APP下载

Atoh1基因与POU4F3、Gfi1协同作用促毛细胞再生的研究进展*

2023-10-11何才蓉杨影黄金炜陈凤娇陆莹丁洁

中国病理生理杂志 2023年9期
关键词:毛细胞内耳耳蜗

何才蓉, 杨影, 黄金炜, 陈凤娇, 陆莹, 丁洁△

基因与POU4F3、Gfi1协同作用促毛细胞再生的研究进展*

何才蓉1, 杨影1, 黄金炜1, 陈凤娇2, 陆莹3, 丁洁1△

(1贵州大学生命科学学院/农业生物工程研究院,山地植物资源保护与种质创新教育部重点实验室,贵州 贵阳 550025;2贵州省人民医院,贵州 贵阳 550002;3贵州中医药大学基础医学院解剖学教研室,贵州 贵阳 550025)

毛细胞再生;直接重编程;互作机制;听力损失

听力损失是导致语言障碍和影响人口素质的一种世界性顽疾,主要由内耳毛细胞不可逆损伤所致。治疗此类顽疾的核心是毛细胞再生。直接重编程作为一种细胞再生技术,无需经过多能性细胞阶段便可将一种终末分化细胞直接转变为其他类型的功能细胞或祖细胞,因此也称为谱系重编程[1-2],包括直接和间接两种方式。直接的方式是通过导入谱系特异性转录因子诱导一种类型终末分化细胞转化为另一种细胞类型,如慢病毒载体携带转录因子编码基因感染支持细胞或成纤维细胞,经细胞形态、相关基因和蛋白表达等参数验证获得与正常内耳毛细胞相似的细胞,从而实现毛细胞再生的目的[3-5]。

是内耳毛细胞发育和再生的关键调节因子。研究表明,虽然基因能够将耳蜗非感觉细胞直接重编程为新生毛细胞,但其重编程能力具有年龄依赖性[6]。为了规避这种情况,探索简单有效的谱系特异性转录因子组合可显著促进毛细胞分化、成熟和重编程效率,是毛细胞再生和功能重塑的可行方案。在众多的转录因子中,POU结构域第4类转录因子3(POU domain class 4 transcription factor 3,Pou4f3)和独立生长因子1(growth factor independent-1,Gfi1)可与共表达促进生成功能成熟的毛细胞而备受关注。已有研究表明,利用慢病毒在人类成纤维细胞培养物中过表达、和(简称)可促人类体细胞直接重编程为表达毛细胞标志物的细胞[7]。因此利用直接重编程技术获取人类内耳毛细胞将成为一个新的研究方向。但三者在毛细胞再生及功能重塑中的作用、上下游毛细胞发育相关基因及互作机制未有系统阐明。本文就Atoh1、Pou4f3和Gfi1在毛细胞再生和功能重塑中的调控作用及互作机制的最新研究报道进行综合整理,汇总与毛细胞发育相关的信号通路和关键基因,阐述三者间的表达调控方式,为未来使用Atoh1-Pou4f3-Gfi1直接重编程策略治疗听力损失提供参考资料。

1 Atoh1在脊椎动物内耳中的表达和功能

1.1Atoh1的结构和功能,又名、或,位于染色体4q22,全长1.06 kb,含一个外显子。转录因子Atoh1属第Ⅱ类碱性螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子,可与第Ⅰ类bHLH转录因子如E47结合形成异二聚体,直接与CAGCTG和CAGGTG等E-box基序结合以激活下游靶基因的转录。含有较高比例的脯氨酸残基,可参与蛋白质互作,C端的高比例丝氨酸残基意味着的功能可能受这些丝氨酸残基的磷酸化调节。此外,参与多种细胞类型的发育,敲除的小鼠缺乏肠道上皮细胞,小脑和脊髓神经发育不完全,内耳毛细胞完全缺失[8]。的表达和激活与肿瘤的发生、发展和转移有关[9]。已证实在结肠和皮肤中充当肿瘤抑制基因[10],在髓母细胞瘤中作为癌基因起作用[11],表明其在不同细胞类型的分化和增殖中的多重作用。由于在耳蜗感觉上皮及非感觉上皮过表达可诱导原位及异位毛细胞再生的能力使得成为当前研究的热点。

