APP下载

促早栽培对杨梅叶片形态及果实成熟与品质的影响

2023-11-21戚行江梁森苗陈海豹俞浙萍孙鹂郑锡良张淑文

果树学报 2023年11期
关键词:果实品质杨梅

戚行江 梁森苗 陈海豹 俞浙萍 孙鹂 郑锡良 张淑文

摘 要:【目的】探究促早栽培對杨梅叶片形态、果实成熟与品质的影响。【方法】以东魁和荸荠种杨梅为试材,设置双膜、单膜促早设施及露地三种不同栽培模式,连续监测不同栽培模式中的温度变化,调查试验地区的物候期,比较对应的有效积温和活动积温,并测定叶片表型和果实品质指标。【结果】与露地栽培相比,促早栽培设施中日平均气温和活动积温显著提高,其中双膜栽培作用更明显,活动积温达2 592.1 ℃·d,提高74.3%;设施促早栽培下杨梅物候期和成熟期显著提前,双膜、单膜栽培杨梅成熟期分别比同地区的露地栽培提早40 d和22 d以上,采收期可长达57 d;设施促早栽培显著提高了单果质量、可溶性固形物含量和类黄酮含量等指标,商品果率提高1.6倍以上,经济效益显著提高。【结论】杨梅设施促早栽培技术是一种不影响杨梅正常生长,可显著提早成熟期、延长采收期、提升果实品质并大幅提高经济效益的栽培技术。

关键词:杨梅;促早栽培;果实品质;双膜大棚;单膜大棚

中图分类号:S667.6 文献标志码:A 文章编号:1009-9980(2023)11-2403-10

Effects of forcing cultivation on the leaf morphology, fruit ripening and quality of Myrica rubra

QI Xingjiang1, 2, LIANG Senmiao1, CHEN Haibao3, 4, YU Zheping1, SUN Li1, ZHENG Xiliang1, ZHANG Shuwen1*

(1Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; 2Xianghu Lab., Hangzhou 311231, Zhejiang, China; 3Zhejiang College of Agronomists, Hangzhou 310021, Zhejiang, China; 4Songmen Bayberry Professional Cooperative of Sanmen County, Taizhou 317111, Zhejiang, China)

