姜黄素调节NMDAR/Ca2+/CaMKⅡ信号通路对异氟醚诱导的幼龄小鼠术后认知功能障碍的影响
2023-11-08马慧敏柳璐熊英赵慧孔繁丽
马慧敏 柳璐 熊英 赵慧 孔繁丽
摘要:目的 探讨姜黄素(Cur)调节N-甲基-D-天冬氨酸受体(NMDAR)/钙离子(Ca2+)/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)信号通路对异氟醚(ISO)诱导的幼龄小鼠术后认知功能障碍(POCD)的影响。方法 将72只C57BL/6J小鼠分为对照组、ISO组、低剂量Cur组(Cur-L组,50 mg/kg)、中剂量Cur组(Cur-M组,100 mg/kg)、高剂量Cur组(Cur-H组,200 mg/kg)、Cur-H+NMDA(NMDAR激活剂)组(200 mg/kg+8 mg/kg),每组12只。经对应给药处理30 min后,对照组小鼠吸入含30%氧气和空气的混合气体2 h,其余各组小鼠吸入2% ISO 2 h,每天1次,持续14 d。末次给药24 h后,Morris水迷宫实验检测小鼠学习与空间记忆能力;HE染色检测海马CA1区病理学变化;免疫荧光染色检测小鼠海马CA1区神经元特异核蛋白(NeuN)阳性表达;TUNEL染色检测神经细胞凋亡;酶联免疫吸附试验检测海马CA1区组织中白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)水平;蛋白印迹法检测海马CA1区组织中NMDAR1和CaMKⅡ蛋白表达;荧光探针检测海马CA1区Ca2+浓度。结果 与对照组比较,ISO组小鼠海马CA1区病理损伤严重,逃避潜伏期延长,神经细胞凋亡率升高,海马CA1区组织中IL-1β和TNF-α水平升高,NMDAR1和CaMKⅡ蛋白表达及Ca2+浓度升高(P<0.05),穿越平台次数和NeuN阳性细胞数减少(P<0.05);与ISO组比较,Cur-L组、Cur-M组、Cur-H组小鼠海马CA1区病理损伤减轻,逃避潜伏期缩短,神经细胞凋亡率降低,海马CA1区组织中IL-1β和TNF-α水平降低,NMDAR1和CaMKⅡ蛋白表达及Ca2+浓度降低(P<0.05),穿越平台次数和NeuN阳性细胞数增加(P<0.05),且呈剂量依赖性;NMDA减弱了高剂量Cur对ISO诱导的小鼠POCD的改善作用(P<0.05)。结论 Cur可能通过抑制NMDAR/Ca2+/CaMKⅡ信号通路改善ISO诱导的小鼠POCD。
关键词:姜黄素;受体,N-甲基-D-天冬氨酸;钙通道;钙-钙调素依赖性蛋白激酶2型;认知功能障碍;术后认知并发症;异氟醚
中圖分类号:R285.5,R614.2文献标志码:ADOI:10.11958/20221719
Effect of curcumin regulating NMDAR/Ca2+/CaMKⅡ signaling pathway on postoperative cognitive dysfunction induced by isoflurane in young mice
MA Huimin, LIU Lu△, XIONG Ying, ZHAO Hui, KONG Fanli
Anesthesia Department Operating Room, Wuhan Children's Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology (Wuhan Maternal and Child Health Hospital), Wuhan 430014, China
△Corresponding Author E-mail: 365038103@qq.com
Abstract: Objective To investigate the effect of curcumin (Cur) regulating N-methyl-D-aspartate receptor (NMDAR)/calcium ion (Ca2+)/calmodulin dependent protein kinase Ⅱ (CaMKⅡ) signaling pathway on isoflurane (ISO) -induced postoperative cognitive dysfunction (POCD) in young mice. Methods Seventy-two C57BL/6J mice were separated into the control group, the ISO group, the low-dose Cur group (Cur-L group, 