1.2在耳蜗中的发育表达模式的表达时序是毛细胞分化和存活的关键,决定毛细胞分化的特异性。在小鼠胚胎发育期间,最初是在耳蜗底部附近内耳祖细胞中检测到的,随后在 E13.5~E17.5稳定增加并沿顶部扩散[12]。在胚胎后期,多表达于毛细胞中以启动毛细胞分化程序,在支持细胞内仅有少量表达且处于抑制状态,而在非感觉细胞内则完全没有[13]。毛细胞发育过程中的功能存在两个关键时期,在E15.5~E17.5 期间缺失会导致毛细胞快速死亡,而在E17.5后缺失会破坏维持听觉功能所需的毛束结构以致毛细胞延迟死亡。由此可见,是毛细胞正常分化、存活和成熟的必要条件。出生后一周,表达量开始下调,遵循从耳蜗管的基部向顶部的梯度,随着听觉毛细胞成熟而关闭[14]。

1.3在毛细胞再生中的作用是毛细胞形态和功能再生过程中必不可少的基因。基因敲除鼠的耳蜗和前庭感觉毛细胞完全缺失,大多数支持细胞标志基因的表达显著降低[15]。提示的丢失不仅直接影响毛细胞存活,还会破坏周围支持细胞的发育,间接控制感觉上皮镶嵌发育。内耳毛细胞和支持细胞来源于相同前体细胞,故通常采用上调在耳蜗支持细胞中的表达水平以促进支持细胞向毛细胞的转化[3],但新生毛细胞仍不成熟,无法长期存活。在支持细胞中的重编程能力随年龄增长而受到限制[6],说明仅过表达不足以有效且持续地实现毛细胞功能成熟。毛细胞的形成和成熟受多种信号通路和转录因子的时空调控,作为毛细胞分化及存活过程中的先锋因子,其功能的发挥依赖与其他因子的协同作用。