Abstract: 【Objective】 Chinese bayberry (Myrica rubra) is an unique and valuable fruit crop cultured in southern China. As the most characteristic and prized fruit cultivated in Zhejiang province, it exhibits high levels of both nutritional benefits and economic value, which has significantly improved its market competitiveness. Main cultivated varieties of bayberry, like Dongkui and Biqizhong, mature from early June to early July. However, the bayberry during the maturation period usually encounters the rainy season, which results in severe decline in both yield and quality of bayberry, and further constrains the development of the bayberry industry. Thus, efforts to facilitate more reliable bayberry cultivation have the potential to improve its quality and output. Compared to traditional open-field cultivation, approaches to enhanced cultivation can increase temperatures and reduce the phenological periods for each stage of development, thus mitigating the potential harm caused by the plum rains. In addition, these approaches to protected cultivation can further improve commercial bayberry fruit outputs and promote its economic benefits. 【Methods】 In order to testify the benefits of protected cultivation for M. rubra, the leaf morphology, fruit ripening and quality of Biqizhong and Dongkui were studied, which were subjected to three different cultivation methods: open field (OF), single-layer-film-covered greenhouse (SLFG), and double-layer-film-covered greenhouse (DLFG). The cultivation of SLFG entailed the construction of a steel frame structure covered by a transparent plastic film based on the shape of the mountain slope, using triangular, arched, or flat roof multi-span steel frames as appropriate. The cultivation of DLFG entailed a novel and efficient cultivation method based on the use of SLFG triangular or arched roof multi-span steel frames on slopes, together with the introduction of a steel frame beam at a distance of 1.0 m from the top, followed by fixing a second transparent plastic film layer. After these protected cultivation models were established, temperature changes, phenological periods, and the relationships between temperature changes and phenological periods were assessed, and the leaf phenotypes and fruit quality were also measured.【Results】 Compared to traditional OF cultivation, the average temperatures under DLFG and SLFG cultivation were 5.1 ℃ and 2.5 ℃ higher, respectively, significantly above the ambient temperatures. The forcing cultivation results in higher daily average temperatures, with a daily average temperature ≥ 10 ℃ lasting for 147 days under DLFG, as compared to 115 days under DLFG and only 90 days under OF cultivation. The cumulative temperature under DLFG cultivation (2 592.1 ℃) also significantly increased, compared to SLFG and OF cultivation, with the increase reaching 74.3%. The phenological and maturation periods for M. rubra were significantly earlier under these forcing cultivations, with the maturation periods of DLFG and SLFG being 40 and 22 days earlier than those of OF cultivation. The harvest time under DLFG and SLFG cultivation was up to 57 days, which was 3.4 times longer than that under OF cultivation. These forcing cultivation methods also significantly improved single fruit weight, soluble solid and flavonoid contents, taste, nutritional value, as well as storage and transportation capacity. Although these forcing cultivation methods reduced light intensity, the available light was sufficient to meet the needs for these bayberry trees. Thus, the normal plant growth and photosynthetic activity were not adversely impacted under either DLFG or SLFG cultivation. Moreover, the leaf morphology, including leaf length, width, area, perimeter, relative chlorophyll content, and chlorophyll fluorescence parameters increased with both Biqizhong and Dongkui. In addition, forcing cultivation significantly improved the fruit yields and quality. The results displayed that the average yields of Biqizhong under DLFG and SLFG cultivation were 2 312.5 kg·666.7 m-2 and 2 261.7 kg·666.7 m-2, respectively, 40.0% and 37.0% higher than those under OF cultivation. Furthermore, the average commercial fruit rates were 85.1% and 79.8% under DLFG and SLFG cultivation, 2.8- and 2.6-times higher than those under OF cultivation. Similarly, the average yields of Dongkui under DLFG and SLFG cultivation were 1 655.2 kg·666.7 m-2 and 1 568.5 kg·666.7 m-2, respectively, 2.9- and 2.8-times higher than those under OF cultivation. The commodity fruit rates and economic benefits surpassed 1.6- and 7.1-fold under DLFG and SLFG cultivation, respectively.【Conclusion】 The forcing cultivation of M. rubra is an effective technique that can significantly advance the maturity period, extend the harvest period, improve fruit quality and promote economic benefits, without affecting the normal growth of M. rubra. Based on the above benefis of DLFG and SLFG cultivation, it is of a great value to further popularize and apply these bayberry cultivation techniques throughout China.

Key words: Myrica rubra; Forcing cultivation; Fruit quality; Double-layer-film-covered greenhouse; Single-layer-film-covered greenhouse

收稿日期:2023-02-14 接受日期:2023-09-20

基金项目:浙江省“领雁”研发攻关计划(2023C02031、2022C02055);浙江省农业(果品)新品种选育重大科技专项(2021C02066-2);温州市环大罗山科技支撑项目(WZDLS2021-07、WZDLS2021-16);瓯海科创中心项目(20021OHKC0003)

作者简介:戚行江,男,研究员,从事果树科学研究工作。Tel:0571-86404568,E-mail:qixj@zaas.ac.cn

*通信作者Author for correspondence. Tel:0571-86404021,E-mail:hizhangshuwen@163.com

杨梅是我国南方特产珍果,为浙江省最具特色的优势水果之一,具有较高的营养与经济价值[1],市场竞争力逐年提升。但杨梅大多种植于山岭坡地,地形地势较为复杂,且树体高大,难以开展设施促早栽培,导致花期冻害、成熟期集中、梅雨影响严重[2],存在丰产不丰收的情况,已成为影响杨梅产业健康发展的主要因子之一。当前,为加快推进农业高质量发展,杨梅产业已逐渐从传统粗放型向绿色精品化转变[3]。近年来设施栽培在杨梅生产上得到了快速发展和广泛应用。目前,杨梅主要设施栽培方式有三种:一是以促早成熟为目的促早设施栽培模式,二是以防虫为主的网室设施栽培模式,三是以避雨为主的避雨设施栽培模式。以上三种设施栽培方式均能改善杨梅品质,提高栽培经济效益,其中,设施促早栽培模式提高效益最为显著。然而不同促早栽培设施对杨梅生长环境的改变,及其对树体生长与果实产量和品质形成的影响尚缺少较为系统的研究。