50 mg/kg), the medium-dose Cur group (Cur-M group, 100 mg/kg), the high-dose Cur group (Cur-H group, 200 mg/kg) and the Cur-H+NMDA (NMDAR activator) group (200 mg/kg+8 mg/kg), with 12 animals in each group. After 30 min of corresponding drug treatment, the mice in the control group inhaled a mixed gas containing 30% oxygen and air for 2 hours, and mice in the other groups inhaled 2% ISO for 2 hours, once a day for 14 days. Twenty-four hours after the last treatment, Morris water maze test was used to detect the learning and spatial memory abilities of mice. HE staining was used to detect the pathological changes in hippocampal CA1 area. Immunofluorescence staining was used to detect the positive expression of neuron specific nucleoprotein (NeuN) in hippocampus CA1 region of mice. TUNEL staining was used to detect neuronal apoptosis. Enzyme linked immunosorbent assay was used to detect levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in hippocampal CA1 tissue. Western blot assay was used to detect NMDAR1 and CaMKⅡ protein expression in mouse hippocampal CA1 tissue. Intracellular Ca2+concentration in hippocampal CA1 region was detected by fluorescence probe. Results Compared with the control group, the pathological damage of hippocampal CA1 region of mice was severe in the ISO group, and the escape latency was prolonged. The apoptosis rate of neural cells, levels of IL-1β and TNF-α, expression levels of NMDAR1 and CaMKⅡ protein, and the concentration of Ca2+in hippocampal CA1 region were increased (P<0.05). Times of crossing platform and the number of NeuN positive cells were decreased in the ISO group (P<0.05). Compared with the ISO group, pathological damages of hippocampal CA1 region of mice were alleviated in the Cur-L group, the Cur-M group and the Cur-H group, the escape latency was shortened, and the apoptosis rate of neural cells, levels of IL-1β and TNF-α, expression levels of NMDAR1 and CaMKⅡ protein, and the concentration of Ca2+in hippocampal