检出1例产blaOXA-232的CRKP菌株,占比为0.6%[23]。
碳青霉烯酶的检测对临床工作具有指导意义,酶种类不同可能影响患者的临床结局。Pudpong等[24]
发现,在面对携带blaNDM-1或blaNDM-1联合blaOXA-48的CRE感染時,美罗培南的MIC值常常>16 mg/L,而对于仅携带blaOXA-48的CRE菌株,美罗培南的MIC值往往<16 mg/L,且两者的14 d死亡率亦有差异,前者明显高于后者。Seo等[25]则对比了携带blaKPC或blaNDM的CRE菌株感染的临床特点,发现KPC组美罗培南MIC值>8 mg/L较NDM组更常见,且对多黏菌素的不敏感率更高(KPC, 17% vs NDM, 0),KPC组定植后感染发生率、30 d死亡率均较NDM组更高(具体分别为:KPC, 8% vs NDM, 3%;KPC, 17% vs NDM, 9%),提示KPC可能导致更差的临床结局。
2 治疗策略
2.1 碳青霉烯类
碳青霉烯类抗生素属于时间依赖性药物,当游离药物浓度高于MIC值的给药间隔时间百分比(%fT>MIC)超过40%时,抗菌效果最佳,但对于危重患者、免疫缺陷患者而言,需要100%fT>MIC,甚至4~6倍100%fT>MIC,才能将疗效最大化[26]。延长美罗培南输注时间可提升%fT>MIC数值,与此同时,还可通过增加药物剂量以加强抗感染效果。
Cies等[27]指出,针对美罗培南敏感的革兰阴性菌感染的危重患儿,剂量为每日120~160 mg/kg,持续24 h输注,可达到80%fT>MIC。Saito等[28]指出,对于考虑全身炎症反应综合征的危重患儿,往往需要更大剂量(40~80 mg/kgq8 h),每次持续输注超过3 h才能达到理想的药物代谢动力学目标。但当美罗培南MIC值≥4 mg/L时,则建议根据药敏实验选用更加敏感的其他药物或新型药物,如头孢他啶/阿维巴坦、美罗培南-vaborbactam、亚胺培南-relebactam[29]。
2.2 多黏菌素
多黏菌素属于多肽类抗生素,目前临床使用的有两种,分别为多黏菌素B和多黏菌素E。多黏菌素E以其前体形式黏菌素甲磺酸盐(colistimethate sodium,CMS)静脉给药,约20%的CMS在体内转化为活性形式发挥作用,其余则从肾脏排泄,该活化过程十分缓慢,达稳态所需时间较长。而多黏菌素B则直接以活性形式给药,可以更快达到更高的稳态血药浓度。且由于它不通过肾脏排泄,较多黏菌素E而言,两者有效性虽相接近,但多黏菌素B肾毒性更低,因此在面对多重耐药菌感染时,多黏菌素B是更加安全的选择[30]。
Jia等[31]回顾性分析了多黏菌素B在治疗我国儿童耐碳青霉烯类革兰阴性菌(Gram-negative bacterial,CR-GNB)感染的有效性及肾毒性,研究共纳入55例患儿,约70.9%的患儿培养转阴,约52.7%的患儿临床治疗有效,表现为感染症状减轻,体温及炎症指标包括白细胞、C反应蛋白、降钙素原恢复正常,或仅有一项指标虽异常但较前下降;约27.3%的患儿发生了不同程度的急性肾损伤,多数患儿在停药1周后肾功能恢复或改善,仅有2例肾功能进行性恶化。由于多黏菌素B属于浓度依赖性药物,适当增加剂量可提升疗效,但同时大剂量所带来的急性肾损伤风险也将升高[32],临床用药时需谨慎权衡利弊。2019年推出的国际指南[33]推荐多黏菌素B需要首剂负荷,剂量为2.0~2.5 mg/kg,之后按照1.25~1.5 mg/kg q12h 超过1 h输入进行维持。同时该指南还建议,针对CRE所致的侵袭性感染,多黏菌素联合1种或1种以上敏感药物的治疗方案优于多黏菌素单药治疗,若无其余敏感的药物,则可选择MIC值相对最低的药物联合使用。Paul等[34]发表的随机对照研究则显示,面对CR-GNB感染时,多黏菌素联合美罗培南的治疗方案并未优于多黏菌素单药治疗,两种方案的14 d治疗失败率、14 d死亡率、28 d死亡率均无统计学差异,虽然联合治疗使肾损伤几率减少,但却增加了腹泻发生率。不过值得注意的是,该研究共纳入406例成人患者,其中77%为鲍曼不动杆菌感染,肠杆菌科细菌感染者仅占18%,在CRE患者中,联合用药组的14 d治疗失败率为46%,28 d死亡率为21%,均低于单药治疗组(分别为68%和35%),虽然以上数据经分析后并无统计学意义,但可能是由于样本量太小造成。