研究表明,促早设施栽培对杨梅生长和果实品质提升具有显著促进作用[4-7]。与传统的露地模式相比,杨梅设施栽培显著提升棚内温度,各发育阶段物候期整体提前,避开了梅雨危害,单果质量、可食率、可溶性固形物含量等指标得到提升[5-6],同时设施栽培提高了杨梅商品果率和精品果率,经济效益显著提升[6-7]。目前,在果树的设施栽培生产上,主要采用单层透明塑料膜,比如枇杷[8]、桃[9]、樱桃[10]、梨[11]等。已有研究者针对葡萄开展双膜试验[12-14],与单膜处理相比,双膜处理增温保温效果更好,成熟期进一步提前,果实品质指标提升显著。

笔者在本试验中综合利用以单膜和双膜为主的设施促早栽培技术,通过监测设施中光照、温度的动态变化,分析设施栽培中主要品种东魁和荸荠种树体生长情况、开花和果实发育物候期,综合不同促早栽培产量和经济效益,探究促早栽培对杨梅树体生长和果实成熟与品质的影响,为提早、延长杨梅果实成熟期,提升果实品质,降低冻害与梅雨危害,提高栽培经济效益奠定理论和技术基础。

1 材料和方法

1.1 试验材料

试验于浙江省三门县松门杨梅专业合作社进行,该基地为丘陵地形,沙质弱酸性土壤,海拔247.5 m,坡度25°,全年平均气温16.1 ℃、平均相对湿度78.3%,杨梅栽培面积共有13.33 hm2,其中单膜大棚2.67 hm2、双膜大棚2 hm2。本试验开始于2021年11月,选择树龄10~12年、长势一致的荸荠种和东魁杨梅开展研究。共分6组处理,即荸荠种露地、单膜、双膜和东魁露地、单膜、双膜,每组处理取10株,以单株作为重复。相同品种的各组处理土肥管理和修剪等日常管理措施基本一致,分别于成熟期进行取样,每株按东、南、西、北方位随机采30个果实和50枚叶片,用于后续表型和果实品质测定。

1.2 试验方法

1.2.1 设施促早栽培模式 本试验采用单膜、双膜两种設施栽培方式,单、双膜棚高均为4.5 m,株间距为5 m,杨梅树冠与大棚顶部间距1.5~2.0 m。其中,单膜设施促早栽培主要根据杨梅园山地形态,搭建钢架结构,覆盖透明塑料膜,主要有三角形顶架坡地连栋钢架大棚、拱形顶架坡地连栋钢架大棚、平顶架坡地连栋钢架大棚等模式(图1-a);双膜设施促早栽培是在单膜三角形顶架坡地连栋钢架大棚、拱形顶架坡地连栋钢架大棚的基础上,距顶部1 m处架设钢架横梁,铺设第二层透明塑料膜(图1-b),是一种新型、高效促早栽培模式。

1.2.2 光温湿度测定和叶型鉴定 利用便携式数字照度计(希玛,型号AS813),在晴天12:00—14:00测定不同处理下光照度;利用精创AGlog100温湿度记录仪,实时监测记录露地、单膜和双膜设施下的温湿度数据;综合利用“芽膨大前10 d平均气温”法、最小二乘法和直线回归方程式[15-17],计算生物学零度值,有效积温公式K=(T-T0)N[16-17],K为有效积温(℃·d),T为日平均气温(℃),T0为生物学零度,N为生长发育时间(d);活动积温计算公式为日平均气温≥ 10 ℃的日平均气温之和[18]。

利用叶绿素荧光成像系统Plant Explorer仪,测定叶绿素荧光参数(Fv/Fm)、非光化学淬灭系数(NPQ)、叶宽(cm)、叶长(cm)、周长(cm)和面积(cm2);利用便携式叶绿素测定仪SPAD-502PLUS测定叶绿素相对含量(SPAD值)。

1.2.3 果实表型鉴定和品质指标测定 将每组处理共10株的果实混匀,利用电子天平随机称取15个果实质量,3次重复,取平均数即为平均单果质量,用游标卡尺测定果实的纵径和横径;利用TA -XT plus质构仪,测定不同处理下的果实硬度,选择5.0 mm直径探头,单位为N。

参考GB 12295—1990[19],测定果实的可溶性固形物含量,试验均设置3次重复,下同;根据GB/T 5009.8—2009[20],利用蒽酮比色法测定总糖含量;参考GB/T 12456—2008[21],利用酸碱滴定法测定总酸含量。糖酸比=可溶性固形物含量/总酸含量。参考Wang等[22]的方法测定维生素C含量;采用紫外吸收法[23]测定果实中类黄酮和总酚含量。