1.4结合其他转录因子的毛细胞重编程策略已知有多种信号通路参与调节表达,如Notch信号通路、Shh信号通路、Wnt信号通路、FGF信号通路和BMP信号通路等。此外β-连环蛋白(β-catenin、E2F转录因子1(E2F transcription factor 1,)、GATA结合蛋白3(GATA binding protein-3,Gata3)等转录因子可增强的表达[17-18],癌高甲基化基因1(hypermethylated in cancer 1,Hic1)、Zic家族成员1(Zic family member 1,Zic1)则抑制了Atoh1活性[19-20]。性别决定相关基因簇2(sex determining region Y,Sox2)、同源异型盒基因1(sineoculishomeobox homolog1,Six1)、Gata3等转录因子位于Atoh1上游。神经元素1 (neurogenin1, Neurog1)和Atoh1通过神经源分化因子1(neurogenic differentiation factor1, Neurod1)介导互为拮抗关系,在神经元与毛细胞的命运决定中发挥作用[4, 21]。Sox2表达于整个感觉上皮细胞,通过激活Neurog1、Neurod1、分化抑制因子(inhibitor of differentiation,Id)1-3和Hes/Hey家族等因子以抑制的表达。上皮祖细胞分化为毛细胞后,Atoh1的表达导致Sox2下调,因此Atoh1 mRNA激活后可下调Sox2以维持Atoh1在毛细胞发育中的表达水平,Sox2的下调由Six1介导[22]。如图1所示,在毛细胞发育过程中Shh信号作为Atoh1的负性调控因子,通过FGF信号通路介导维持Hey1和Hey2表达水平,从而负调节Atoh1以防止毛细胞过早分化[23]。因此,调控Shh信号-FGF信号-Hey1/Hey2-Atoh1这一分子通路可能是诱导毛细胞再生的潜在途径。此外,Atoh1受分化抑制基因Id1-3的负调控[24]。在耳蜗中Id蛋白受BMP信号调节,并可能受到细胞周期蛋白依赖性激酶2(cyclin-dependent kinase 2, Cdk-2)的负调控[25]。Atoh1表达后,其下游靶基因如Gfi1、Pou4f3和Barhl1对毛细胞的成熟和长期存活也是必要的。由此可见,在内耳发育的不同阶段调控上述关键因子和信号通路对毛细胞的正常发育至关重要,有助于为毛细胞再生直接重编程技术制定可行方案。如图2所示,几种关键重编程转录因子与Atoh1的联合调控可显著促进毛细胞再生效率:Walters等[16]验证,Atoh1过表达结合细胞周期蛋白激酶抑制因子(cyclin dependent kinase inhibitor 1, p27kip1)缺失或Atoh1和Gata3、Pou4f3的联合激活足以将成年小鼠的支持细胞转化为毛细胞,并克服转分化的年龄依赖性。Ahmed等[26]鉴定眼发育缺失1(eyes absent1, Eya1)、Six1和Sox2为Atoh1的上游调控因子,通过直接互作协同调节Atoh1增强子,诱导耳蜗非感觉上皮产生异位新生毛细胞。在新生小鼠中大上皮嵴中同时过表达Atoh1和胰岛素增强子结合蛋白1(insulin enhancer binding protein 1, Isl1)可有效增强毛细胞转化效率[27]。新霉素损伤耳蜗毛细胞后,共转染配对盒子基因2(paired box 2, Pax2)和Atoh1能诱导支持细胞原位增殖和转分化为再生毛细胞[28]。在成年小鼠耳蜗支持细胞中同时诱导Atoh1和Ikaros家族锌指转录因子2(Ikaros family zinc finger 2, Ikzf2两个外毛细胞发育关键转录因子,可将支持细胞转化为Prestin特异性表达的外毛细胞样细胞[29]。若将Atoh1及其辅因子T细胞因子3(T-cell factor3, Tcf3)、Gata3或ETS变异体4(ETS Translocation Variant 4,Etv4)、Mycn原癌基因(MYCN proto-oncogene, Nmyc)、E26转录因子2 (E-twenty six 2, Ets2)联合传递到耳蜗上皮也可诱导耳蜗非感觉细胞再生毛细胞[30-31]。关于Gfi1、Pou4f3和Atoh1组合表达(GPA)的研究显示,GPA可有效诱导鸡胚耳上皮细胞直接重编程为毛细胞样细胞[32],Chen[33]等再次验证了GPA是功能性毛细胞再生必不可少的基因,且GPA因子与另一转录因子Six1可在体外将小鼠胚胎成纤维细胞和尾尖成纤维细胞直接重编程为毛细胞样细胞[34]。上述研究结果表明:结合不同的转录因子对增强Atoh1的毛细胞重编程效率是必要的。其中,Gfi1和Pou4f3与Atoh1互作促毛细胞再生效率、功能建立和存活的效果尤为显著。

Figure 1. Interactions of atonal bHLH transcription factor 1 (Atoh1) with other hair cell development-related factors and their signaling pathways. Pou4f3: POU domain class 4 transcription factor 3; Gfi1: growth factor independent-1; E2f1: E2F transcription factor 1; Hic1: hypermethylated in cancer 1; Barhl1: BarH-like homeobox 1; Zic1: Zic family member 1; Six1:sineoculis homeobox homolog 1; Sox2: sex-determining region Y-box 2; Neurog1: neurogenin 1; Neurod1: neurogenic differentiation factor1; Id1-3: inhibitor of differentiation 1-3; Cdk-2: cyclin-dependent kinase-2; Hey1: hairy/enhancer-of-split related with YRPW motif 1; Hey2: hairy/enhancer-of-split related with YRPW motif 2; Pias3: protein inhibitor of activated signal transducer and activator of transcription 3; Stat3: signal transducer and activator of transcription 3; Gata3: GATA binding protein3; p27kip1: cyclin-dependent kinase inhibitor 1. → refers to activation; ⊥ refers to inhibition; ├┤ refers to antagonism; ┄ refers to predicted.

Figure 2. Hair cell reprogramming strategies of atonal bHLH transcription factor 1 (Atoh1) in combination with additional transcription factors. Pou4f3: POU domain class 4 transcription factor 3; Gata3: GATA binding protein 3; p27kip1: cyclin-dependent kinase inhibitor 1; Eya1: eyes absent 1; Six1: sineoculis homeobox homolog 1; Sox2: sex-determining region Y-box 2; Isl1: insulin enhancer binding protein 1; Pax2: paired box 2; Ikzf2: Ikaros family zinc finger 2; Tcf3: transcription factor 3; Etv4: ETS translocation variant 4; Nmyc: MYCN proto-oncogene, bHLH transcription factor; Ets2:E-twenty six 2; Gfi1: growth factor independent-1. Red 􀱉 refers to knockout.

