APP下载

不同降雨年型施氮量对延迟收获夏玉米产量、强弱势粒形态与粒重的影响

2023-11-18刘梦张垚葛均筑杨永安吴锡冬侯海鹏

中国农业科学 2023年20期
关键词:施氮粒重弱势

刘梦,张垚,葛均筑,杨永安,吴锡冬,侯海鹏

不同降雨年型施氮量对延迟收获夏玉米产量、强弱势粒形态与粒重的影响

刘梦1,4,张垚1,葛均筑1,杨永安2,吴锡冬1,侯海鹏3

1天津市主要农作物智能育种重点实验室/天津农学院农学与资源环境学院,天津 300392;2天津市优质农产品开发示范中心,天津 301500;3天津市农业发展服务中心,天津 300061;4西北农林科技大学农学院,陕西杨凌 712100

【目的】华北平原热量资源有限,夏播玉米收获期籽粒含水率高,影响机械粒收质量,限制了该项技术在该区域的应用。延迟收获条件下,施氮量差异对夏玉米籽粒产量、强弱势粒形态、粒重等关键产量性状的影响尚不明确。通过对不同施氮水平强弱势粒形态、灌浆及脱水过程的系统观测,明确氮肥调控效应,为区域机械粒收夏玉米稳产减氮增效栽培提供支持。【方法】2020—2021年选用粒收夏玉米品种京农科728为材料,采用收获时期和施氮量二因素区组试验设计,收获时期设正常果穗收获(NH)和延迟籽粒收获(DH),6个纯氮施用水平分别为0(N0)、120(N120,2021)、180(N180)、240(N240)、300(N300)、360(N360)和450 kg hm-2(N450,2020),测定产量(GY)、籽粒鲜体积(GFV)、鲜重(GFW)、干重(GDW)、含水率(GMC)及其变化速率。【结果】与干旱年型(2020年)相比,多雨年型(2021年)弱势粒的GFV、GFW和GDW的最大变化速率(G)、生长量(W)和起始势(R)显著降低,到达最大变化速率时间(T)推迟,活跃期(P)延长,导致弱势粒的GFV、GFW和GDW显著降低15.4%—50.6%、25.4%—62.0%和31.2%—57.3%,而强势粒不显著,GY显著降低3.03×103—5.44×103kg·hm-2。多雨年型条件下,弱势粒的GDW、GDW和GDW比强势粒显著降低55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW推迟4.2—20.7 d,强势粒的GFV、GFW和GDW比弱势粒显著提高56.8%—69.6%、67.0%—80.4%和54.1%—92.1%。与NH相比,延迟收获籽粒的G和R提高,强、弱势粒的P显著延长;在干旱年型和多雨年型下,GFV、GFW显著降低2.1%—8.1%和12.2%—17.1%、4.0%—5.2%和15.7%—19.5%,GDW自25.1—28.2 g/100 grains提高到28.0—34.4 g/100 grains,GMC降至22.6%—26.0%,降幅达31.3%—40.4%,产量提高0.02×103—1.67×103kg·hm-2。干旱年型施氮水平间的GFV、GFW、GDW无显著差异;多雨年型N240-N360处理的GDW、GDW比N180提高,GDW推迟,GDW延长,差异均达显著水平,且对弱势粒影响强于强势粒。DH处理下,N240-N360弱势粒的GFV、GFW和GDW比N180显著提高25.7%—85.3%、59.4%—83.6%和17.9%—43.9%。多雨年型下氮肥的增产效应(74.4%—169.5%)显著高于干旱年型(51.5%—99.1%),N240GY比N120-N180显著提高12.6%—54.5%。【结论】华北平原热量资源限制区小麦-玉米种植制度,将冬小麦变为春小麦,夏玉米延迟收获23—33 d,显著提高弱势粒库容与粒重,籽粒含水率降低至籽粒机收含水率标准,实现周年机械化粒收。优化施氮247.2—248.6 kg·hm-2,实现不同降雨年型下产量稳定在7.0×103—12.0×103kg·hm-2的稳产减氮增效的生产目标。

夏玉米;降雨年型;延迟收获;施氮量;强弱势粒;籽粒灌浆

0 引言

【研究意义】华北平原是中国夏玉米主产区,在保障国家粮食安全中具有重要作用[1]。近年来,夏玉米生长季极端降水如大暴雨日数和平均日降水强度有增加趋势[2],淹水胁迫导致籽粒发育受阻、粒重降低而显著减产[3-6]。华北平原周年两熟制热量资源分配不均衡,致使夏玉米成熟和脱水时间较短,收获期籽粒含水率较高[7],难以达25%—28%机械粒收含水率标准[8],通过延迟收获降低籽粒含水率[9-10],可为籽粒机械粒收技术提供支撑[11]。施氮等栽培措施调控玉米强、弱势粒库容潜力及粒重[12-14],但对籽粒脱水速率影响不显著[15],且为提高集约化种植制度农作物生产力,生产中过量施氮现象十分普遍[16-18]。明确华北平原不同降雨年型下延迟收获和施氮量调控夏玉米产量、籽粒形态与粒重的效应,对区域夏玉米实现机械粒收的适期收获与逆境胁迫下稳产减氮具有重要指导意义。【前人研究进展】近年来,全球气候变化导致华北平原传统穗收夏玉米-冬小麦种植制度播期和生育期与光温水等气候资源匹配度下降[19-21],夏季极端降雨时有发生[2],强降雨引起夏玉米淹水胁迫,根系生理性危害加剧,叶片光合器官破坏,速率显著降低,果穗发育受限,灌浆速率显著降低,灌浆时间缩短,粒重降低而减产[3-6]。“双晚技术”可在不增加成本的前提下,延长夏玉米灌浆与脱水时间,促进生育后期物质向籽粒转运[22];夏玉米生理成熟后田间站秆晾晒百粒重自23.3—37.4 g提高至22.9—38.4 g[9],延迟收获45 d含水率降低至14.4%—17.3%[10]。研究表明,夏玉米粒重受籽粒库容大小和灌浆充实程度影响[23-24],玉米果穗上部籽粒结实率低、灌浆充实度差、粒重偏低,为弱势粒,中下部籽粒为强势粒[25-26]。施氮等栽培措施调控籽粒内激素含量与酶活性,影响灌浆速率及灌浆持续期[15, 27-29],强、弱势粒体积和库容潜力及粒重显著提高[12-14],但对籽粒脱水速率影响不显著[15]。近年来,随着氮肥施用量增加,土壤氮素淋溶与残留量增加,氮肥当季利用率下降,增产效应下降,过量施氮负效应凸显[30-32]。华北平原穗收夏玉米-冬小麦轮作制度周年施氮量平均为545—600 kg·hm-2,最佳氮素调控模式为玉米季施氮300 kg·hm-2以下,远超作物对氮素的最佳需求[16-18]。因此,在传统氮肥管理的基础上开展减量施氮技术研究十分必要,研究表明适量减氮能增加土壤硝态氮累积并减少N2O的排放,协调土壤与作物间氮素积累与转运,促进植株对氮素吸收和利用,提高氮素利用效率,缓解过量施氮对生态环境的危害[33-35]。【本研究切入点】华北平原北部热量资源限制区,将穗收夏玉米-冬小麦变革为粒收夏玉米-春小麦,可解决周年两熟制为保障冬小麦安全越冬难以实现夏玉米机械粒收、夏玉米延迟收获难以播种冬小麦的难题,实现夏玉米机械粒收与周年产量及气候资源协同提高[36-37]。目前,相关研究证实,延迟收获显著降低收获时籽粒含水率[10],对华北平原夏玉米粒重有提高作用[9],但针对延迟收获夏玉米强弱势粒灌浆过程的调控机理研究较少。近年来,全球气候变化导致夏季极端降雨时有发生[2],2021年华北平原6—10月降雨量近1 000 mm,是平常年份的2倍以上,淹水胁迫导致夏玉米强、弱势粒形态发育受阻,粒重显著降低而减产[3-6]。夏玉米授粉结实期遭遇阴雨寡照的逆境下,延迟收获能否弱化淹水胁迫影响而保证夏玉米稳产增产亟须明确。同时,华北平原延迟收获和水分胁迫下,夏玉米最佳施氮量的范围尚无定论。【拟解决的关键问题】本研究在华北平原北部热量资源限制区,针对2020年和2021年2个代表性降雨年型,明确延迟收获与施氮量调控夏玉米产量、强弱势籽粒形态与粒重、含水率和脱水速率的效应,以期为华北平原延迟收获夏玉米逆境胁迫下的稳产减氮增效与机械粒收技术发展提供理论支撑。