CA1 region were decreased (P<0.05). Times of crossing platform and the number of NeuN positive cells were increased (P<0.05), which was dose-dependent. NMDA attenuated the improvement effect of high-dose Cur on ISO induced POCD in mice (P<0.05). Conclusion Curcumin may improve ISO-induced POCD in mice by inhibiting NMDAR/Ca2+/CaMKⅡ signaling pathway.
Key words: curcumin; receptors, N-methyl-D-aspartate; calcium channels; calcium-calmodulin-dependent protein kinase type 2; cognitive dysfunction; postoperative cognitive complications; isoflurane
术后认知功能障碍(POCD)是接受外科手术的患者在麻醉和外科手术后的严重并发症[1]。其特点是暂时或永久性认知能力下降、记忆障碍、语言理解和社会适应能力下降[2]。POCD影响患者的生活质量,还会带来医疗负担[3]。异氟醚(ISO)是一种临床常用麻醉剂,它可以通过诱导小鼠神经炎症和神经元凋亡,进而导致认知障碍[4]。因此,任何减轻ISO诱导的神经炎症、神经元凋亡的策略都可能有助于治疗POCD。姜黄素(Cur)是从姜类植物姜黄的根茎中提取的一种不溶于水的黄色酚类物质。已有研究报道,Cur可改善ISO诱导的大鼠认知功能障碍[5],但具体机制尚不清楚。N-甲基-D-天冬氨酸受体(NMDAR)/钙离子(Ca2+)/钙调素依赖性蛋白激酶Ⅱ(CaMKⅡ)信号通路对学习与记忆能力具有调控作用。研究显示,NMDAR2-CaMKⅡ通路的激活与ISO诱导麻醉小鼠的記忆缺陷相关[6]。而Cur对ISO诱导的认知功能障碍的改善作用是否与NMDAR/Ca2+/CaMKⅡ信号通路有关尚不清楚。本研究主要探究Cur对ISO诱导的幼龄小鼠POCD的影响及其作用机制。
1 材料与方法
1.1 实验动物 SPF级3周龄C57BL/6J雄性小鼠72只,体质量14~16 g,购自广东导科医药技术有限公司,生产许可证号:SCXK(粤)2020-0041。小鼠在温度21~24 ℃和湿度为55%~60%的饲养环境中自由获取食物和水。本实验已获得本院伦理委员会的批准(伦理号:基础伦审2022-119)。
1.2 试剂与仪器 Cur(货号SND-376,原料药,纯度99.93%,Cur和生理盐水混溶成质量浓度分别为5、10、20 g/L的混悬液)购自滁州仕诺达生物公司;ISO(货号EPY0000858)、NMDAR激活剂(NMDA,货号M05817)购自深圳振强生物公司;苏木精-伊红(HE)染液(货号AC197L04)、TUNEL细胞凋亡检测试剂盒(货号AC12L055)、Fura-2 AM钙离子荧光探针(货号S1952K)购自上海李记生物科技公司;肿瘤坏死因子-α(TNF-α,货号MM-0132M1)、白细胞介素-1β(IL-1β,货号MM-0040M1)酶联免疫吸附试验(ELISA)试剂盒购自杭州铂赛生物公司;兔源一抗神经元特异核蛋白(NeuN,货号ab177487)、NMDAR1(货号ab109182)、CaMKⅡ(货号ab134041)、β-actin(货号ab8226)、羊抗兔二抗(货号ab205718)及Dylight 488绿色荧光标记的二抗(货号ab96879)均购自英国Abcam公司。显微镜(型号moticBA210)、酶标仪(型号FK-ZX01)购自宁波舜宇仪器有限公司;蛋白成像系统(型号97701-xx)、显微荧光分光光度计(型号960MC)购自深圳市富彻尔生物科技有限公司。
1.3 方法
1.3.1 分组及处理 将小鼠按照随机数字表法分为对照组、ISO组、低剂量Cur组(Cur-L组)、中剂量Cur组(Cur-M组)、高剂量Cur组(Cur-H组)、Cur-H+NMDA组,每组12只。Cur-L组、Cur-M组、Cur-H组分别在灌胃50、100、200 mg/kg Cur[7](分别为5、10、20 g/L的Cur混悬液,灌胃体积均是10 mL/kg)的同时腹腔注射8 mg/kg生理盐水,30 min后再吸入2% ISO和28%氧气麻醉2 h[8];Cur-H+NMDA组小鼠灌胃200 mg/kg Cur的同时腹腔注射8 mg/kg NMDA[9],30 min后吸入2% ISO和28%氧气麻醉2 h;ISO组小鼠灌胃及腹腔注射等量的生理盐水,30 min后再吸入2% ISO和28%氧气麻醉2 h;对照组小鼠灌胃及腹腔注射等量的生理盐水,30 min后吸入含30%氧气的空气处理2 h[10];每天处理1次,处理持续14 d。