1.2.4 数据统计分析 利用Excel 2019针对测定的表型数据,进行数据统计分析和表格绘制;采用软件SPSS 18.0进行单因素方差分析,利用T-test法进行差异显著性测验。

2 结果与分析

2.1 设施内光温变化规律及其对杨梅物候期的影响

温度是影响果树生长、繁衍的重要条件之一。果树发芽生长、开花结果以及树体内一系列的生理生化活动和变化,均需要在一定温度范围内进行。在2021年12月21日至2022年5月28日之间,利用温湿度记录仪记录了双膜、单膜设施内温度变化情况,与露地栽培相比,双膜设施平均温度高5.1 ℃,单膜设施平均温度高2.5 ℃,设施内温度明显高于露地温度(图2),设施栽培中雌花开放的积温提前到达,促进了雌花开放,为果实提前成熟奠定了基础。

综合利用生物学零度公式进行计算,荸荠种和东魁的生物学零度值分别为7.78 ℃和7.41 ℃(表1)。基于荸荠种和东魁不同发育阶段的气温数据,利用有效积温公式,计算得到荸荠种生长至花期、幼果期、硬核期、转色期、成熟期的有效积温,分别为190.27、297.97、620.84、988.75和1 191.73 ℃·d。东魁生长至花期的有效积温为150.21 ℃·d,低于荸荠种(190.27 ℃·d),但后续5个生长时期的有效积温均高于荸荠种。在本研究统计的2021年12月21日—2022年5月28日时间段内,双膜设施条件下,日平均气温≥10 ℃天数达到147 d,明显高于单膜设施的115 d和露地的90 d;双膜设施下的活动积温达到2 592.1 ℃·d,明显高于单膜设施和露地(表2)。

杨梅的光补偿点较低,约为30 μmol·m-2·s-1,光饱和点约为550 μmol·m-2·s-1,即外界光照度为30 μmol·m-2·s-1(即光照度1668 lx)时,叶片的光合作用和呼吸作用处于平衡状态,光合作用合成的干物质等于呼吸作用所需要消耗的干物质[24-25]。双膜设施中,晴天12:00—14:00的光照度在2 887.8~4 222.0 lx之间;单膜设施中,同时段光照度在4 664.2~7 196.0 lx之间;露地条件下,同时段光照度在8 471.0~11 900.0 lx之间。设施栽培中光照度虽明显降低,但已满足杨梅光补偿点需要,两种设施栽培均不会影响杨梅正常光合作用和植株生长。

2.2 设施栽培对杨梅叶片性状的影响

双膜、单膜设施栽培中,树体叶片颜色明显变深,荸荠种叶绿素相对含量、叶绿素荧光参数,与露地栽培相比分别提高50.6%、20.8%,11.4%、7.1%(表3、图3);东魁叶绿素相对含量、叶绿素荧光参数,与露地栽培相比分别提高20.8%、7.2%,25.4%、32.2%(表3、图4);设施栽培有利于提高树体光合效率。

叶片大小等形态影响着植株的有效光合面积,与产量和品质密切相关。设施栽培中荸荠种、东魁叶片长度、宽度、面积、周长等指标,与露地栽培相比显著增大(表3),如:双膜、单膜栽培中,荸荠种叶片面积于露地栽培条件下分别增加54.9%、16.9%;东魁叶片面积分别增加42.1%、13.6%;设施栽培有利于树体叶片形态建成,为产量与品质的提升提供必备条件。

2.3 设施栽培对果实成熟进程的影响

2022年三门地区,双膜设施中荸荠种果实硬核期、转色期、转红期、初熟期、成熟期、采摘结束期分别是3月27日、4月24日、4月29日、5月6日、5月8日、5月26日;与单膜、露地栽培的对应时期相比,双膜栽培下成熟期分别提前19 d、41 d。双膜设施中东魁果实硬核期、转色期、转红期、初熟期、成熟期、采摘結束期分别是3月31日、4月28日、5月3日、5月15日、5月18日、6月3日;与单膜、露地栽培相比,双膜栽培下成熟期分别提前16 d、40 d(表4);设施栽培可显著促进果实成熟,尤其是双膜设施栽培比露地栽培提早成熟40 d左右。露地东魁和荸荠种的采摘期为6月14日至7月1日,共17 d;两种设施搭配后,采摘期可从5月6日延续至7月1日,时长共57 d,采收时长为露地栽培的3.4倍。