1 材料与方法

1.1 试验地点气象条件

试验于2020年和2021年6—11月在天津市优质农产品开发示范中心(117°49′E,39°42′N)进行,0—20 cm土壤养分含量为有机质18.6 g·kg-1、全氮1.09 g·kg-1、水解性氮77.68 mg·kg-1、速效磷64.8 mg·kg-1、速效钾296 mg·kg-1。试验期间夏玉米生育期内气象数据如图1,2020年生长季降雨量为287.6 mm,2021年为973.5 mm。据天津市1991—2020年统计年鉴6—10月平均降水量为451.6 mm,参考陆桂荣等[38]降水量距平百分率的划分标准,将2020年认定为干旱年型,2021年为多雨年型。

1.2 试验设计

试验品种选用京农科728,采用二因素随机区组试验设计,收获时期为正常收获(normal harvest,NH,10月5(13)日)和延迟收获(delayed harvest,DH,11月8(6)日),6个纯氮施用水平为0(N0)、120(N120,2021)、180(N180)、240(N240)、300(N300)、360(N360)和450 kg·hm-2(N450,2020),2021年施氮水平根据2020年试验结果进行优化,增加N120而去掉N450。种植密度75 000株/hm2,行距60 cm、株距22.2 cm,小区长7.0 m,宽4.2 m,种植7行,重复3次,各小区间设置1 m隔离带。N肥按照50%-30%- 20%分别于播种前-拔节期-大喇叭口期施用,P2O5120 kg·hm-2和K2O 150 kg·hm-2全部作种肥。及时防治病虫草害,2020年灌溉2次,每次灌水量均为75 mm,2021年排水。

1.3 测定指标及方法

1.3.1 产量 在收获期,每小区连续收获20穗,带回室内立即考种,数取穗行数、行粒数,计算穗粒数,脱粒后称千粒重和全部粒重,用PM8188-A谷物水分仪测定含水率,按14%安全含水率计算千粒重和产量(grain yield,GY,kg·hm-2)。

1.3.2 籽粒鲜体积、鲜重、干重变化过程及变化速率 在吐丝期,每小区选取吐丝一致样株30株挂牌标记,吐丝(days after silking,DAS)后,每10 d取2个果穗,按长度平均分为上中下3部分,各部分剥取50粒,2穗共100粒,称取籽粒鲜重(grain fresh weight,GFW,g/100grains),排水法测定籽粒鲜体积(grain fresh volume,GFV,cm3/100grains),105 ℃杀青,85 ℃烘干至恒重后,称取干重(grain dry weight,GDW,g/100grains)。

按汤永禄等[39]、曹玉军等[40]方法,用Logistic方程对籽粒GFV、GFW和GDW生长过程进行拟合,并计算导出相应变化特征参数,对籽粒形态及灌浆进行生长分析。Logistic方程=a/(1+be-cx)中,自变量为吐丝后天数,因变量为吐丝后GFW、GFV和GDW,a为GFW、GFV和GDW理论最大值,b、c为性状参数。特征参数有:最大灌浆速率(maximum grain filling rate,G,g·d-1/100 grains) G=c×W× (1-W/a)、到达最大灌浆速率时间(time reaching the G,T,d)T=lnb/c、灌浆活跃期(the active grain filling stage,P,d)P=6/c、灌浆速率最大时的生长量(weight increment of G,W,g/100 grains)W=a/2、积累起始势(the initial grain filling power,R,g)R=c。

1.3.3 籽粒含水率和脱水速率 籽粒含水率(grain moisture content,GMC,%)= (GFW-GDW)/GFW× 100%,指数方程=a×ebx模拟籽粒含水率变化过程,方程求导得到’=ab×ebx模拟籽粒脱水速率(grain dehydration rate,GDR,%·d-1)变化过程。

1.4 数据处理与分析

采用Microsoft Office 2021、SPSS 26.0统计软件进行数据处理与统计分析,SigmaPlot 12.0作图。

2 结果

2.1 产量

与干旱年型夏玉米GY(5.63×103—12.42×103kg·hm-2)相比,同等施氮水平条件下,多雨年型夏玉米GY极显著降低3.03×103—5.44×103kg·hm-2(图2);同等施氮水平条件下,干旱年型DH处理比NH增产0.02×103—1.67×103kg·hm-2(<0.05),N0及N240以上差异显著,多雨年型条件下增幅为0.18×103—0.74×103kg·hm-2,仅在N180处理显著增产。与N0相比,干旱年型条件下施氮增产3.43×103—5.76×103kg·hm-2,显著高于多雨年型增幅2.05×103—4.71×103kg·hm-2,但增产效应(51.5%—99.1%)显著低于多雨年型(74.4%— 169.5%),同一施氮量对DH处理的增产效应显著高于NH处理。干旱年型条件下,NH处理不同施氮水平间GY无显著差异,DH处理N240—N450间无显著差异,比N180显著增产11.8%—23.0%;多雨年型条件下,NH和DH处理在N240—N360间GY无显著差异,分别比N120—N180显著增产21.7%— 50.2%和12.6%—54.5%。线性加平台模型模拟可知,在干旱和多雨年型条件下,DH处理最高GY分别为12.00×103和7.02×103kg·hm-2,比NH处理(10.66×103和6.31×103kg·hm-2)显著提高12.6%和11.3%,最优施氮量(247.2—248.6 kg·hm-2)比NH(201.1—218.3 kg·hm-2)增加30.3— 36.1 kg·hm-2。

NH:正常收获;DH:延迟收获。不同小写字母表示同一收获期不同施氮处理产量差异达0.05显著水平。下同

2.2 强、弱势粒鲜体积、变化速率及其与产量的相关性

夏玉米GFV随灌浆进程呈S形曲线趋势增长(图3),多雨年型弱势粒GFV比干旱年型降低15.4%— 50.6%。干旱年型NH和DH处理收获期强势粒GFV比弱势粒显著提高12.6%—13.0%和20.4%—22.8%,多雨年型分别提高56.8%—62.4%和68.4%—69.6%(<0.01)。干旱年型DH处理GFV比NH处理降低2.1%—8.1%(>0.05),多雨年型显著降低12.2%— 17.1%。干旱年型条件下,NH处理N240GFV比N180提高9.0%—14.5%,DH处理N300—N360GFV比N180— N240提高18.7%—24.0%;多雨年型条件下,NH和DH处理N240—N360下部GFV比N180分别提高14.6%— 15.4%、16.1%—26.5%,DH处理N240—N360弱势粒GFV比N180显著提高25.7%—85.3%。