1.3.2 Morris水迷宫实验 末次给药处理24 h后,参照文献[11]进行实验。(1)学习能力:小鼠置于任一入水点处,将小鼠游到平台的时间记为逃避潜伏期,如果2 min内不能到达平台,就引导小鼠爬到平台,持续训练5 d,记录第6天的逃避潜伏期。(2)空间记忆能力:在第7天时撤去平台,以距平台最远的地方为入水点,观察并记录小鼠在2 min内穿越平台的次数。
1.3.3 标本收集 实验结束后,用颈椎脱臼法处死小鼠,收集小鼠海马CA1区组织。将组织分为两部分,一部分固定于4%多聚甲醛中用于HE、免疫荧光染色及TUNEL染色实验;另一部分冻存于-80 ℃冰箱中用于ELISA、蛋白印迹实验及Ca2+的测定。
1.3.4 HE染色检测小鼠海马CA1区病理损伤 将固定于4%多聚甲醛中的小鼠海马CA1区组织经包埋、切片、脱蜡、梯度乙醇脱水后,用HE染色。在光学显微镜下观察小鼠海马CA1区病理损伤。
1.3.5 免疫荧光染色检测小鼠海马CA1区NeuN阳性表达 石蜡切片经脱蜡、复水、抗原修复、封闭后,加入一抗NeuN(1︰500),在4 ℃下孵育过夜,次日再加入Dylight 488绿色荧光标记的二抗室温孵育2 h。DAPI染色10 min,封片,荧光显微镜下观察NeuN阳性表达情况(随机取8个视野计数NeuN阳性细胞,取平均值)。
1.3.6 TUNEL染色检测小鼠神经细胞凋亡 石蜡切片经二甲苯浸泡、梯度乙醇脱水后加入50 μL TUNEL反应混合物,37 ℃下孵育1 h。再加入DAPI染色10 min,利用荧光显微镜观察小鼠神经细胞凋亡情况。随机取8个视野,计数凋亡细胞,凋亡率=凋亡的神经细胞数/神经细胞总数×100%。
1.3.7 ELISA法检测小鼠海马CA1组织中IL-1β和TNF-α水平 按照ELISA试剂盒说明书测定小鼠海马CA1组织中IL-1β和TNF-α水平。
1.3.8 蛋白印迹法检测小鼠海马CA1组织中NMDAR1和CaMKⅡ蛋白表达 用RIPA裂解液提取小鼠海马CA1区组织中的总蛋白,经定量、电泳、转膜、封闭后,加入兔源一抗NMDAR1(1︰1 730)、CaMKⅡ(1︰1 730)、β-actin(1︰1 950),4 ℃过夜后,加入羊抗兔二抗(1︰1 750)在室温下孵育1 h,经显影、定影后利用Image J软件分析蛋白的灰度值。
1.3.9 小鼠海马CA1组织细胞内Ca2+浓度的检测 将小鼠海马CA1组织剪碎并用胰蛋白酶消化成单细胞悬液,利用4 μmol/L Fura-2 AM荧光探针负载40 min,采用显微荧光分光光度计检测激发波长488 nm,发射波长530 nm处的光密度(OD)值,再根据标准曲线计算小鼠海马CA1组织细胞内Ca2+浓度。
1.4 统计学方法 采用SPSS 25.0软件进行分析数据,所有符合正态分布的数据以均数±标准差(x±s)表示,多组样本间比较采用单因素方差分析,进一步两两比较采用SNK-q检验,P<0.05为差异有统计学意义。
2 结果
2.1 Cur对逃避潜伏期及穿越平台次数的影响 与对照组比较,ISO组小鼠逃避潜伏期延长,穿越平台次数减少(P<0.05);与ISO组比较,Cur-L组、Cur-M组、Cur-H组小鼠逃避潜伏期缩短,穿越平台次数增加,且呈剂量依赖性(P<0.05);与Cur-H组比较,Cur-H+NMDA组小鼠逃避潜伏期延长,穿越平台次数减少(P<0.05);见表1。
2.2 Cur对海马CA1区病理损伤的影响 与对照组比较,ISO组小鼠神经细胞数量减少且排列紊乱;与ISO组比较,Cur-L组、Cur-M组、Cur-H组小鼠海马CA1區病理损伤减轻,神经细胞数量增加且排列整齐;与Cur-H组比较,Cur-H+NMDA组小鼠海马CA1区病理损伤加剧,神经细胞数量减少且排列无序;见图1。
2.3 Cur对海马CA1区NeuN阳性表达和神经细胞凋亡的影响 与对照组比较,ISO组NeuN阳性细胞数减少,神经细胞凋亡率升高(P<0.05);与ISO组比较,Cur-L组、Cur-M组、Cur-H组NeuN阳性细胞数增加,神经细胞凋亡率降低,且呈剂量依赖性(P<0.05);与Cur-H组比较,Cur-H+NMDA组NeuN阳性细胞数减少,神经细胞凋亡率升高(P<0.05);见图2、3,表2。