2.3 替加环素
替加环素属于甘酰氨环素类抗生素,涵盖了我国25个省65所医院的大数据报道显示替加环素对CRE的体外敏感率达89.7%[35]。该药按照标准剂量给药时,迅速分布到组织中,很难达到理想血药浓度,成人大剂量替加环素(200 mg负荷,100 mg q12 h
维持)治疗CRE感染时优于标准剂量(100 mg负荷,50 mg q12 h维持),且大部分患者耐受良好,最多见的不良反应为呕吐、腹泻[36]。但由于替加环素可影响牙釉质发育,引起牙齿变色,应慎用于8岁以下儿童。Purdy等[37]通过对比不同剂量梯度(0.75 mg/kg、
1.00 mg/kg、1.25 mg/kg)的替加环素在8~11岁严重感染患儿中的疗效,发现维持剂量为1.2 mg/kg q12 h
时,替加环素在儿童中的药物代谢动力学特点与成人使用标准剂量时相似,负荷剂量暂未明确。Iosifidis等[38]报道了替加环素在13例广泛耐药革兰阴性菌感染患儿中的使用情况,负荷剂量1.8~6.5 mg/kg,
中位数4 mg/kg,维持剂量1~3.2 mg/kg,中位数1.4 mg mg/kg q12 h,患儿耐受良好,无严重不良反应发生,在替加环素使用超过5 d的11例患儿中,临床好转率约64%(7/11)。Chen等[39]报道了13例CR-GNB感染的儿童肝移植患者,其中9例为肺炎克雷伯菌感染,4例为鲍曼不动杆菌感染,所有患儿均接受了剂量为2 mg/kg q12h的替加环素治疗,临床好转率及病原清除率分别为84.6%(11/13)、69.2%(9/13)。在儿童患者中,增加替加环素剂量或许同样可获得更好的临床结局,但有待进一步佐证。目前部分体外实验[40~41]及回顾性观察性研究[42]均提示面对CRE感染时替加环素联合用药优于单药治疗,但仍需要更高质量的随机对照研究进一步证明其优越性以及探讨何种联合用药方案更合适。
2.4 磷霉素
磷霉素作为一种经典抗生素,近年来在多重耐药细菌感染的治疗方面重新得到重视。它可以干扰细菌细胞壁合成的第一步,是一种细菌繁殖期的快速杀菌剂,在与其他抗生素联合使用时常具有协同作用或相加作用,几乎不产生拮抗作用[43~44]。
目前国内尚未将磷霉素列入常规的药敏试验,国际上对磷霉素药敏折点的判读尚无统一标准。根据欧盟药敏试验标准,对于肠杆菌科细菌MIC≤
32 mg/L为敏感。但若为尿路感染中分离的大肠埃希菌,根据美国临床和实验室标准化协会标准,MIC≤64 mg/L即为敏感。文献显示[45] ,磷霉素用于治疗CRE感染时,应达到70%fT>MIC目标值,MIC值越高,所需磷霉素的剂量越高,当MIC位于8~
32 mg/L时,磷霉素剂量为4~12 g/d,而当MIC位于32~96 mg/L时,磷霉素剂量应达到16~24 g/d;且每次输注时间6 h或持续输注24 h优于间歇给药。希腊11个ICU病房的多中心研究显示[46],磷霉素用于广泛耐药或全耐药革兰阴性菌感染时,静脉给药中位剂量24 g/d,中位疗程14 d,临床治愈成功率为54.2%,细菌清除率为56.3%,28 d死亡率为37.5%。
由于CRE的异质性耐药、繁殖迅速等因素可能导致磷霉素单药治疗失败[47],故目前更推荐联合用药方案。多项体外抗菌活性研究显示[48~50],面对CRKP菌株時,磷霉素联合多黏菌素优于磷霉素或多黏菌素单药治疗。Cremieux等[51]通过构建兔的CRKP骨髓炎模型发现多黏菌素联合美罗培南或多黏菌素联合磷霉素是仅有的治疗手段,且除联用磷霉素组外,其余治疗组均出现了多黏菌素耐药株。在临床工作中,已有磷霉素、多黏菌素、多西环素的三联用药方案成功治愈CRKP骨髓炎患者的病例报道[52]。磷霉素联合美罗培南在治疗导管相关性尿路感染所继发的CRKP血流感染方面亦取得了相应成功[53]。Zheng等[54]发表的回顾性分析显示,严重CRKP感染的成人患者在使用头孢他啶/阿维巴坦单药治疗时,其30 d死亡率高达47.6%,若联合应用磷霉素,其死亡率则下降至33.3%。磷霉素亦可有效适用于儿童,一项纳入37例接受联合用药方案的CRKP感染新生儿的研究显示,除1例放弃治疗外,其余均临床好转,且其中28例联合使用了磷霉素,约占75.6%[55]。针对儿童患者,目前推荐静脉用磷霉素每日剂量为200~400 mg/kg,