2.4 设施栽培对果实品质的影响

设施栽培下尤其是双膜栽培下,荸荠种单果质量为12.65 g、东魁平均单果质量为22.2 g,与露地栽培的11.4 g、20.9 g相比,分别提高11.4%、6.2%;荸荠种硬度为2.5 N、东魁硬度为2.9 N,与露地栽培的2.4 N、2.7 N相比,分别提高5.1%、7.4%。设施栽培下杨梅单果质量与硬度明显提高(表5)。

双膜、单膜栽培下荸荠种可溶性固形物含量(w,后同)分别为12.1%、11.0%,与露地相比分别提高20.8%、10.3%;总糖含量分别为58.7 mg·g-1、64.8 mg·g-1,与露地栽培相比分别提高19.9%、32.6%;总酸含量分别为8.8 g·kg-1、7.1 g·kg-1,与露地栽培相比分别升高15.8%、降低了6.1%;单膜栽培下固酸比最高为15.4。双膜、单膜栽培下东魁可溶性固形物含量分别为13.5%、13.2%,与露地相比分别提高5.6%、3.0%;总糖含量分别为56.7 mg·g-1、61.7 mg·g-1,与露地栽培相比分别提高1.3%、10.4%;总酸含量分别为11.2 g·kg-1、7.2 g·kg-1,与露地栽培相比分别升高10.8%、降低28.8%;单膜栽培下固酸比最高为18.3(表6)。设施栽培有利于杨梅果实品质与口感的提升。

双膜、单膜栽培下荸荠种维生素C含量均为2.0 mg·g-1,与露地栽培相比降低8.3%;类黄酮含量分别为2.9 mg·g-1、3.1 mg·g-1,与露地栽培相比分别提高23.0%、29.7%;总酚含量分别为1.8 mg·g-1、2.0 mg·g-1,与露地栽培相比分别提高2.9%、15.8%;双膜、单膜栽培下东魁维生素C含量均为1.4 mg·g-1,与露地栽培相比降低8.7%;类黄酮含量分别为1.7 mg·g-1、1.6 mg·g-1,与露地栽培相比分别提高65.4%、49.0%;总酚含量均为1.4 mg·g-1,与露地栽培相比降低15.3%(表7)。设施栽培有利于杨梅果实类黄酮营养物质含量的提高。

2.5 设施栽培的商品果率与经济效益

2022年三门杨梅基地,荸荠种双膜、单膜设施栽培平均每666.7 m2产量分别是2 312.5 kg、2 261.7 kg,与露地栽培相比分别提高40.0%、37.0%;平均商品果率分别是85.1%、79.8%,分别是露地栽培的2.8倍、2.6倍;平均售价在100元·kg-1,每666.7 m2产值为14.4万~23.6万元;每666.7 m2利润分别为16.5万元、10.1万元,分别是露地栽培的8.2倍、5.0倍。东魁双膜、单膜设施栽培平均每666.7 m2产量分别是1 655.2 kg、1 568.5 kg,分别是露地栽培的2.9倍、2.8倍;平均商品果率分别是84.5%、81.3%,分别是露地栽培的2.9倍、2.8倍;平均售价在210元·kg-1,每666.7 m2产值为25.5万~30.8万元;每666.7 m2利润分别为21.5万元、17.9万元,分别是露地栽培的9.8倍、8.1倍(表8)。双膜、单膜设施栽培大幅提高了产量和栽培效益,成为保障梅农增收的支柱产业。

3 讨 论

设施栽培改变了杨梅生长发育的小气候环境,在果实发育成熟时期减少外界不利气候因素的影响,促进果实成熟期提前,有效避开梅雨危害,显著提升果实品质[5-7]。目前,在杨梅和其他果树的设施栽培生产中[26-27],主要采用单膜设施大棚栽培模式,本研究首次在杨梅上应用双膜设施促早栽培技术,分析比较露地、单膜设施、双膜设施下荸荠种和东魁杨梅树体生长和果实发育及果实品质情况。杨梅属于耐阴植物,其光补偿点和光饱和点较低,表明杨梅对光照需求较低[25],双膜设施中光照度低于单膜,但已满足杨梅光饱和点需求;双膜设施中荸荠种和东魁SPAD值分别比单膜提高24.7%和12.8%,增加了杨梅叶片叶绿素含量,增大了叶片面积,有利于植物捕获较多的光能和增加有效光合面积,而弥补外界光照的不足。因此,促早设施对杨梅光合作用和正常生长发育不会产生负面影响。