2 Pou4f3和Gfi1在内耳中的结构与功能

2.1Pou4f3在内耳中的功能及其效应基因(亦称或)基因是调节神经内分泌途径的第Ⅳ类POU结构域转录因子,含有2个外显子,编码338个氨基酸,位于人类染色体5q31-q33。突变会导致常染色体显性非综合征型耳聋DFNA15。敲除小鼠在内耳分化初始阶段无形态异常,毛细胞表达、、等特异性标志基因,随后部分毛细胞表现异常,未能形成正常毛束结构并逐渐发生凋亡,许多螺旋和前庭神经节细胞丢失,出现全聋和前庭系统重度受损的症状[35]。Weiss等[36]通过免疫定位明确的正常产物定位于细胞核,突变蛋白定位于细胞质和细胞核,的细胞质定位可能阻止其作为转录调节因子发挥作用。马登滨[37]在透射电镜下观察到基因突变小鼠内毛细胞出现线粒体空化现象。线粒体作为细胞能量供应器,其形态结构异常会使毛细胞能量供应受损以致功能障碍,提示毛细胞功能障碍可能与自身超微结构发生变化有关[38]。上述研究为基因突变致小鼠耳聋提供了可能的细胞学机制。

目前参与毛细胞分化和功能维持的分子途径有待深入研究,其下游靶基因的鉴定将有助于阐明突变导致人类听力损失的分子机制。已知的直接靶点有脑源性神经营养因子(neurotrophins brain derived neurotrophic factor,Bdnf)、神经营养素3(neurotrophin-3,Nt-3)、细胞质激活增殖相关蛋白1(cytoplasmic activation and proliferation-associated protein-1,Caprin-1)和核受体2家族2(nuclear receptor subfamily 2 group fmember 2,Nr2f2)[39-40],以及下游靶标LIM同源盒3(LIM-homeodomain 3,Lhx3)和Gfi1[39-42]。神经生长因子Bdnf和Nt-3在前庭毛细胞及支持细胞中均有表达,Bdnf主要在毛细胞中表达,Nt-3则主要表达于支持细胞[43-47]。Pou4f3敲除鼠的Bdnf和Nt-3表达量均有下降,表现出耳蜗神经支配缺陷和感觉神经元丢失[40],间接影响毛细胞发育。Caprin-1在毛细胞和支持细胞中表达,其5′-端侧翼序列包含Pou4f3结合位点,介导Pou4f3对Caprin-1表达的抑制作用。氨基糖苷类药物损伤耳蜗后,内耳毛细胞被诱导生成含有Caprin-1的应激颗粒,参与毛细胞的应激反应[48]。Nr2f2是一种类固醇/甲状腺激素核受体,其5′-侧翼区包含Pou4f3的两个结合位点,参与耳蜗基底膜的延伸发育。Tornari等[49]采用消减杂交法将鉴定为Pou4f3的靶基因,Pou4f3突变致两个结合位点活性减弱,Nr2f2表达相应下调,继而影响内耳功能。Lhx3属LIM 同源域转录因子家族的一员,在小鼠E16特异性表达于内耳毛细胞中,其在耳蜗中受Pou4f3调控,但在前庭毛细胞中不受调控[50]。此外Gfi1作为Pou4f3下游靶基因,也是毛细胞发育和存活的重要转录因子(图3)。阐明在毛细胞中的作用对判断其能否成为毛细胞再生直接重编程的候选基因至关重要。