足月新生儿为200 mg/kg,早产儿减量为100 mg/kg,12岁以上或体重40 kg以上儿童剂量同成人,除早产儿按q12 h给药外,其余均间隔6~8 h给药[56]。但一项正在进行的临床试验所提示的给药方案略有差异:大多数新生儿可按150 mg/kg,分2次给药,<7 d或体重<1500 g的新生儿,则按100 mg/kg,
分2次给药[57]。
2.5 头孢他啶/阿维巴坦
头孢他啶/阿维巴坦是一种头孢菌素/新型β-内酰胺酶抑制剂合剂,对A类(如KPC)、D类(如OXA-48)碳青霉烯酶具有良好活性,但对B类金属β内酰胺酶无效,其对于CRE感染的疗效常常优于传统药物[58]。
2019年我国细菌耐药性监测报告显示,该药对携带KPC、OXA-232的CRE菌株体外活性分别高达97.5%、100%[59]。头孢他啶/阿维巴坦于2019年3月经美国FDA批准用于≥3月的儿童,并于同年5月在我国上市,多适用于复杂性尿路感染、复杂性腹腔感染、医院获得性肺炎包括呼吸机相关肺炎等。
目前对于≥3~6月、肌酐清除率> 50 mL/min/1.73 m2
的儿童,推荐剂量为50 mg/kg(头孢他啶40 mg,阿维巴坦10 mg) q8 h,对于≥6月~18岁儿童,推荐剂量为62.5 mg/kg(头孢他啶50 mg,阿维巴坦12.5 mg) q8 h[60]。后续关于该药在儿童中使用情况的报道或研究十分有限,大多样本量较少,或者为个案报道。Iosifidis等[61]报道了8例接受了头孢他啶/阿维巴坦治疗的广泛或全耐药肺炎克雷伯菌感染的5岁以下患儿,均取得了较好的临床疗效。Ji等[62]报道了1例先天性心脏病术后1月出现右肩严重化脓性关节炎及骨髓炎的3月龄患儿,骨髓及血培养均提示CRKP感染,在使用亚胺培南、亚胺培南联合磷霉素治疗均无效的情况下,最终选用头孢他啶/阿维巴坦治疗后感染得到迅速控制。
除此之外,还有新型药物如美罗培南/法硼巴坦(vaborbactam)、亚胺培南西司他丁/雷巴坦(relebactam)等尚未于国内上市,儿童临床试验正在开展中,未来可能为儿童CRE感染提供更多治疗选择方案。
3 总结
我国儿童CRE感染形式仍十分严峻,应加强重点科室的监测及防控,同时有条件的医疗机构可开展碳青霉烯酶检测以协助指导临床用药,碳青霉烯类、多黏菌素、替加环素、磷霉素、新型药物如头孢他啶/阿维巴坦等均对儿童CRE感染有一定疗效,但应综合考虑患儿年龄、基础疾病、感染部位、临床表现、病原体、药敏试验、甚至是经济条件等决定用药方案。目前针对联合用药问题尚存争议,2022年美国传染病协会推出的指南指出[63],当根据药敏结果已有较好的单药可供选择时,不常规推荐联合用药。Tumbarello 等[64]报道,头孢他啶/阿维巴坦在治疗產KPC酶的CRKP感染时,单药和联合用药的患者死亡率分别为26.1%和25.0%,并无明显差异。一项纳入了38例16岁以下CRE血流感染儿童的研究显示[65],联合用药并不能改善临床结局。但鉴于联合用药可以有效控制异质性耐药[66],增强杀菌活性以及抑制细菌生长
速度[67],临床工作中仍以2种以上药物联用居多。对于基础情况差、疾病快速进展、出现感染性休克的患者,建议联用[68],同时菌血症、肺炎、中枢神经系统感染推荐联用,复杂性尿路感染则可考虑单药治疗[69]。
总体而言,针对儿童CRE感染的数据相对较少,亟需更多更高质量的研究协助指导临床工作,从而改善儿童患者的预后。
参 考 文 献
Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): 28321.
郭燕, 胡付品, 朱德妹, 等. 儿童临床分离碳青霉烯类耐药肠杆菌科细菌的耐药性变迁[J]. 中华儿科杂志, 2018, 56(12): 907-914.
Dickstein Y, Edelman R, Dror T, et al. Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers[J]. J Hosp Infect, 2016, 94(1): 54-59.