图3 不同降雨年型下施氮量对延迟收获夏玉米灌浆期强弱势粒鲜体积的影响

由表1可知,与干旱年型相比,多雨年型弱势粒体积最大变化速率(GFV)显著降低32.6%— 68.2%,最大变化速率时间(GFV)推迟3.6—16.5 d,活跃期(GFV)延长8.9—34.4 d,变化速率最大时生长量(GFV)和起始势(GFV)降低25.1% —43.5%和17.5%—57.9%;强势粒GFV和GFV平均提高17.8%和23.3%,GFV缩短5.7 d。干旱年型强势粒GFV和GFV比弱势粒提高6.9%和14.6%,GFW降低6.4%;多雨年型强势粒GFV、GFV和GFV显著提高90.5%—331.1%、26.4%—104.4%和27.2%—241.1%,GFV提前3.3—16.7 d,GFV缩短8.5—28.8 d。多雨年型DH处理GFV和GFV比NH提高8.2%—15.4%、21.7%—40.3%,GFV降低10.1%—17.3%,GFV延长5.1—10.6 d,干旱年型不显著。干旱年型N240-N360强势粒GFV、GFV比N180降低3.8%—19.9%和9.9%—29.7%,GFV提高1.2%—14.7%,GFV延长3.6—13.9 d;N300强势粒GFV比N240提高3.4%—15.2%;N360强势粒GFV比N300降低3.8%—17.7%。多雨年型N240强、弱势粒GFV比N180延长3.2—3.9 d和6.7—10.5 d,GFV提高3.1%—17.4%和2.3%—11.6%,N240-N300弱势粒GFV提高9.3%—44.6%,N300弱势粒GFV延长5.4—6.6 d、GFV降低32.1%—46.9%;N300— N360弱势粒GFV和GFV比N240降低23.0%— 29.7%和19.5%—42.9%,下部籽粒提高18.8%—30.7%和11.2%—36.4%。

表1 不同降雨年型下施氮量对延迟收获夏玉米强弱势粒鲜体积变化速率的影响

GFV:籽粒鲜体积最大灌浆速率;GFV:籽粒鲜体积到达最大灌浆速率时间;GFV:籽粒鲜体积灌浆活跃期;GFV:籽粒鲜体积灌浆速率最大时的生长量;GFV:籽粒鲜体积积累起始势。下同

GFV: maximum grain filling rate of grain fresh volume; GFV: time reaching the Gof grain fresh volume; GFV: the active grain filling stage of grain fresh volume; GFV: weight increment of Gof grain fresh volume; GFV: the initial grain filling power of grain fresh volume. The same as below

相关性分析表明(表2),GFV和GFV、GFV、GFV与产量呈正相关关系,GFV和GFV与产量呈负相关,干旱年型灌浆参数除GFV外均显著,多雨年型下GFV与产量相关性显著,且强势粒GFV、GFV和GFV与产量相关性高于弱势粒。

表2 不同降雨年型下夏玉米产量与收获期强弱势粒鲜体积及其变化参数的相关性

**:<0.01;*:<0.05;ns:不显著 **:<0.01; *:<0.05; ns: not significantly different

2.3 强弱势粒鲜重、变化速率及其与产量相关性

多雨年型强、弱势粒GFW比干旱年型分别降低2.8%—38.6%和25.4%—62.0%(图4)。干旱年型NH和DH处理收获期强势粒GFW比弱势粒显著提高11.1%—13.2%和14.6%—20.4%,多雨年型提高73.9%—80.4%和67.0%—71.3%(<0.01)。干旱年型DH处理比NH处理GFW降低4.0%—5.2%,多雨年型显著降低15.7%—19.5%。干旱年型DH处理N300-N360强、弱势粒GFW比N240提高7.7%—13.6%、19.3%—19.8%;多雨年型条件下,NH处理N360弱势粒GFW比N180—N240提高21.0%—34.4%(<0.05),DH处理N240—N360强、弱势粒GFW比N180显著提高9.9%—30.9%、59.4%—83.6%。

不同降雨年型对弱势粒GFW变化参数影响显著(表3),与干旱年型相比,多雨年型弱势粒鲜重最大变化速率(GFW)显著降低31.9%—65.5%,到达最大变化速率时间(GFW)推迟6.9—9.5 d,活跃期(GFW)延长3.4—7.5 d,变化速率最大时生长量(GFW)和起始势(GFW)降低29.6%—55.3%和8.9%—59.2%。干旱年型强势粒GFW和GFW比弱势粒提高8.5%和14.2%,多雨年型强势粒GFW、GFW和GFW显著提高71.9%—281.2%、49.6%—116.1%和26.1%—151.6%,GFW提前1.1—16.1 d,GFW缩短2.5—27.7 d。多雨年型DH处理GFW和GFW比NH提高11.0%—12.5%和27.4%—38.2%,GFW降低11.8%—12.2%,GFW延长6.5—16.7 d,干旱年型无显著差异。干旱年型下,N300—N360强、弱势粒GFW比N180延长3.1—9.7 d和0.3—6.3 d,GFW提高5.7%—13.3%和5.1%— 12.3%,GFW降低9.0%—22.1%和1.1%—18.1%。多雨年型条件下,N240—N360强势粒GFW比N180提高1.4%—14.6%,GFW降低3.5%—33.0%,N300—N360弱势粒GFW比N240提高4.0%—19.5%,GFW降低16.3%—31.8%,N300—N360弱势粒GFW比N180—N240推迟5.4—7.7 d,而GFW缩短1.7—14.8 d。

表3 不同降雨年型下施氮量对延迟收获夏玉米强弱势粒鲜重变化速率的影响

GFW:籽粒鲜重最大灌浆速率;GFW:籽粒鲜重到达最大灌浆速率时间;GFW:籽粒鲜重灌浆活跃期;GFW:籽粒鲜重灌浆速率最大时的生长量;GFW:籽粒鲜重积累起始势。下同

GFW: maximum grain filling rate of grain fresh weight; GFW: time reaching the Gof grain fresh weight; GFW: the active grain filling stage of grain fresh weight; GFW: weight increment of Gof grain fresh weight; GFW: the initial grain filling power of grain fresh weight. The same as below

图4 不同降雨年型下施氮量对延迟收获夏玉米灌浆期强弱势粒鲜重的影响

从表4可知,GFW和GFW、GFW、GFW与产量呈正相关关系,GFW和GFW与产量呈负相关,与多雨年型相比,干旱年型灌浆参数与产量相关性更显著,多雨年型下仅GFW与产量相关性较高,且强势粒比弱势粒提高。