Figure 3. POU domain class 4 transcription factor 3 (Pou4f3) downstream target genes and the mechanistic relationship between atonal bHLH transcription factor 1 (Atoh1)-Pou4f3-growth factorindependent-1 (Gfi1). Sox2:sex-determining region Y-box 2; Neurog1: neurogenin 1; Neurod1: neurogenic differentiation factor1; Bdnf: brain-derived neurotrophic factor; Nt-3: neurotrophin-3; Caprin-1: cytoplasmic activation and proliferation-associated protein-1; Nr2f2: nuclear receptor subfamily 2 group F member 2; Lhx3: LIM-homeodomain 3; Stat3: signal transducer and activator of transcription 3; Pias3: protein inhibitor of activated signal transducer and activator of transcription 3; Prox1: Prospero-related homeobox protein 1; Id1: inhibitor of differentiation 1; Gata3: GATA binding protein 3; Tef2: transcription factor 3; Myc: MYC proto-oncogene, bHLH transcription factor; Six1: sineoculis homeobox homolog 1; Eya1: eyes absent 1. → refers to activation; ⊥ refers to inhibition ; ├┤refers to antagonism.

2.2在内耳毛细胞中的功能的C末端含有由六个C2H2锌指结构组成的DNA结合结构域,N末端含有20个氨基酸的SNAG阻遏物结构域和一个保守的核定位信号。小鼠内耳发育早期敲除不会严重破坏毛细胞形态结构,但随着分化进行,毛细胞缺陷会逐渐明显:在E16.5时毛细胞紊乱,到E18.5时外毛细胞、内毛细胞先后由基底至顶端呈凋亡迹象,至P14时所有内耳毛细胞均消失。由此可见,缺失会导致毛细胞发育异常和程序性死亡。Hertzano等[42]鉴定转录激活蛋白3(signal transducer and activator of transcription 3,Stat3)为的下游效应蛋白,定位于耳蜗感觉上皮的外毛细胞中,参与调控细胞的增殖、分化和凋亡等过程。与转录激活子3的蛋白抑制剂(protein inhibitor of activated signal transducer and activator of transcription 3, Pias3)相互作用可增强信号[51],推测Gfi1在内耳毛细胞中的作用机制是通过与相互作用以促进毛细胞分化(图3)。Matern等[52]使用Gfi1小鼠模型对缺失的毛细胞翻译组进行分析,显示神经元相关基因(如)上调,而毛细胞功能相关基因表达量显著降低。提示作为干细胞分化为毛细胞命运的特异性基因,可能通过抑制神经元为主的非毛细胞基因的表达,并激活毛细胞特异基因的表达。

总之,、和在毛细胞分化、成熟和听觉功能建立中均不可或缺,可作为毛细胞再生直接重编程的候选治疗基因,分析三者在毛细胞功能重塑中的互作机制以便更好地指导并实现毛细胞再生。

3 Atoh1-Pou4f3-Gfi1的互作机制与直接重编程策略

3.1Atoh1与Pou4f3互作Pou4f3和Gfi1均为Atoh1的下游靶点,具有相似的表达梯度。但与缺失不同的是,缺失导致的表型缺陷更严重:缺失不仅导致耳蜗及前庭毛细胞凋亡,且细胞凋亡在胚胎期便已有迹象,静纤毛束形态缺陷也比基因敲除小鼠更严重[53]。Yu等[54]指出在E15.5,和共表达于耳蜗底部四排毛细胞中,而分化程度较低的顶端只检测到表达。Ohyama等[55]使用转基因小鼠在E8.5敲除后,在E15.5耳蜗感觉上皮中未检测到Pou4f3蛋白。可见,在毛细胞分化过程中,Pou4f3位于Atoh1下游且受Atoh1调控。Ikeda等[31]报道可与、和协同调控基因和毛细胞表型(图3)。此外,也可驱动与异染色质结合而解压缩DNA,使能激活染色质中的毛细胞分化基因网络以促进毛细胞分化程序[54]。