Xu Q, Pan F, Sun Y, et al. Fecal carriage and molecular epidemiology of carbapenem-resistant Enterobacteriaceae from inpatient children in a pediatric hospital of Shanghai[J]. Infect Drug Resist, 2020, 13: 4405-4415.
Yin L, He L, Miao J, et al. Carbapenem-resistant Enterobacterales colonization and subsequent infection in a neonatal intensive care unit in Shanghai, China[J]. Infect Prev Pract, 2021, 3(3): 100147.
Kong Z, Liu X, Li C, et al. Clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae among pediatric patients in Jiangsu province, China[J]. Infect Drug Resist, 2020, 13: 4627-4635.
Dong F, Zhang Y, Yao K, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniaebloodstream infections in a Chinese children's hospital: Predominance of new delhi metallo-β-lactamase-1[J]. Microb Drug Resist, 2018, 24(2): 154-160.
Zhang Y, Guo L, Song W, et al. Risk factors for carbapenem-resistant K. pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients[J]. BMC Infect Dis, 2018, 18(1): 248.
Chiotos K, Tamma P D, Flett K B, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant Enterobacteriaceae in children[J]. Antimicrob Agents Chemother, 2017, 61(12): e01440-17.
林碧玉, 劉婧婷, 金凤玲. 儿童耐碳青霉烯类肠杆菌定植或感染危险因素的Meta分析[J]. 中国当代儿科杂志, 2022, 24(1): 96-101.
何磊燕, 付盼, 吴霞, 等. 中国儿童细菌耐药监测组2020年儿童细菌耐药监测[J]. 中国循证儿科杂志, 2021, 16(6): 414-420.
Ambler R P. The structure of beta-lactamases[J]. Philos Trans R Soc Lond B Biol Sci, 1980, 289(1036): 321-331.
Logan L K, Weinstein R A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace[J]. J Infect Dis, 2017, 215(1): 28-36.
Han R, Shi Q, Wu S, et al. Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China[J]. Front Cell Infect Microbiol, 2020, 10: 314.
Zheng R, Zhang Q, Guo Y, et al. Outbreak of plasmid-mediated NDM-1-producing Klebsiella pneumoniae ST105 among neonatal patients in Yunnan, China[J]. Ann Clin Microbiol Antimicrob, 2016, 15(1): 10.