2.4 Cur对海马CA1区组织中IL-1β、TNF-α水平的影响 与对照组比较,ISO组IL-1β、TNF-α水平升高(P<0.05);与ISO组比较,Cur-L组、Cur-M组、Cur-H组IL-1β、TNF-α水平降低,且呈剂量依赖性(P<0.05);与Cur-H组比较,Cur-H+NMDA组IL-1β、TNF-α水平升高(P<0.05),见表3。
2.5 Cur对海马CA1区组织中NMDAR/Ca2+/CaMKⅡ通路蛋白表达及Ca2+浓度的影响 与对照组比较,ISO组NMDAR1、CaMKⅡ蛋白表达及Ca2+浓度升高(P<0.05);与ISO组比较,Cur-L组、Cur-M组、Cur-H组NMDAR1、CaMKⅡ蛋白表达及Ca2+浓度降低,且呈剂量依赖性(P<0.05);与Cur-H组比较,Cur-H+NMDA组NMDAR1、CaMKⅡ蛋白表达及Ca2+浓度升高(P<0.05);见图4、表4。
3 讨论
3.1 ISO诱导的小鼠POCD ISO和七氟醚是外科手术期间常用的麻醉剂。然而,它们会诱发大脑的POCD[12]。已有研究显示,ISO和七氟醚可通过不同机制诱导神经细胞凋亡,进而加剧POCD[13]。近期关于七氟醚诱导POCD的相关机制研究较多,但关于如何缓解ISO诱导的POCD的报道有限。本研究通过吸入2% ISO和28%氧气麻醉2 h以构建ISO诱导的POCD小鼠模型,结果显示,与对照组相比,ISO组小鼠逃避潜伏期延长、穿越平台次数减少,且海马CA1区病理损伤严重,提示造模成功。有研究显示,麻醉剂诱导的POCD与神经细胞凋亡和神经炎症有关[14]。冯海妹等[15]发现ISO麻醉诱发老龄大鼠海马CA1区IL-1β和TNF-α水平升高,进而诱发POCD。钱敏等[16]研究表明海马细胞大量凋亡促进了ISO麻醉老龄大鼠POCD。本研究结果与上述研究一致。本研究结果显示,与对照组相比,ISO组小鼠NeuN阳性细胞数减少,神经细胞凋亡率、IL-1β和TNF-α水平升高,表明神经细胞凋亡及神经炎症反应参与了ISO诱导的小鼠POCD。
3.2 Cur可改善ISO诱导的小鼠POCD Cur是一种从中药姜黄根茎中提取的多酚类物质,具有抗癌、抗炎和抗凋亡等多种活性[17]。Cur可改善全脑缺血大鼠的记忆和神经功能,恢复CA1区不规则神经元分布[18]。Cur可抑制缺氧/再灌注诱导神经元的凋亡和炎症,进而发挥神经保护作用[19]。以上研究表明Cur具有神经保护作用。本研究结果显示,经低、中、高剂量Cur处理后,ISO诱导小鼠的POCD及海马CA1区病理损伤减轻,NeuN阳性细胞数增多,神经细胞凋亡率及IL-1β、TNF-α水平降低,且呈剂量依赖性,提示Cur可通过抑制神经炎症及神经细胞凋亡,进而改善ISO诱导的小鼠POCD。
3.3 Cur可能通过抑制NMDAR/Ca2+/CaMKⅡ通路改善ISO诱导的小鼠POCD 近年来关于NMDAR/Ca2+/CaMKⅡ信号通路在调控神经功能方面的作用成為研究的热点。相关研究显示,激活NMDAR/Ca2+通路可导致衰老小鼠POCD[20]。脑苷脂-A可减少中风小鼠海马CA1区NMDAR、Ca2+的流入,进而发挥神经保护作用[21]。抑制Ca2+/CaMKⅡ信号通路可改善血管性痴呆大鼠学习记忆障碍[22]。本研究显示,Cur可降低ISO诱导的小鼠海马CA1区组织中NMDAR1、CaMKⅡ蛋白表达及Ca2+浓度,且呈剂量依赖性,推测Cur可能通过抑制NMDAR/Ca2+/CaMKⅡ信号通路改善ISO诱导的小鼠POCD。为了验证该猜想,本研究在高剂量Cur处理的基础上再加NMDAR激活剂NMDA干预ISO诱导的小鼠,结果显示NMDA减弱了Cur对ISO诱导小鼠POCD的改善作用,证实了Cur可能通过抑制NMDAR/Ca2+/CaMKⅡ信号通路改善ISO诱导的小鼠POCD。
综上所述,Cur可能通过抑制NMDAR/Ca2+/CaMKⅡ信号通路改善ISO诱导的小鼠POCD。本研究可能为POCD的临床治疗提供理论依据。然而,本研究尚存在不足之处,Cur对ISO诱导的POCD的改善作用涉及的机制较多,有待进一步深入探究。
参考文献
[1] ISHII D,ZANATY M,ROA J A,et al. Postoperative cognitive dysfunction after endovascular treatments for unruptured intracranial aneurysms:A pilot study[J]. Interv Neuroradiol,2022,28(4):439-443. doi:10.1177/15910199211039917.