3.2Atoh1与Gfi1互作作为一种调节细胞周期的原癌基因,具有促进细胞增殖和抑制细胞凋亡的功能。García-Añoveros等[56]阐明T-BOX转录因子2(T-BOX transcription factor 2,)是内毛细胞特异性分化及整个发育过程所必需的基因,而Atoh1和Gfi1的存在是Tbx2行使内毛细胞命运决策因子的前提条件。提示Atoh1和Gfi1是后续获取大量毛细胞及实现毛细胞功能修复必不可少的基因。使用成年小鼠毛细胞损伤模型的体内研究表明,Corti器中腺病毒介导的Atoh1和Gfi1过表达会使大量支持细胞转分化为毛细胞样细胞,再生效率显著高于单独过表达Atoh1[57]。Wallis等[58]证明Gfi1敲除鼠的Atoh1表达量并无明显异常,推测Atoh1的表达可能不受Gfi1影响。Atoh1突变小鼠Gfi1的mRNA量虽无明显变化,但听觉上皮中Gfi1蛋白表达量却明显下降甚至消失,说明Atoh1为Gfi1的上游调控基因且对Gfi1的调控位于翻译水平。Prospero相关同源异形盒蛋白1(prospero related homeobox protein 1, Prox1)为Sox2的下游靶基因,不仅可负调控Gfi1且介导Sox2对Atoh1的抑制作用[59]。此外,Gfi1可通过抑制Id1以保持Atoh1的表达水平[42],如图3所示。

3.3Pou4f3与Gfi1互作在耳蜗发育过程中,蛋白在胚胎期E 13.5~14.5之间的内耳祖细胞基部至顶部表达,驱使内耳祖细胞向毛细胞分化,并在E14.5至E16激活Pou4f3的表达,Pou4f3随后在E16.5激活Gfi1的表达。Pou4f3是毛细胞分化过程中Atoh1的直接靶基因,Gfi1则为Pou4f3的靶基因[58]。研究发现,在Pou4f3–/–或Pou4f3ddl/ddl小鼠中,Pou4f3的缺失将导致Gfi1的表达水平在统计学上显著降低,与Pou4f3的表达量存在正相关性[42]。冯晓等[60]曾报道Gfi1表达量在野生型、杂合型以及完全缺失Pou4f3的斑马鱼神经组织中有明显的量效差别,二者与神经组织发育有关。总之,Pou4f3对Gfi1的表达具有调控作用,我们推测:胚胎后期Pou4f3正向调控Gfi1之后,Gfi1可能通过Pias3/Stat3级联作用或负调控Id1以维持Atoh1的表达水平,从而促进毛细胞分化和成熟。

3.4Atoh1-Pou4f3-Gfi1直接重编程策略重编程转录因子通过改变起始细胞转录组和表观遗传景观,从而达到激活某些特定基因的目的,以促进特定细胞类型转录程序。Atoh1通过与Gfi1和Pou4f3的联合调控可将神经元谱系转变为内耳毛细胞谱系。仅过表达Atoh1会促使神经元分化,Pou4f3通过激活起始细胞原来封闭的染色质区域,使Atoh1能够参与并激活驱动分化为毛细胞的基因程序,但Atoh1和Pou4f3不足以促进毛细胞分化。Gfi1是Atoh1诱导毛细胞谱系转换的关键,通过抑制Atoh1对毛细胞分化拮抗基因的诱导,同时增强Atoh1促毛细胞特异性基因表达的能力,进而启动毛细胞转录程序[54]。Chen等[33]为实现毛细胞功能重塑,构建了支持细胞中同时过表达的转基因小鼠,Lgr5-GPA-tdTomato小鼠中Myo7a+/tdTomato+细胞数量显著高于Lgr5-Atoh1-tdTomato小鼠,新生毛细胞具有电生理活性,证明Pou4f3和Gfi1在Atoh1介导的支持细胞直接转分化为毛细胞过程中起正向调节作用。综上所述,GPA联合调控能够从根本上改变Atoh1转录程序以促毛细胞分化,提高细胞直接重编程效率,同时促进新生毛细胞亚型分化和电生理功能成熟。Atoh1、Gfi1和Pou4f3是促进毛细胞分化的特异性转录因子,Atoh1-Pou4f3-Gfi1(GPA)的协同调控是当前毛细胞再生直接重编程的可行方案。