Huang X, Cheng X, Sun P, et al. Characteristics of NDM-1-producing Klebsiella pneumoniae ST234 and ST1412 isolates spread in a neonatal unit[J]. BMC Microbiol, 2018, 18(1): 186.
Kong Z, Cai R, Cheng C, et al. First reported nosocomial outbreak of NDM-5-producing Klebsiella pneumoniae in a neonatal unit in China[J]. Infect Drug Resist, 2019, 12: 3557-3566.
Wang J, Lv Y, Yang W, et al. Epidemiology and clinical characteristics of infection/colonization due to carbapenemase-producing Enterobacterales in neonatal patients[J]. BMC Microbiol, 2022, 22(1): 177.
Bai Y, Shao C, Hao Y, et al. Using whole genome sequencing to trace, control and characterize a hospital infection of IMP-4-producing Klebsiella pneumoniae ST2253 in a neonatal unit in a tertiary hospital, China[J]. Front Public Health, 2021, 9: 755252.
Wang S, Zhao J, Liu N, et al. IMP-38-producing high-risk sequence type 307 Klebsiella pneumoniae strains from a neonatal unit in China[J]. mSphere, 2020, 5(4): 00407-20.
Yin D, Dong D, Li K, et al. Clonal dissemination of OXA-232 carbapenemase-producing Klebsiella pneumoniae in neonates[J]. Antimicrob Agents Chemother, 2017, 61(8): e00385-17.
Tian D, Pan F, Wang C, et al. Resistance phenotype and clinical molecular epidemiology of carbapenem-resistant Klebsiella pneumoniaeamong pediatric patients in Shanghai[J]. Infect Drug Resist, 2018, 11: 1935-1943.
Wang B, Pan F, Wang C, et al. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in China[J]. Int J Infect Dis, 2020, 93: 311-319.
Pudpong K, Pattharachayakul S, Santimaleeworagun W, et al. Association between types of carbapenemase and clinical outcomes of infection due to carbapenem resistance Enterobacterales[J]. Infect Drug Resist, 2022, 15: 3025-3037.
Seo H, Kim H J, Kim M J, et al. Comparison of clinical outcomes of patients infected with KPC-and NDM-producing Enterobacterales: a retrospective cohort study[J]. Clin Microbiol Infect, 2021, 27(8): 1161-1167.
Pascale R, Giannella M, Bartoletti M, et al. Use of meropenem in treating carbapenem-resistant Enterobacteriaceae infections[J]. Expert Rev Anti Infect Ther, 2019, 17(10): 819-827.
Cies J J, Moore W S, Enache A, et al. Population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill young children[J]. J Pediatr Pharmacol Ther, 2017, 22(4): 276-285.
Saito J, Shoji K, Oho Y, et al. Population pharmacokinetics and pharmacodynamics of meropenem in critically ill pediatric patients[J]. Antimicrob Agents Chemother, 2021, 65(2): e01909-20.
Chiotos K, Hayes M, Gerber J S, et al. Treatment of carbapenem-resistant Enterobacteriaceae infections in children[J]. J Pediatric Infect Dis Soc, 2020, 9(1): 56-66.
Thomas R, Velaphi S, Ellis S, et al. The use of polymyxins to treat carbapenem resistant infections in neonates and children[J]. Expert Opin Pharmacother, 2019, 20(4): 415-422.
Jia X, Yin Z, Zhang W, et al. Effectiveness and nephrotoxicity of intravenous polymyxin B in carbapenem-resistant gram-negative bacterial infections among Chinese children[J]. Front Pharmacol, 2022, 13: 902054.
Cai Y, Leck H, Tan R W, et al. Clinical experience with high-dose polymyxin B against carbapenem-resistant Gram-negative bacterial infections-a cohort study[J]. Antibiotics, 2020, 9(8): 451.
Tsuji B T, Pogue J M, Zavascki A P, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP)[J]. Pharmacotherapy, 2019, 39(1): 10-39.
Paul M, Daikos G L, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant gram-negative bacteria: An open-label, randomised controlled trial[J]. Lancet Infect Dis, 2018, 18(4): 391-400.