促早栽培设施中气温显著高于露地栽培,其中与单膜设施相比,双膜设施棚内日平均气温更高;基于试验期间统计的气温数据,首次明确荸荠种、东魁物候期的积温情况,为精准调控杨梅物候期提供了温度参数;双膜设施日平均温度比单膜设施高2.6 ℃;双膜设施栽培也提高了活动积温,数据显示,双膜条件下日平均气温≥10 ℃天数和活动积温均顯著高于单膜,表明双膜的增温保温效果更为明显,更利于物候期的提前,双膜设施下荸荠种和东魁的初花时间、果实成熟期均比单膜提早15 d左右,这与葡萄双膜试验中可提前成熟期一致[13-14];对于杨梅而言,更解决了采收期集中、成熟期受梅雨危害等产业瓶颈问题。

设施栽培对杨梅果实发育和品质提升具有重要作用。单膜和双膜栽培下,荸荠种和东魁果实纵横径、单果质量、硬度、可溶性固形物含量、总糖含量、类黄酮含量等指标均高于露地栽培,其中双膜栽培的作用更显著,显著提高了产量和商品果率。双膜、单膜荸荠种和东魁的利润达到每666.7 m2 21.5万元,远高于露地栽培的每666.7 m2 2.2万元,其中双膜栽培的作用更明显,大幅提高栽培经济效益,是保障梅农增收、促进共富建设的有效途径。

4 结 论

杨梅双膜、单膜促早栽培成熟期分别比露地提早40 d和22 d,延长采收期3.4倍,显著改善了果实品质,商品果率提高1.6倍以上。杨梅促早设施可降低花期冻害、梅雨危害,延长采收期,提高经济效益,保障高品质生产。

参考文献 References:

[1] 张淑文,梁森苗,郑锡良,任海英,朱婷婷,戚行江. 杨梅优株果实品质的主成分分析及综合评价[J]. 果树学报,2018,35(8):977-986.

ZHANG Shuwen,LIANG Senmiao,ZHENG Xiliang,REN Haiying,ZHU Tingting,QI Xingjiang. Principal component analysis and comprehensive evaluation of fruit quality in some advanced selections of Chinese bayberry[J]. Journal of Fruit Science,2018,35(8):977-986.

[2] 梁森苗,张淑文,郑锡良,任海英,戚行江. 延迟栽培对杨梅果实成熟期和品质的影响[J]. 中国农学通报,2019,35(4):33-39.

LIANG Senmiao,ZHANG Shuwen,ZHENG Xiliang,REN Haiying,QI Xingjiang. Delayed cultivation affects fruit mature period and quality of Myrica rubra[J]. Chinese Agricultural Science Bulletin,2019,35(4):33-39.

[3] 张建斌,应铮峥. 仙居县杨梅产业绿色化发展主要做法及成效[J]. 现代农业科技,2020(22):214-216.

ZHANG Jianbin,YING Zhengzheng. Main practice and effect of Myrica rubra industry green development in Xianju County[J]. Modern Agricultural Science and Technology,2020(22):214-216.

[4] 汤晓美. 设施栽培杨梅生理特点与成熟期调节试验小结[J]. 中国南方果树,2019,48(3):44-46.

TANG Xiaomei. The test summary of physiological characteristics and fruit maturity regulation of Myrica rubra under greenhouse cultivation[J]. South China Fruits,2019,48(3):44-46.

[5] 柴春燕,徐绍清,房聪玲,孙桐军,黄炜萍. 大棚栽培对杨梅物候期及经济效益的影响[J]. 亚热带农业研究,2014,10(2):107-111.

CHAI Chunyan,XU Shaoqing,FANG Congling,SUN Tongjun,HUANG Weiping. Phenological period,fruit quality and benefits of Myrica rubra by protected cultivation in greenhouse[J]. Subtropical Agriculture Research,2014,10(2):107-111.

[6] 陈新炉,张启,胡佳卉. 大棚杨梅栽培技术研究[J]. 现代园艺,2019(21):7.

CHEN Xinlu,ZHANG Qi,HU Jiahui. Study on the cultivation technology of Myrica rubra in greenhouse[J]. Contemporary Horticulture,2019(21):7.