2.4 强弱势粒干重、灌浆速率及其与产量相关性

由图5可知,多雨年型强、弱势粒GDW比干旱年型降低3.1%—23.6%、31.2%—57.3%(<0.01)。干旱和多雨年型下,NH处理强势粒GDW分别达26.9—28.2和25.1—26.4 g/100 grains,比弱势粒提高5.3%—10.3%和83.3%—92.1%;DH处理强势粒GDW达33.3—34.4 和28.3—28.0 g/100 grains,比弱势粒显著提高10.1%—13.9%和54.1%—57.1%。不同年型条件下,DH处理强、弱势粒GDW比NH处理显著提高11.2%—22.8%、18.1%—34.1%(<0.05)。干旱年型条件下,与N180相比,NH处理N240—N300弱势粒GDW显著提高13.3%—18.2%,DH处理N300—N360提高11.6%—13.7%(<0.05);多雨年型条件下,NH和DH处理N240—N360弱势粒GDW比N180显著提高57.4%—65.3%、17.9%—43.9%。

表4 不同降雨年型下夏玉米产量与收获期强弱势粒鲜重及其变化参数的相关性

与干旱年型相比,多雨年型弱势粒干重最大灌浆速率(GDW)显著降低33.0%—59.5%(表5),到达最大灌浆速率时间(GDW)推迟4.1—19.0 d,灌浆活跃期(GDW)延长4.4—19.6 d,灌浆速率最大时生长量(GDW)和积累起始势(GDW)降低13.8%—53.3%和10.5%—30.7%。干旱年型强势粒GDW和GDW比弱势粒提高11.3%和9.6%,多雨年型强势粒GDW、GDW和GDW显著提高55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW提前4.2—20.7 d,GDW缩短1.6—16.1 d。干旱年型DH处理强势粒GDW比NH提高12.6%,GDW降低18.5%,强弱势粒GDW延长6.6—12.5 d,多雨年型差异不显著。干旱年型条件下,与N180相比,N240—N360强势粒GDW提高2.5%—13.0%(<0.05),弱势粒GDW和GDW提高1.2%—9.8%和1.8%—23.7%;多雨年型N240—N360强势粒GDW比N180提高2.2%—16.6%,GDW延长2.2—11.7 d,弱势粒GDW提高24.0% —63.1%,GDW提高21.0%—128.5%,GDW推迟3.4—17.4 d,GDW延长5.2—8.9 d;N300-N360处理GDW和GDW比N240提高4.8%—31.5%、2.8%—49.7%,GDW延长1.4—8.4 d,强势粒GDW提前0.8—3.9 d,而弱势粒推迟2.8—6.4 d。

相关性分析表明(表6),GDW和GDW、GDW、GDW与产量呈正相关,而GDW和GDW与产量呈负相关,干旱年型GDW、GDW、GDW与产量相关性均达显著或极显著水平,多雨年型下强势粒灌浆参数与产量相关性高于弱势粒。

2.5 强弱势粒含水率和脱水速率

灌浆期夏玉米GMC呈指数方程下降趋势(图6),降雨年型间及强、弱势粒间GMC无显著差异。干旱年型和多雨年型条件下,DH处理GMC比NH处理极显著降低35.1%—40.4%和31.3%—35.7%,至22.6%— 26.0%和23.3%—25.5%。不同年型条件下,施氮NH处理GMC比N0降低5.1%—17.4%和8.7%—20.8%,DH处理GMC降低3.0%—19.3%和2.7%—11.8%;干旱年型DH处理N240GMC比N180降低5.9%—15.2%,多雨年型施氮处理间GMC无差异。

图5 不同降雨年型条件下施氮量对延迟收获夏玉米灌浆期强弱势粒干重的影响

不同降雨年型间夏玉米GDR差异主要集中在DAS0-20,灌浆期GDR不断降低(图7)。多雨年型强、弱势粒GDR比干旱年型提高15.0%—44.9%和16.9%—51.7%。干旱和多雨年型下,DAS0-20弱势粒GDR比强势粒提高5.5%—12.5%和16.9%—23.2%,DH处理GDR比NH显著降低44.6%—46.4%、48.0%—48.6%。多雨年型N180—N360处理DAS0-30GDR比N0降低7.3%—19.0%(<0.05),N180—N360无显著差异。

3 讨论

3.1 不同降雨年型对夏玉米产量、强弱势粒形态与粒重的影响

渍涝阴雨等气候灾害引起籽粒灌浆特性改变,灌浆速率显著降低,持续期缩短,降低籽粒体积和粒重[5, 41-42]。任佰朝等[5]研究表明,三叶期淹水导致夏玉米籽粒体积和干重降低7.5%—19.4%和9.9%—12.0%,开花后淹水降低3.7%—11.1%和0.2%—7.5%。本研究结果表明,2021年华北平原强降雨导致夏玉米全生育期长时间遭受淹水胁迫,与干旱年型(2020年)相比,G、W和R均降低,弱势粒鲜体积、鲜重和干重显著降低15.4%—50.6%、25.4%—62.0%、31.2%—57.3%,GY极显著降低3.03×103—5.44×103kg·hm-2。分析原因主要在于长时间淹水限制根系发育[42],影响植株形态构建,叶片叶绿素结构破坏,影响光合特性[3, 6],籽粒灌浆进程受阻,主要表现为吐丝后籽粒灌浆速率降低,灌浆活跃期缩短,淀粉积累速率与含量下降[23-24],粒重显著降低导致大幅减产[4-5, 42-43]。同时多雨年型常阴雨寡照,日均温度降低导致灌浆期可溶性淀粉合成酶等活性下降,淀粉积累速率减慢,籽粒产量显著降低[26, 29]。强、弱势粒间籽粒灌浆动态、物质代谢及同化物积累因着生位置显著不同[12-13, 28],强势粒灌浆速率、物质积累速率高于弱势粒[15, 28]。本研究结果证实,弱势粒灌浆速率、灌浆速率最大时生长量降低,导致收获期籽粒体积和粒重显著低于强势粒,多雨年型条件下强、弱势粒间差异更显著,分析原因是多雨年份吐丝前物质积累降低48.5%—76.8%[44],同化物供应降低影响了小花个体发育及后期籽粒灌浆[45],这种效应在非生物逆境下表现更明显[25-26, 41],多雨年型弱势粒GDW、GDW和GDW比强势粒显著降低55.1%—258.1%、13.4%—143.0%和12.0%—126.6%,GDW推迟4.2—20.7 d,因此本研究中弱势粒受淹水胁迫影响更大,导致多雨年型弱势粒GFV、GFW、GDW比干旱年型降低15.4%—50.6%、25.4%—62.0%、31.2%—57.3%(<0.01),而强势粒不显著。

表5 不同降雨年型条件下施氮量对延迟收获夏玉米强弱势粒干重灌浆速率的影响

GDW:籽粒干重最大灌浆速率;GDW:籽粒干重到达最大灌浆速率时间;GDW:籽粒干重灌浆活跃期;GDW:籽粒干重灌浆速率最大时的生长量;GDW:籽粒干重积累起始势。下同

GDW: maximum grain filling rate of grain dry weight; GDW: time reaching the Gof grain dry weight; GDW: the active grain filling stage of grain dry weight; GDW: weight increment of Gof grain dry weight; GDW: the initial grain filling power of grain dry weight. The same as below