[2] WANG B,LIN X,ZHOU J,et al. Insulin-like growth factor-1 improves postoperative cognitive dysfunction following splenectomy in aged rats[J]. Exp Ther Med,2021,21(3):215-221. doi:10.3892/etm.2021.9647.
[3] ZHANG X,FAN X,LI F,et al. Effects of PYRIN-containing Apaf1-like protein 1 on isoflurane-induced postoperative cognitive dysfunction in aged rats[J]. Mol Med Rep,2020,22(2):1391-1399. doi:10.3892/mmr.2020.11244.
[4] LIU P,GAO Q,GUAN L,et al. Atorvastatin attenuates isoflurane-induced activation of ROS-p38MAPK/ATF2 pathway,neuronal degeneration,and cognitive impairment of the aged mice[J]. Front Aging Neurosci,2021,12(1):620946-620959. doi:10.3389/fnagi.2020.620946.
[5] LIU G,SUN Y,LIU F. Curcumin reduces neuroinflammation and improves the impairments of anesthetics on learning and memory by regulating the expression of miR-181a-5p[J]. Neuroimmunomodulation,2021,28(1):38-46. doi:10.1159/000514548.
[6] JIA M,LIU W X,SUN H L,et al. Suberoylanilide hydroxamic acid,a histone deacetylase inhibitor,attenuates postoperative cognitive dysfunction in aging mice[J]. Front Mol Neurosci,2015,8(1):52-63. doi:10.3389/fnmol.2015.00052.
[7] 郑来赞,陈隆望,胡系意,等. 姜黄素上调线粒体融合蛋白2减轻脓毒症小鼠急性肺损伤[J]. 中华急诊医学杂志,2020,29(1):58-64. ZHENG L Z,CHEN L W,HU X Y,et al. Curcumin upregulates mitofusin 2 to alleviate acute lung injury in septic mice[J]. Chin J Emerg Med,2020,29(1):58-64. doi:10.3760/cma.j.issn.1671-0282.2020.01.009.
[8] 马斌,迟良,胡胜超,等. 异氟醚对幼年小鼠神经认知功能损伤的研究[J]. 中国兽医杂志,2019,55(7):88-90,94. MA B,CHI L,HU S C,et al. Study on impairment of neurocognitive function of immature mice induced by isoflurance[J]. Chinese Journal of Veterinary Medicine,2019,55(7):88-90,94.
[9] HUANG X T,YANG J X,WANG Z,et al. Activation of N-methyl-D-aspartate receptor regulates insulin sensitivity and lipid metabolism[J]. Theranostics,2021,11(5):2247-2262. doi:10.7150/thno.51666.
[10] 贾俊香,姚向国,李冰,等. 糖原合成酶激酶-3β/β-连环素信号通路对小鼠麻醉导致术后认知功能障碍的分子机制研究[J]. 中国临床药理学杂志,2018,34(16):1964-1966,1970. JIA J X,YAO X G,LI B,et al. Molecular mechanism research of glycogen synthase kinase-3β/β-catenin pathway on the cognitive dysfunction after sevoflurane anesthesia in mice[J]. Chin J Clin Pharmacol,2018,34(16):1964-1966,1970. doi:10.13699/j.cnki.1001-6821.2018.16.008.
[11] 周剑杰,谭子虎,杨哲,等. 加减薯蓣丸介导线粒体自噬改善APP/PS1小鼠氧化应激损伤及学习记忆能力[J]. 中国实验方剂学杂志,2022,28(6):43-53. ZHOU J J,TAN Z H,YANG Z,et al. Modified Shuyuwan mediated mitochondrial autophagy improve APP/PS1 mice oxidative stress injury and ability of learning and memory[J]. Chinese Journal of Experimental Traditional Medical Formulae,2022,28(6):43-53. doi:10.13422/j.cnki.syfjx.20220638.