5 总结和展望

内耳毛细胞受损导致的感音神经性耳聋严重影响着患者的生活质量和社会交流能力,其再生性功能修复的问题一直备受关注。近年来,Atoh1-Pou4f3-Gfi1直接重编程技术通过病毒携带毛细胞发育所需关键转录因子编码基因感染支持细胞或成纤维细胞使其直接转换为毛细胞,为后续临床治疗耳聋提供了一种新思路。但三者在毛细胞分化和功能重塑中的作用机制及上下游靶基因却鲜有报道。因此,本文总结了Atoh1、Pou4f3、Gfi1及其相关的上下游基因在毛细胞发育、成熟、听觉功能建立中的作用及互作机制,并提出Atoh1-Pou4f3-Gfi1直接重编程技术是未来治疗听力损失的可行性方案。当前大部分直接重编程研究主要在体外或模式动物中进行的,后续可在人成纤维细胞中过表达获取内耳毛细胞,并移植到人类内耳类器官损伤模型,通过分析其功能修复能力,为耳聋治疗方法的实验研究和临床应用提供参考。

[1] Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress[J]. Nat Rev Mol Cell Biol, 2021, 22(6):410-424.

[2]任丽伟,杨晓菲,李富荣. 细胞直接重编程——治疗糖尿病的新技术[J]. 中国病理生理杂志, 2014, 30(12):2284-2288.

Ren LW, Yang XF, Li FR. Cell direct reprogramming: a new technique for treating diabetes[J]. Chin J Pathophysiol, 2014, 30(12):2284-2288.

[3] Kong L, Xin Y, Chi F, et al. Developmental and functional hair cell-like cells induced by Atoh1 overexpression in the adult mammalian cochlea[J]. Neural Plast, 2020, 2020:8885813.

[4] Iyer AA, Groves AK. Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells[J]. Front Cell Neurosci, 2021, 15:660748.

[5] Schimmang T. Transcription factors that control inner ear development and their potential for transdifferentiation and reprogramming[J]. Hear Res, 2013, 297:84-90.

[6] Liu Z, Dearman JA, Cox BC, et al. Age-dependentconversion of mouse cochlear pillar and deiters' cells to immature hair cells by Atoh1 ectopic expression[J]. J Neurosci, 2012, 32(19):6600-6610.

[7] Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, et al. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage[J]. PLoS One, 2018, 13(7):e0200210.

[8] Maricich SM, Wellnitz SA, Nelson AM, et al. Merkel cells are essential for light-touch responses[J]. Science, 2009, 324(5934):1580-1582.

[9] Westerman BA, Breuer RH, Poutsma A, et al. Basic helix-loop-helix transcription factor profiling of lung tumors shows aberrant expression of the proneural gene atonal homolog 1 (ATOH1, HATH1, MATH1) in neuroendocrine tumors[J]. Int J Biol Markers, 2007, 22(2):114-123.

[10] Bossuyt W, Kazanjian A, De Geest N, et al. Atonal homolog 1 is a tumor suppressor gene[J]. PLoS Biol, 2009, 7(2):e39.

[11] Flora A, Klisch TJ, Schuster G, et al. Deletion of Atoh1 disrupts sonic hedgehog signaling in the developing cerebellum and prevents medulloblastoma[J]. Science, 2009, 326(5958):1424-1427.

[12] Lumpkin EA, Collisson T, Parab P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice[J]. Gene Expr Patterns, 2003, 3(4):389-395.

[13] Stojanova ZP, Kwan T, Segil N. Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea[J]. Development, 2015, 142(20):3529-3536.

[14] Albu S, Muresanu DF. Vestibular regeneration--experimental models and clinical implications[J]. J Cell Mol Med, 2012, 16(9):1970-1977.

[15] Cai T, Seymour ML, Zhang H, et al. Conditional deletion of Atoh1 reveals distinct critical periods for survival and function of hair cells in the organ of Corti[J]. J Neurosci, 2013, 33(24):10110-10122.

[16] Walters BJ, Coak E, Dearman J, et al.interplay between p27Kip1, GATA3, ATOH1, and POU4F3 converts non-sensory cells to hair cells in adult mice[J]. Cell Rep, 2017, 19(2):307-320.

[17] Cheng YF. Atoh1 regulation in the cochlea: more than just transcription[J]. J Zhejiang Univ Sci B, 2019, 20(2):146-155.

[18] Gomez-Dorado M, Daudet N, Gale JE, et al. Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear[J]. Sci Rep, 2021, 11(1):19368.

[19] Ebert PJ, Timmer JR, Nakada Y, et al. Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation[J]. Development, 2003, 130(9):1949-1959.