表6 不同降雨年型条件下夏玉米产量与收获期强弱势粒干重及其变化参数的相关性

图6 不同降雨年型条件下施氮量对延迟收获夏玉米灌浆期强弱势粒含水率的影响

图7 不同降雨年型下施氮量对延迟收获夏玉米强弱势粒脱水速率的影响

3.2 延迟收获对夏玉米产量、强弱势粒形态与粒重的影响

夏玉米籽粒体积、粒重与产量显著正相关,受到灌浆特性显著调控,一般认为灌浆速率越大、灌浆活跃期越长,营养物质积累越快,越有利于籽粒库容增加、粒重增大[46-47]。改变玉米熟期,提高籽粒灌浆速率和脱水速率,降低籽粒含水率,可实现增产与机械粒收[48]。李璐璐等[9]在华北平原南部研究表明夏玉米生理成熟后延迟收获百粒重自23.3—37.4 g提高至22.9—38.4 g。本研究结果表明,延迟收获期籽粒G和R提高,强、弱势粒P显著延长,在干旱年型和多雨年型条件下,延迟收获籽粒持续脱水,GFV降低2.1%—8.1%和12.2%—17.1%(<0.05),GFW降低4.0%—5.2%和15.7%—19.5%(<0.05),不同年型间籽粒干重自25.1—28.2 g/100 grains提高到28.0— 34.4 g/100 grains,产量提高0.02×103—1.67×103kg·hm-2,支持已有结论。且多雨年型GFV和GFW在延迟收获期间降低幅度显著高于干旱年型,说明夏玉米授粉结实期遭遇阴雨寡照的逆境下,延迟收获仍能对籽粒含水率起到降低作用。收获期籽粒含水率是决定籽粒机械直收的重要指标,研究表明收获期籽粒含水率与收获时期、灌浆天数、灌浆速率、籽粒脱水速率显著相关[49-50],而脱水速率与灌浆速率相关性不显著[28],适当推迟收获延长籽粒灌浆脱水期,是降低籽粒含水率,提高机械粒收质量的重要途径[49]。本研究结果表明,华北平原北部夏玉米延迟23—33 d收获籽粒含水率可降至22.6%— 26.0%,比正常收获降幅达31.3%—40.4%,满足玉米机械粒收含水率的标准。李璐璐等[9]在华北平原南部的试验结果表明,延迟收获籽粒含水率降低至12.9%—24.4%,差异的原因在于本试验在华北平原北部延迟收获10月中下旬至11月上旬气温整体低于南部地区,限制了籽粒脱水速率[51]。另外,华北平原北部热量限制下夏玉米收获及冬小麦播种时间不能晚于10月15日,传统收获时夏玉米籽粒刚刚甚至尚未达生理成熟期,含水率高达30.8%— 41.8%,因此本区域延迟收获籽粒含水率降幅及籽粒干重增加值显著高于华北平原南部。

3.3 施氮量对夏玉米产量、强弱势粒形态与粒重的影响

合理施氮促进光合产物向籽粒转运,改善籽粒灌浆特性[15],延长灌浆活跃期,提高最大灌浆速率和灌浆速率最大时的生长量,粒重增大,且强势粒高于弱势粒[27, 40, 52]。施氮过多导致群体结构变差,降低花前茎秆非结构性碳水化合物积累,阻碍营养物质向籽粒转运,降低W、G[27],营养物质积累减慢,对籽粒灌浆无促进作用,粒重和产量提高受限[27, 48]。本研究表明,施氮240 kg·hm-2以上强、弱势粒G和W提高,T推迟,P延长,体积和粒重显著提高,施氮240 kg·hm-2以上GY无显著差异。分析原因可能是合理施氮加快IAA、ZR、GA3等植物内源激素合成,提高籽粒灌浆速率,延长灌浆持续期,促进同化物积累,增加千粒重;过量施氮降低植物激素含量,减慢籽粒中碳水化合物、蛋白质等的合成及运输进而抑制籽粒灌浆进程[12, 27, 53-54]。多雨年型下施氮的增产效应(74.4%—169.5%)显著高于干旱年型(51.5%— 99.1%),主要原因一是施氮提高土壤中硝态氮含量,土壤硝态氮运移受土壤水分状况和含量高低的影响,含量越高,向下移动越深,水分利用效率显著提高,实现增产28.52%—37.86%[55],二是水肥管理不同显著影响水分和肥料的利用效率,相同施氮处理氮肥利用率随土壤含水率增加而增加[56]。多雨年型弱势粒对氮肥的调控响应显著,DH处理N240—N360弱势粒GFV、GFW、GDW比N180显著提高25.7%—85.3%、59.4%— 83.6%和17.9%—43.9%,但NH处理不显著,证实玉米高密群体产量的提高主要通过促进弱势粒发育提高结实率起作用[57],同时说明淹水胁迫灌浆期弱势粒发育受阻后,延迟收获和施氮处理能够改善淹水对弱势粒的库容降低,分析原因为施氮量增加,籽粒可溶性酸性蔗糖转化酶活性逐渐升高,多胺含量增加而乙烯含量下降,弱势粒库活性提高[29],且华北平原北部热量限制区夏玉米适时延迟收获仍保持一定灌浆和脱水速率[44]。线性加平台模型模拟可知,同一施氮量对DH处理的增产效应显著高于NH处理,延迟收获后玉米灌浆脱水期仍需要增施氮肥30.3—36.1 kg·hm-2,猜测可能与吐丝期至成熟期是玉米的需氮高峰[58],而传统收获时夏玉米籽粒刚刚甚至尚未达生理成熟期有关,因此,关于玉米延迟收获后氮肥的需求与转运仍需进一步研究。

4 结论

多雨年型对夏玉米籽粒灌浆特性影响显著,籽粒体积和粒重降低,弱势粒受水分胁迫显著大于强势粒,弱势粒灌浆受限导致体积和粒重均低于强势粒,籽粒产量极显著降低3.03×103—5.44×103kg·hm-2。夏玉米延迟收获延长籽粒灌浆活跃期,提高灌浆速率,持续脱水,GFV、GFW降低,籽粒干重自25.1—28.2 g/100 grains显著提高至28.0—34.4 g/100 grains,籽粒含水率自36.3%—40.1%显著降低至22.6%—26.0%,满足玉米机械粒收含水率标准的同时显著增产0.02×103—1.67×103kg·hm-2。

施氮N240—N360显著改善籽粒灌浆特性,提高最大灌浆速率及其生长量,延长灌浆持续期,提高强弱势粒体积和粒重,多雨年型和延迟收获处理下弱势粒粒重对氮肥的响应均高于强势粒,最优施氮N240比低施氮量N120—N180增产12.6%—54.5%。总之,华北平原热量资源限制区夏玉米正常收获最优施氮量为201.1—218.3 kg·hm-2,产量6.31×103—10.66×103kg·hm-2;将冬小麦变为春小麦,夏玉米通过延迟收获23—33 d,显著提高弱势粒库容与粒重,籽粒含水率降低至籽粒机收含水率标准,实现周年机械化粒收,优化施氮247.2—248.6 kg·hm-2,实现不同降雨年型下产量稳定在7.0×103—12.0×103kg·hm-2的稳产减氮增效的生产目标。

[1] 陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48(16): 3132-3145.

LU W T, YU H, CAO S N, CHEN C QEffects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3145. (in Chinese)

[2] 沈皓俊, 罗勇, 赵宗慈, 王汉杰. 基于LSTM网络的中国夏季降水预测研究. 气候变化研究进展, 2020, 16(3): 263-275.