Wang Q, Wang X, Wang J, et al. Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012–2016)[J]. Clin Infect Dis, 2018, 67(2): 196-205.
Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections[J]. Clin Microbiol Infect, 2019, 25(8): 943-950.
Purdy J, Jouve S, Yan J L, et al. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: A multicenter, open-label, ascending-dose study[J]. Clin Ther, 2012, 34(2): 496-507.
Iosifidis E, Violaki A, Michalopoulou E, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant Gram-negative bacteria[J]. J Pediatric Infect Dis Soc, 2016, 6(2): 123-128.
Chen F, Shen C, Pang X, et al. Effectiveness of tigecycline in the treatment of infections caused by carbapenem‐resistant gram‐negative bacteria in pediatric liver transplant recipients: a retrospective study[J]. Transpl Infect Dis, 2019, 22(1): e13199.
Tian Y, Zhang Q, Wen L, et al. Combined effect of polymyxin b and tigecycline to overcome heteroresistance in carbapenem-resistant Klebsiella pneumoniae[J]. Microbiol Spectr, 2021, 9(2): e15221.
Zhou Y, Liu P, Zhang C, et al. Colistin combined with tigecycline: A promising alternative strategy to combat Escherichia coli harboring blaNDM-5 and mrc-1[J]. Front Microbiol, 2020, 10: 2957.
Wang X, Wang Q, Cao B, et al. Retrospective observational study from a Chinese network of the impact of combination therapy versus monotherapy on mortality from carbapenem-resistant Enterobacteriaceae bacteremia[J]. Antimicrob Agents Chemother, 2019, 63(1): e01511-18.
Avery L M, Sutherland C A, Nicolau D P. In vitro investigation of synergy among fosfomycin and parenteral antimicrobials against carbapenemase-producing Enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2019, 95(2): 216-220.
Antonello R M, Principe L, Maraolo A E, et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies[J]. Antibiotics, 2020, 9(8): 500.
Kanchanasurakit S, Santimaleeworagun W, McPherson C E, et al. Fosfomycin dosing regimens based on Monte Carlo simulation for treated carbapenem-resistant Enterobacteriaceae infection[J]. Infect Chemother, 2020, 52(4): 516-529.
Pontikis K, Karaiskos I, Bastani S, et al. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria[J]. Int J Antimicrob Agents, 2014, 1(43): 52-59.
Lim T, Teo J Q, Goh A W, et al. In vitro pharmacodynamics of fosfomycin against carbapenem-resistant Enterobacter cloacae and Klebsiella aerogenes[J]. Antimicrob Agents Chemother, 2020, 64(9): e00536-20.
Bulman Z P, Zhao M, Satlin M J, et al. Polymyxin b and fosfomycin thwart KPC-producing Klebsiella pneumoniae in the hollow-fibre infection model[J]. Int J Antimicrob Agents, 2018, 52(1): 114-118.
Diep J K, Sharma R, Ellis-Grosse E J, et al. Evaluation of activity and emergence of resistance of polymyxin B and ZTI-01 (fosfomycin for injection) against KPC-producing Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2018, 62(2): e01815-17.
Zhao M, Bulman Z P, Lenhard J R, et al. Pharmacodynamics of colistin and fosfomycin: A 'treasure trove' combination combats KPC-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2017, 72(7): 1985-1990.
Crémieux A, Dinh A, Nordmann P, et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2019, 74(9): 2666-2675.
Baron S A, Cassir N, Mékidèche T, et al. Successful treatment and digestive decolonisation of a patient with osteitis caused by a carbapenemase-producing Klebsiella pneumoniae isolate harbouring both NDM-1 and OXA-48 enzymes[J]. J Glob Antimicrob Resist, 2019, 18: 225-229.
Pérez-Palacios P, Palacios-Baena Z, López-Cerero L, et al. Successful outcome after treatment with a combination of meropenem and fosfomycin for VIM-1 and CTX-M-15 producing Klebsiella pneumoniae bloodstream infection[J]. J Infect, 2021, 83(4): e12-e13.