[7] 吴昌旺,程慧斌,林明明,吴海锋,任海英,郑碎微,赵斌. 浙南山区杨梅大棚促早栽培技术研究[J]. 中国南方果树,2021,50(3):100-103.

WU Changwang,CHENG Huibin,LIN Mingming,WU Haifeng,REN Haiying,ZHENG Suiwei,ZHAO Bin. Study on early bearing cultivation techniques of Chinese bayberry in greenhouse in mountain areas of southern Zhejiang[J]. South China Fruits,2021,50(3):100-103.

[8] 王朝丽,何娟,徐红霞. 软条白沙枇杷设施栽培关键技术[J]. 现代园艺,2022,45(8):22-24.

WANG Zhaoli,HE Juan,XU Hongxia. Key cultivation technologies of Ruantiao Baisha Loquat in greenhouse[J]. Contemporary Horticulture,2022,45(8):22-24.

[9] 李勇,朱更瑞,方伟超,闫顺杰,赵佩,赵娟. 桃设施栽培研究进展[J]. 江苏农业科学,2014,42(7):162-166.

LI Yong,ZHU Gengrui,FANG Weichao,YAN Shunjie,ZHAO Pei,ZHAO Juan. Research progress of protected cultivation of peach[J]. Jiangsu Agricultural Sciences,2014,42(7):162-166.

[10] 文沛. 大樱桃设施栽培技术初步研究[J]. 现代农业,2016(4):6-7.

WEN Pei. Preliminary study on protected cultivation technology of sweet cherry[J]. Modern Agriculture,2016(4):6-7.

[11] 蒋利春,孙莉,朱慧,顾敏燕. 翠冠梨优质高效设施栽培技术[J]. 江苏农业科学,2013,41(8):164-165.

JIANG Lichun,SUN Li,ZHU Hui,GU Minyan. High quality and efficient protected cultivation technology of Cuiguan pear[J]. Jiangsu Agricultural Sciences,2013,41(8):164-165.

[12] 马立功,马林倩,卜慶魏,杭大来. 金手指葡萄双膜大棚夏栽绿苗促成栽培技术研究[J]. 江苏农业科学,2010,38(3):172-175.

MA Ligong,MA Linqian,BU Qingwei,HANG Dalai. Study on forcing cultivation technology of summer green seedling in double membrane greenhouse of ‘Gold Finger grape[J]. Jiangsu Agricultural Sciences,2010,38(3):172-175.

[13] 杨治元. 大棚葡萄双膜覆盖栽培光照度变化的研究[J]. 中国南方果树,2010,39(6):48-50.

YANG Zhiyuan. Study on illuminance change of grape under double membrane mulch cultivation in greenhouse[J]. South China Fruits,2010,39(6):48-50.

[14] 徐小菊,何风杰,江海娥,高洪勤,徐春燕,陈青英,何桂娥. 双膜和加温对藤稔葡萄坐果及品质的影响[J]. 浙江农业学报,2013,25(6):1261-1266.

XU Xiaoju,HE Fengjie,JIANG Haie,GAO Hongqin,XU Chunyan,CHEN Qingying,HE Guie. Effects of double membrane mulching and heating on fruit set and fruit quality of Fujiminori grape[J]. Acta Agriculturae Zhejiangensis,2013,25(6):1261-1266.

[15] 陈铁山,康永祥,张昌贵,周子富. 香椿种子培育芽菜有效积温研究[J]. 西北农业学报,2000,9(2):94-95.

CHEN Tieshan,KANG Yongxiang,ZHANG Changgui,ZHOU Zifu. Effective accumulated temperature of the Chinese Toona seeds germination[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2000,9(2):94-95.

[16] 杨秀武,程志东,郝寿青. 苹果生物学零度组合模型的探讨[J]. 果树学报,2003,20(2):140-142.

YANG Xiuwu,CHENG Zhidong,HAO Shouqing. Probing into apple biological zero point-joint model[J]. Journal of Fruit Science,2003,20(2):140-142.

[17] 陈文. 粤东6种菊科植物种子萌发的生物学零度和积温[J]. 西北师范大学学报(自然科学版),2016,52(4):93-98.

CHEN Wen. The biological zero and accumulated temperature for seed germination of six Asteraceae species in eastern Guangdong[J]. Journal of Northwest Normal University (Natural Science),2016,52(4):93-98.