SHEN H J, LUO Y, ZHAO Z C, WANG H J. Prediction of summer precipitation in China based on LSTM network. Climate Change Research, 2020, 16(3): 263-275. (in Chinese)

[3] 于维祯, 张晓驰, 胡娟, 邵靖宜, 刘鹏, 赵斌, 任佰朝. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2021, 54(18): 3834-3846.

YU W Z, ZHANG X C, HU J, SHAO J Y, LIU P, ZHAO B, REN B Z. Combined effects of shade and waterlogging on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846. (in Chinese)

[4] REN B Z, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science, 2014, 94(1): 23-31.

[5] 任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 赵斌, 刘鹏. 淹水胁迫对夏玉米籽粒灌浆特性和品质的影响. 中国农业科学, 2013, 46(21): 4435-4445.

REN B Z, ZHANG J W, LI X, FAN X, DONG S T, ZHAO B, LIU P. Effect of waterlogging on grain filling and quality of summer maize. Scientia Agricultura Sinica, 2013, 46(21): 4435-4445. (in Chinese)

[6] 任佰朝, 朱玉玲, 李霞, 范霞, 董树亭, 赵斌, 刘鹏, 张吉旺. 大田淹水对夏玉米光合特性的影响. 作物学报, 2015, 41(2): 329-338.

REN B Z, ZHU Y L, LI X, FAN X, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of waterlogging on photosynthetic characteristics of summer maize under field conditions. Acta Agronomica Sinica, 2015, 41(2): 329-338. (in Chinese)

[7] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44(1): 137-143.

REN B Z, GAO F, WEI Y J, DONG S T, ZHAO B, LIU P, ZHANG J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agronomica Sinica, 2018, 44(1): 137-143. (in Chinese)

[8] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44(12): 1764-1773.

LI L L, MING B, XIE R Z, WANG K R, HOU P, LI S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer maize in the yellow-Huai-Hai rivers plain. Acta Agronomica Sinica, 2018, 44(12): 1764-1773. (in Chinese)

[9] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11): 2052-2060.

LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K. Corn kernel weight and moisture content after physiological maturity in field. Scientia Agricultura Sinica, 2017, 50(11): 2052-2060. (in Chinese)

[10] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52(9): 1501-1517.

ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2021, 2019, 52(9):1501-1517. (in Chinese)

[11] 王克如, 李璐璐, 鲁镇胜, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张镇涛, 侯梁宇, 李少昆. 黄淮海夏玉米机械化粒收质量及其主要影响因素. 农业工程学报, 2021, 37(7): 1-7.

WANG K R, LI L L, LU Z S, GAO S, WANG Y Z, HUANG Z F, XIE R Z, MING B, HOU P, XUE J, ZHANG Z T, HOU L Y, LI S K. Mechanized grain harvesting quality of summer maize and its major influencing factors in Huanghuaihai region of China. Transactions of

the Chinese Society of Agricultural Engineering, 2021, 37(7): 1-7. (in Chinese)

[12] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39(8): 1452-1461.

XU Y J, GU D J, ZHANG B B, ZHANG H, WANG Z Q, YANG J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agronomica Sinica, 2013, 39(8): 1452-1461. (in Chinese)

[13] 徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41(2): 297-307.

XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2): 297-307. (in Chinese)

[14] 于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高. 植物营养与肥料学报, 2020, 26(5): 797-805.

YU N N, ZHAO Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 797-805. (in Chinese)

[15] 于宁宁, 任佰朝, 赵斌, 刘鹏, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和营养品质的影响. 应用生态学报, 2019, 30(11): 3771-3776.

YU N N, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chinese Journal of Applied Ecology, 2019, 30(11): 3771-3776. (in Chinese)

[16] 茹淑华, 耿暖, 张国印, 王凌, 孙世友. 施用氮肥对太行山前平原区作物产量和土壤硝态氮残留量的影响. 华北农学报, 2015, 30(5): 161-166.

RU S H, GENG N, ZHANG G Y, WANG L, SUN S Y.Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen content in Taihang piedmont area. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 161-166.(in Chinese)

[17] 修明, 谷世禄, 田中伟, 祝庆, 蔡剑, 姜东, 戴廷波. 稻秸还田下播种密度与氮肥运筹对小麦产量及氮素利用效率的影响. 麦类作物学报, 2016, 36(10): 1377-1385.

XIU M, GU S L, TIAN Z W, ZHU Q, CAI J, JIANG D, DAI T B. Effect of planting density and nitrogen application on wheat yield and nitrogen use efficiency under rice straw returning. Journal of Triticeae Crops, 2016, 36(10): 1377-1385.(in Chinese)

[18] 王艳群. 华北小麦/玉米轮作体系氮素调控综合效应研究[D]. 保定: 河北农业大学, 2018.

WANG Y Q. Comprehensive effects of nitrogen regulation on wheat and maize rotation system in the North China[D]. Baoding: Hebei agricultural university, 2018.(in Chinese)

[19] Xiong W, Matthews R, Holman I, Lin E D, Xu Y L. Modelling China’s potential maize production at regional scale under climate change. Climatic Change, 2007, 85(3): 433-451.

[20] Dong J W, Liu J Y, Tao F L, Xu X L, Wang J B. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Research, 2009, 40: 37-48.

[21] Chen C, Wang E L, Yu Q, Zhang Y Q. Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain. Climatic Change, 2010, 100(3): 559-578.

[22] ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016, 108(1): 196-204.

[23] 徐振和, 梁明磊, 路笃旭, 刘梅, 刘鹏, 董树亭, 张吉旺, 赵斌, 李耕, 杨金胜. 在植株不同水平距离处垂直断根对夏玉米产量形成和籽粒库容特性的影响. 作物学报, 2016, 42(12): 1805-1816.

XU Z H, LIANG M L, LU D X, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G. Effect of cutting roots vertically at a place with different horizontal distance from plant on yield and grain storage capacity of summer maize. Acta Agronomica Sinica, 2016, 42(12): 1805-1816. (in Chinese)

[24] 路笃旭, 徐振和, 刘梅, 刘鹏, 董树亭, 张吉旺, 赵斌, 李耕, 刘少坤, 李庆方. 侧向垂直断根对不同根型夏玉米品种叶片光合性能及产量的影响. 中国农业科学, 2017, 50(18): 3482-3493.

LU D X, XU Z H, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G, LIU S K, LI Q F. Effect of vertically cutting roots at different horizontal distances from plant on leaf photosynthetic characteristics and yield of summer maize with different root types. Scientia Agricultura Sinica, 2017, 50(18): 3482-3493. (in Chinese)

[25] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50(11): 2061-2070.

ZHANG P, CHEN G Y, GENG P, GAO Y, ZHENG L, ZHANG S S WANG P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50(11): 2061-2070.(in Chinese)

[26] 张巽, 郝建平, 王璞, 张萍, 陈璐洁. 灌浆期低温对离体培养玉米强弱势粒发育的影响. 中国农业科学, 2018, 51(12): 2263-2273.

ZHANG X, HAO J P, WANG P, ZHANG P, CHEN L J. Effects of low temperature on maize superior and inferior kernels development during grain filling. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.(in Chinese)

[27] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48(9): 2366-2376.

ZHANG Z B, QU X Y, YU N N, REN B Z, LIU P, ZHAO B, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. (in Chinese)

[28] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47(3): 507-519.