Zheng G, Zhang J, Wang B, et al. Ceftazidime-avibactam in combination with in vitro non-susceptible antimicrobials versus ceftazidime-avibactam in monotherapy in critically ill patients with carbapenem-resistant Klebsiella pneumoniae infection: A retrospective cohort study[J]. Infect Dis Ther, 2021, 10(3): 1699-1713.
Yin D, Zhang L, Wang A, et al. Clinical and molecular epidemiologic characteristics of carbapenem-resistant Klebsiella pneumoniae infection/colonization among neonates in China[J]. J Hosp Infect, 2018, 1(100): 21-28.
Baquero-Artigao F, Del Rosal Rabes T. Fosfomycin in the pediatric setting: Evidence and potential indications[J]. Rev Esp Quimioter, 2019, 32(1): 55-61.
Obiero C W, Williams P, Murunga S, et al. Randomised controlled trial of fosfomycin in neonatal sepsis: Pharmacokinetics and safety in relation to sodium overload[J]. Arch Dis Child, 2022, 107(9): 802-810.
Karaiskos I, Galani I, Papoutsaki V, et al. Carbapenemase producing Klebsiella pneumoniae: Implication on future therapeutic strategies[J]. Expert Rev Anti Infect Ther, 2022, 20(1): 53-69.
Guo Y, Han R, Jiang B, et al. In vitro activity of new β-lactam–β-lactamase inhibitor combinations and comparators against clinical isolates of Gram-negative bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019[J]. Microbiol Spectr, 2022, 10(4): e0185422.
Franzese R C, McFadyen L, Watson K J, et al. Population pharmacokinetic modeling and probability of pharmacodynamic target attainment for ceftazidime-avibactam in pediatric patients aged 3 months and older[J]. Clin Pharmacol Ther, 2022, 111(3): 635-645.
Iosifidis E, Chorafa E, Agakidou E, et al. Use of ceftazidime-avibactam for the treatment of extensively drug-resistant or pan drug-resistant Klebsiella pneumoniae in neonates and children <5 years of age[J]. Pediatr Infect Dis J, 2019, 38(8): 812-815.
Ji Z, Sun K, Li Z, et al. Klebsiella pneumoniae carbapenem-resistant osteomyelitis treated with ceftazidime-avibactam in an infant: A case report[J]. Infect Drug Resist, 2021, 14: 3109-3113.
Tamma P D, Aitken S L, Bonomo R A, et al. Infectious diseases society of America 2022 guidance on the treatment of extended-spectrumβ-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. Aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
Tumbarello M, Raffaelli F, Giannella M, et al. Ceftazidime-avibactam use for Klebsiella pneumoniae carbapenemase-producing K. Pneumoniae infections: A retrospective observational multicenter study[J]. Clin Infect Dis, 2021, 73(9): 1664-1676.
Ara-Montojo M F, Escosa-García L, Alguacil-Guillén M, et al. Predictors of mortality and clinical characteristics among carbapenem-resistant or carbapenemase-producing Enterobacteriaceae bloodstream infections in Spanish children[J]. J Antimicrob Chemother, 2021, 76(1): 220-225.
Band V I, Hufnagel D A, Jaggavarapu S, et al. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection[J]. Nat Microbiol, 2019, 4(10): 1627-1635.
Scudeller L, Righi E, Chiamenti M, et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli[J]. Int J Antimicrob Agents, 2021, 57(5): 106344.
Rodríguez-Ba?o J, Gutiérrez-Gutiérrez B, Machuca I, et al. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae[J]. Clin Microbiol Rev, 2018, 31(2): e00079-17.
Papst L, Beovi? B, Pulcini C, et al. Antibiotic treatment of infections caused by carbapenem-resistant Gram-negative bacilli: An international ESCMID cross-sectional survey among infectious diseases specialists practicing in large hospitals[J]. Clin Microbiol Infect, 2018, 24(10): 1070-1076.
收稿日期:2022-08-22
項目基金:四川省科技厅项目资助(No. 2022JDKP0062);成都市高水平临床重点专科建设项目
作者简介:胡月,女,生于1994年,硕士,研究方向为儿童感染,E-mail: 619842539@qq.com
*通信作者,E-mail: 55050625@qq.com