[18] 王艳华,任传友,韩亚东,张菁,张文忠,黄瑞冬. 东北地区活动积温和极端持续低温的时空分布特征及其对粮食产量的影响[J]. 农业环境科学学报,2011,30(9):1742-1748.

WANG Yanhua,REN Chuanyou,HAN Yadong,ZHANG Jing,ZHANG Wenzhong,HUANG Ruidong. The tempo-spatial patterns of active accumulated and consecutive extreme low temperature and their impacts on grain crop yield in northeast China[J]. Journal of Agro-Environment Science,2011,30(9):1742-1748.

[19] 国家技术监督局. 水果、蔬菜制品 可溶性固形物含量的测定 折射仪法:GB 12295—1990[S]. 北京:中国标准出版社,1990.

State Bureau of Quality and Technical Supervision of the Peoples Republic of China. Fruit and vegetable products—Determination of soluble solids-Refratometric method:GB 12295—1990[S]. Beijing:Standards Press of China,1990.

[20] 中华人民共和国卫生部,中国国家标准化管理委员会. 食品中蔗糖的测定:GB/T 5009.8—2008[S]. 北京:中国标准出版社,2009.

Ministry of Health of the Peoples Republic of China,Standardization Administration of the Peoples Republic of China. Determination of saccharose in foods:GB/T 5009.8—2008[S]. Beijing:Standards Press of China,2009.

[21] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 食品中总酸的测定:GB/T 12456—2008[S]. 北京:中國标准出版社,2009.

General Administration of Quality Supervision,Inspection and Quarantine of the Peoples Republic of China,Standardization Administration of the Peoples Republic of China. Determination of total acid in foods:GB/T 12456—2008[S]. Beijing:Standards Press of China,2009.

[22] WANG J S,ZHAO Z Q,SHENG X G,YU H F,GU H H. Influence of leaf-cover on visual quality and health-promoting phytochemicals in loose-curd cauliflower florets[J]. LWT-Food Science and Technology,2015,61(1):177-183.

[23] 梁森苗,徐云焕,王伟,郑锡良,任海英,彭娟,张启,戚行江. 杨梅果实发育过程中外观及主要营养品质形成规律研究[J]. 核农学报,2016,30(6):1135-1140.

LIANG Senmiao,XU Yunhuan,WANG Wei,ZHENG Xiliang,REN Haiying,PENG Juan,ZHANG Qi,QI Xingjiang. Study on the formation discipline of fruit appearance and main nutrient quality in the fruit development of Chinese bayberry[J]. Journal of Nuclear Agricultural Sciences,2016,30(6):1135-1140.

[24] 金志鳳,李永秀,景元书,王立宏. 杨梅光合作用与生理生态因子的关系[J]. 果树学报,2008,25(5):751-754.

JIN Zhifeng,LI Yongxiu,JING Yuanshu,WANG Lihong. Relationship between photosynthesis and physioecological factors of bayberry (Myrica rubra) tree[J]. Journal of Fruit Science,2008,25(5):751-754.

[25] 谷镜. 东魁与荸荠种杨梅叶片光合特性研究[D]. 杭州:浙江林学院,2009.

GU Jing. Studies on photosynthetic characteristics of Dongkui and Biqi red bayberry[D]. Hangzhou:Zhejiang A & F University,2009.

[26] 郄红丽,黄颖宏. 杨梅大棚栽培技术[J]. 现代园艺,2019(7):69-70.

QIE Hongli,HUANG Yinghong. Greenhouse cultivation technology of Myrica rubra[J]. Contemporary Horticulture,2019(7):69-70.

[27] 冯常斌,任海英. 大棚栽培对杨梅生产的影响[J]. 浙江农业科学,2020,61(8):1558-1562.

FENG Changbin, REN Haiying. Effect of greenhouse on production of Myrica rubra[J]. Journal of Zhejiang Agricultural Sciences,2020,61(8):1558-1562.

猜你喜欢

果实品质杨梅
清欢杨梅酸
杨梅
杨梅
腊月杨梅红
杨梅
摘杨梅
避雨栽培对宿迁地区早熟桃生长发育及果实品质的影响
‘魁金’和‘金水杏’不同发育时期果实品质变化研究
果树栽培技术与果实品质之间关系的探讨
不同结果部位和采收期对南丰蜜桔果实品质的影响