ZHU Y L, WANG C G, YANG M, ZHENG X H, ZHAO C F, ZHANG R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agronomica Sinica, 2021, 47(3): 507-519. (in Chinese)

[29] 王志刚, 梁红伟, 高聚林, 于晓芳, 孙继颖, 苏治军, 胡树平, 余少波, 李雅剑, 魏淑丽, 杨哲. 玉米弱势粒库活性与籽粒内源激素及多胺含量的关系. 作物学报, 2017, 43(8): 1196-1204.

WANG Z G, LIANG H W, GAO J L, YU X F, SUN J Y, SU Z J, HU S P, YU S B, LI Y J, WEI S L, YANG Z. Relationship of sink activity with endogenous hormones and polyamine contents in inferior kernels of maize. Acta Agronomica Sinica, 2017, 43(8): 1196-1204. (in Chinese)

[30] WORKU M, BÄNZIGER M, ERLEY G S A, FRIESEN D, DIALLO A O, HORST W J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 2007, 47(2): 519-528.

[31] NYIRANEZA J, N'DAYEGAMIYE A, CHANTIGNY M H, LAVERDIÈRE M R. Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Science Society of America Journal, 2009, 73(1): 317-327.

[32] 张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000kg小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35(6): 1086-1096.

ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agronomica Sinica, 2009, 35(6): 1086-1096.(in Chinese)

[33] Malhi S S, Lemke R, Wang Z H, Chhabra B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183.

[34] Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938-945.

[35] Snyder C S, Bruulsema T W, Jensen T L, Fixen P E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 247-266.

[36] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47(10): 1843-1853.

ZHOU B Y, GE J Z, SUN X F, HAN Y L, MA W, DING Z S, LI C F, ZHAO M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021, 47(10): 1843-1853. (in Chinese)

[37] Liu M, Ma Z Q, Liang Q, Zhang Y, Yang Y A, Hou H P, Wu X D, Ge J Z. Spring wheat-summer maize annual crop system grain yield and nitrogen utilization response to nitrogen application rate in the thermal-resource-limited region of the North China plain. Agronomy, 2023, 13(1): 155.

[38] 陆桂荣, 郑美琴, 袁安芳, 滕丽峰. 日照市旱涝变化特征分析. 中国农业气象, 2009, 30(3): 436-439, 448.

LU G R, ZHENG M Q, YUAN A F, TENG L F. Characteristic of flood and drought changes in rizhao city. Chinese Journal of Agrometeorology, 2009, 30(3): 436-439, 448.(in Chinese)

[39] 汤永禄, 吴晓丽, 吴元奇, 李朝苏, 吴春, 郭大明. 小麦籽粒灌浆参数的基因型差异及其稳定性分析. 中国农业大学学报, 2014, 19(1): 9-20.

TANG Y L, WU X L, WU Y Q, LI C S, WU C, GUO D M. Analysis of the genotypic variation and stability of grain filling parameters of wheat. Journal of China Agricultural University, 2014, 19(1): 9-20.(in Chinese)

[40] 曹玉军, 窦金刚, 高玉山, 魏雯雯, 吕艳杰, 姚凡云, 刘慧涛, 王永军. 施氮对不同种植密度玉米产量和子粒灌浆特性的影响. 玉米科学, 2015, 23(6): 136-141, 148.

CAO Y J, DOU J G, GAO Y S, WEI W W, Lü Y J, YAO F Y, LIU H T, WANG Y J. Effect of nitrogen application on yield and grain filling characteristics under different densities of maize. Journal of Maize Sciences, 2015, 23(6): 136-141, 148. (in Chinese)

[41] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39(10): 1826-1834.

ZHOU W X, DONG P F, WANG X P, LI C H. Effects of low-light stress on kernel setting, and metabolism of carbon and nitrogen in different maize (L.) genotypes. Acta Agronomica Sinica, 2013, 39(10): 1826-1834. (in Chinese)

[42] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53(17): 3479-3495.

WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495.(in Chinese)

[43] 武文明, 王世济, 陈洪俭, 魏凤珍, 李金才. 氮肥运筹对苗期受渍夏玉米子粒灌浆特性和产量的影响. 玉米科学, 2016, 24(6): 120-125.

WU W M, WANG S J, CHEN H J, WEI F Z, LI J C. Effects of nitrogen fertilization on grain filling characteristics in summer maize under waterlogging at the seedling stage. Journal of Maize Sciences, 2016, 24(6): 120-125. (in Chinese)

[44] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响. 作物学报, 2023, 49(2): 497-510.

LIU M, ZHANG Y, GE J Z, ZHOU B Y, WU X D, YANG Y A, HOU H P. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years. Acta Agronomica Sinica, 2023, 49(2): 497-510. (in Chinese)

[45] 申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. 植物营养与肥料学报, 2005, 11(3): 314-319.

SHEN L X, WANG P, ZHANG R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Journal of Plant Nutrition and Fertilizers, 2005, 11(3): 314-319. (in Chinese)

[46] Costa C, Dwyer L M, Zhou X M, Dutilleul P, Hamel C, Reid L M, Smith D L. Root morphology of contrasting maize genotypes. Agronomy Journal, 2002, 94(1): 96.

[47] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15000kg·hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445.

WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. (in Chinese)

[48] 肖珊珊, 张翼飞, 杨克军, 明立伟, 杜嘉瑞, 徐荣琼, 孙逸珊, 李伟庆, 李桂彬, 李泽松, 李佳宇. 不同熟期品种间作对春玉米籽粒灌浆、脱水特性及产量的影响.中国农业科学, 2022, 55(12): 2294-2310.

XIAO S S, ZHANG Y F, YANG K J, MING L W, DU J R, XU R Q, SUN Y S, LI W Q, LI G B, LI Z S, LI J Y. Effects of intercropping with different maturity varieties on grain filling, dehydration characteristics and yield of spring maize. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310. (in Chinese)

[49] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性. 作物学报, 2021, 47(1): 149-158.

WANG R H, XU T J, CHEN C Y, WANG Y D, Lü T F, LIU Y E, CAI W T, LIU X Z, ZHAO J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agronomica Sinica, 2021, 47(1): 149-158. (in Chinese)

[50] 张先宇, 杨帆, 张嘉月, 韩笑, 周羽, 张林, 曾兴, 王振华, 邸宏. 脱水速率和灌浆速率对玉米收获期子粒含水量的影响. 玉米科学, 2020, 28(4): 74-78.

ZHANG X Y, YANG F, ZHANG J Y, HAN X, ZHOU Y, ZHANG L, ZENG X, WANG Z H, DI H. Dynamic changes of grain moisture content and filling rate of maize hybrids and parental inbred lines. Journal of Maize Sciences, 2020, 28(4): 74-78. (in Chinese)

[51] 梁效贵, 赵雪, 吴巩, 陈先敏, 高震, 申思, 林珊, 周顺利. 推迟收获对华北夏玉米籽粒脱水和力学特性的影响及其品种差异. 中国农业大学学报, 2019, 24(5): 1-9.

LIANG X G, ZHAO X, WU G, CHEN X M, GAO Z, SHEN S, LIN S, ZHOU S L. Grain dehydration and mechanical characteristics of different summer maize hybrids and their responses to delayed harvest in the North China plain. Journal of China Agricultural University, 2019, 24(5): 1-9. (in Chinese)

[52] Li Q, Du L J, Feng D J, Ren Y, Li Z X, Kong F L, Yuan J C. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. The Crop Journal, 2020, 8(6): 990-1001.