[12] 哈斌,钟卫. 异氟醚或七氟醚复合右美托咪定麻醉对老年患者腹腔镜胆囊切除术后认知功能的影响[J]. 检验医学与临床,2018,15(17):2591-2594. HA B,ZHONG W. Effect of sevoflurane or isoflurane adding dexmedetomidine on early postoperative cognitive dysfunction in elderly patients undergoing laparoscopic cholecystectomy[J]. Lab Med Clin,2018,15(17):2591-2594. doi:10.3969/j.issn.1672-9455.2018.17.019.
[13] ZHAO S,FAN Z,HU J,et al. The differential effects of isoflurane and sevoflurane on neonatal mice[J]. Sci Rep,2020,10(1):19345-19354. doi:10.1038/s41598-020-76147-6.
[14] 肖秀英,吴华兵,詹玮玮. 丙泊酚对七氟烷引起的大鼠海马神经细胞凋亡及认知障碍的影响及相关机制探究[J]. 解放军医药杂志,2021,33(2):10-13. XIAO X Y,WU H B,ZHAN W W. Effects of propofol on hippocampal neuronal apoptosis and cognitive impairment in rats induced by Sevoflu-rane and its related mechanism[J]. Med & Pharm J Chin PLA,2021,33(2):10-13. doi:10.3969/j.issn.2095-140X.2021.02.003.
[15] 冯海妹,韦雪梅. 异氟醚对老龄大鼠认知功能障碍、GSK-3β及炎性因子的影響[J]. 标记免疫分析与临床,2019,26(4):704-707,713. FENG H M,WEI X M. The changes of cognitive dysfunction,GSK-3 beta and inflammatory response induced by isoflurane anesthesia in Aged rats[J]. Labeled Immunoassays & Clin Med,2019,26(4):704-707,713. doi:10.11748/bjmy.issn.1006-1703.2019.04.039.
[16] 钱敏,倪诚,李民,等. 褪黑素对异氟醚麻醉老龄大鼠术后海马细胞凋亡的影响[J]. 中华麻醉学杂志,2015,35(11):1339-1343. QIAN M,NI C,LI M,et al. Effect of melatonin on postoperative apoptosis in hippocampal cells of aged rats undergoing isoflurane anesthesia[J]. Chin J Anesthesiol,2015,35(11):1339-1343. doi:10.3760/cma.j.issn.0254-1416.2015.11.014.
[17] 刘伟,顾秀竹,吴筱霓,等. 姜黄素药理作用的研究进展[J]. 华西药学杂志,2021,36(3):336-340. LIU W,GU X Z,WU X N,et al. Research on the pharmacological actions of curcumin[J]. West China Journal of Pharmaceutical Sciences,2021,36(3):336-340. doi:10.13375/j.cnki.wcjps.2021.03.022.
[18] KAMALI DOLATABADI L,EMAMGHOREISHI M,NAMAVAR M R,et al. Curcumin effects on memory impairment and restoration of irregular neuronal distribution in the hippocampal CA1 region after global cerebral ischemia in male rats[J]. Basic Clin Neurosci,2019,10(5):527-539. doi:10.32598/bcn.9.10.365.
[19] ZHOU J,WU N,LIN L. Curcumin suppresses apoptosis and inflammation in hypoxia/reperfusion-exposed neurons via wnt signaling pathway[J]. Med Sci Monit,2020,26(1):e920445. doi:10.12659/MSM.920445.
[20] QIU L L,PAN W,LUO D,et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice[J]. J Neuroinflammation,2020,17(1):23-37. doi:10.1186/s12974-019-1695-x.
[21] LI L,YANG R,SUN K,et al. Cerebroside-A provides potent neuroprotection after cerebral ischaemia through reducing glutamate release and Ca?+ influx of NMDA receptors[J]. Int J Neuropsychopharmacol,2012,15(4):497-507. doi:10.1017/S1461145711000654.
[22] CHEN T T,ZHOU X,XU Y N,et al. Gastrodin ameliorates learning and memory impairment in rats with vascular dementia by promoting autophagy flux via inhibition of the Ca2+/CaMKⅡ signal pathway[J]. Aging (Albany NY),2021,13(7):9542-9565. doi:10.18632/aging.202667.
(2022-11-01收稿 2023-02-16修回)
(本文編辑 李鹏)