[53] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.

ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)

[54] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45(9): 1446-1453.

WAN Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agronomica Sinica, 2019, 45(9): 1446-1453. (in Chinese)

[55] 杜红霞, 吴普特, 冯浩, 王百群, 马军勇. 氮施用量对夏玉米土壤水氮动态及水肥利用效率的影响. 中国水土保持科学, 2009, 7(4): 82-87.

DU H X, WU P T, FENG H, WANG B Q, MA J Y. Influence of nitrogen application on soil moisture-nitrogen dynamics and water-fertilizer use efficiency of. Science of Soil and Water Conservation, 2009, 7(4): 82-87.(in Chinese)

[56] 潘家荣, 巨晓棠, 刘学军, 陈新平, 张福锁, 毛达如. 水氮优化条件下在华北平原冬小麦/夏玉米轮作中化肥氮的去向. 核农学报, 2009, 23(2): 334-340, 307.

PAN J R, JU X T, LIU X J, CHEN X P, ZHANG F S, MAO D R. Fate of fertilizer nitrogen for winter wheat/summer maize rotation in North China Plain under optimization of irrigation and fertilization. Journal of Nuclear Agricultural Sciences, 2009, 23(2): 334-340, 307.(in Chinese)

[57] CÁRCOVA J, URIBELARREA M, BORRÁS L, OTEGUI M E, WESTGATE M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Science, 2000, 40(4): 1056-1061.

[58] 余垚颖, 莫太相, 刘金丹, 郭应菊, 陈代容, 王明富. 四川山地、丘陵玉米N、P、K需肥特性及肥料利用率研究. 西南农业学报, 2021, 34(2): 326-333.

YU Y Y, MO T X, LIU J D, GUO Y J, CHEN D R, WANG M F. N, P, K demand characteristics and fertilizer use efficiency of maize in mountain and hilly Sichuan. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 326-333.(in Chinese)

Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight under Different Rainfall Years

1Tianjin Key Laboratory of Intelligent Breeding of Major Crops/College of Agronomy and Resources and Environment, Tianjin agricultural university, Tianjin 300392;2Tianjin High-quality Agricultural Products Development Demonstration Center, Tianjin 301500;3Tianjin Agricultural Development Service Center, Tianjin 300061;4college of agronomy, northwest a&funiversity, Yangling 712100, Shaanxi

【Objective】The North China Plain is the thermal resource limited area, summer maize grain mechanical harvesting technology were astricted by higher grain moisture content at harvest stage, which affects the quality of mechanical grain harvest. Under delayed harvest conditions, nitrogen application rate affect summer maize grain yield, and superior and inferior grains morphology and weight are not clear. Through the systematic observation of summer maize superior and inferior grains morphology, filling and dehydration process under different nitrogen application levels, clarified the regulation effect of nitrogen, and which provided support for summer maize grain mechanical harvesting technology cultivation to obtain stabilize yield, reduce nitrogen application and improve efficiency in the of region. 【Method】Summer maize grain mechanical harvesting hybrid Jingnongke 728 was used as the research materials, the field experiment were conducted in 2020-2021 by a harvest time and nitrogen application rate two-factor randomized block design, harvest time were normal harvest time (NH) and delayed harvest (DH), and six nitrogen application rate were 0 (N0), 120 (N120, 2021), 180 (N180), 240 (N240), 300 (N300), 360 (N360) and 450 kg hm-2(N450, 2020). Summer maize grain yield (GY), superior and inferior grains fresh volume (GFV), fresh weight (GFW), dry weight (GDW), and moisture content (GMC) and their change rates were measured. 【Result】Compared to the dry year (2020), the inferior grains maximum grain filling rate (G), the increment at G(W) and initial potential (R) of GFV, GFW and GDW were significantly reduced in the rainy year (2021), and the days reached G(T) were delayed, and the active duration (P) were prolonged, which resulted in GFV, GFW and GDW reduced significantly by 15.4%-50.6%, 25.4%-62.0% and 31.2%-57.3%, respectively, however, there were no significant change in superior grains, and so led GY declined significantly by 3.03×103-5.44×103kg·hm-2. The inferior grains GDW, GDWand GDWwere delayed by 4.2-20.7 d compared to superior grains. The superior grains GFV, GFW and GDW were significantly increased by 56.8%-69.6%, 67.0%-80.4% and 54.1%-92.1%, respectively, than inferior grains. Compared with NH, the grains Gand Rat DH treatments were increased, and the P for superior and inferior grains were significantly prolonged, which led the GFV, GFW decreased significantly by 2.1%-8.1% and 12.2%-17.1%, 4.0%-5.2% and 15.7%-19.5, respectively, under the dry year and rainy year, meanwhile GDW increased from 25.1-28.2 g/100 grains to 28.0-34.4 g/100 grains, the GMC decreased from 22.6%-26.0% to 22.6%-26.0% as well, which were declined by 31.3%-40.4% than NH. The GY for DH were increased 0.02×103-1.67×103kg·hm-2than NH. There was no significant difference in GFV, GFW and GDW between nitrogen application levels in dry year. While in the rainy year, the GDWand GDWfor N240-N360treatment were significantly higher than N180, GDWwere delayed, and GDWwas prolonged (<0.05), and the effects were more intense on inferior grains than on superior grains. Under DH treatment, the GFV, GFW and GDW of inferior grains for N240–N360were significantly increased by 25.7%-85.3%, 59.4%-83.6% and 17.9%–43.9% than N180, respectively. The nitrogen yield increasing effect in rainy year were significantly intense than dry year, as 74.4%-169.5%51.5%-99.1%. GY of N240was significantly rised by 12.6%-54.5% than N120-N180.【Conclusion】In the thermal resource limited area of the North China Plain, changed winter wheat into spring wheat in the wheat–maize cropping system, with summer maize delayed harvest for 23-33 days, the inferior grains capacity and weight were significantly increased, and so the grain moisture content were reduced to the grain mechanical harvesting technology standard to realized the annual grain mechanical harvesting. And by optimized nitrogen application rate at 247.2-248.6 kg·hm-2, the production strategy of stable yield at 7.0×103-12.0×103kg·hm-2, nitrogen reduction and improve efficiency under different rainfall years were achieved in the region.

summer maize; rainfall year types; delayed harvest; nitrogen application rate; superior and inferior grains; grain filling

10.3864/j.issn.0578-1752.2023.20.005

2023-01-20;

2023-04-03

国家自然科学基金(31701378)、国家重点研发计划(2017YFD0300)、天津科技计划(23ZYCGSN00210)

刘梦,E-mail:m15222312583@126.com。通信作者葛均筑,E-mail:gjz0121@126.com

(责任编辑 杨鑫浩,李莉)

猜你喜欢

施氮粒重弱势
不同施氮水平对春玉米光合参数及产量的影响
干热风对冬小麦不同穗粒位粒重的影响效应*
离体穗培养条件下C、N供给对小麦穗粒数、粒重及蛋白质含量的影响
将弱势变为优势
全球尿素市场弱势运行
玉米自交系京92改良后代单穗粒重的杂种优势研究
动力煤市场或将弱势运行
施氮水平对冬小麦冠层氨挥发的影响
为弱势妇女开辟阳光之路
均匀施氮利于玉米根系生长及产量形成