[20] Briggs KJ, Eberhart CG, Watkins DN. Just say no to ATOH: how HIC1 methylation might predispose medulloblastoma to lineage addiction[J]. Cancer Res, 2008, 68(21):8654-8656.

[21] Jahan I, Pan N, Kersigo J, et al. Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea[J]. PLoS One, 2010, 5(7):e11661.

[22] Zhang T, Xu J, Maire P,et al. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium[J]. PLoS Genet, 2017, 13(9):e1006967.

[23] Benito-Gonzalez A, Doetzlhofer A. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of hedgehog signaling[J]. J Neurosci, 2014, 34(38):12865-12876.

[24] Benezra R, Davis RL, Lockshon D, et al. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins[J]. Cell, 1990, 61(1):49-59.

[25] Kamaid A, Neves J, Giraldez F. Id gene regulation and function in the prosensory domains of the chicken inner ear: a link between Bmp signaling and Atoh1[J]. J Neurosci, 2010, 30(34):11426-11434

[26] Ahmed M, Wong EY, Sun J, et al. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2[J]. Dev Cell, 2012, 22(2):377-390.

[27] Yamashita T, Zheng F, Finkelstein D, et al. High-resolution transcriptional dissection of in vivo Atoh1-mediated hair cell conversion in mature cochleae identifies Isl1 as a co-reprogramming factor[J]. PLoS Genet, 2018, 14(7):e1007552.

[28] Chen Y, Yu H, Zhang Y, et al. Cotransfection of Pax2 and Math1 promote in situ cochlear hair cell regeneration after neomycin insult[J]. Sci Rep, 2013, 3:2996.

[29] Sun S, Li S, Luo Z, et al. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells[J]. Elife, 2021, 10:e66547.

[30] Masuda M, Pak K, Chavez E, et al. Tfe2 and Gata3 enhance induction of Pou4f3 and myosin VIIa positive cells in nonsensory cochlear epithelium by Atoh1[J]. Dev Biol, 2012, 372(1):68-80.

[31] Ikeda R, Pak K, Chavez E, et al. Transcription factors with conserved binding sites near Atoh1 on the Pou4f3 gene enhance the induction of cochlear hair cells[J]. Mol Neurobiol, 2015, 51(2):672-684.

[32] Costa A, Sanchez-Guardado L, Juniat S, et al. Generation of sensory hair cells by genetic programming with a combination of transcription factors[J]. Development, 2015, 142(11):1948-1959.

[33] Chen Y, Gu Y, Li Y, et al. Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea[J]. Cell Rep, 2021, 35(3):109016.

[34] Menendez L, Trecek T, Gopalakrishnan S, et al. Generation of inner ear hair cells by direct lineage conversion of primary somatic cells[J]. Elife, 2020, 9:55249.

[35] Xiang M, Gan L, Li D, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development[J]. Proc Natl Acad Sci U S A, 1997, 94(17):9445-9450.

[36] Weiss S, Gottfried I, Mayrose I, et al. The DFNA15 deafness mutation affects Pou4f3 protein stability, localization, and transcriptional activity[J]. Mol Cell Biol, 2003, 23(22):7957-7964.

[37] 马登滨. Pou4f3基因突变致小鼠耳聋的听力学机制研究[D]. 南京:南京医科大学, 2013:30-32.

Ma DB. The studies of hearing mechanism in Pou4f3 mutant mice[D]. Nanjing: Nanjing Medical University, 2013.

[38] 熊燕,张梅,陈菲,等. 线粒体功能障碍与心血管疾病[J]. 中国病理生理杂志, 2013, 29(2):364-370.

Xiong Y, Zhang M, Chen F, et al. Roles of mitochondrial dysfunction in cardiovascular diseases[J]. Chin J Pathophysiol, 2013, 29(2):364-370.

[39] Towers ER, Kelly JJ, Sud R, et al. Caprin-1 is a target of the deafness gene Pou4f3 and is recruited to stress granules in cochlear hair cells in response to ototoxic damage[J]. J Cell Sci, 2011, 124(Pt 7):1145-1155.

[40] Clough RL, Sud R, Davis-Silberman N, et al. Brn-3c (POU4F3) regulates BDNF and NT-3 promoter activity[J]. Biochem Biophys Res Commun, 2004, 324(1):372-381.

[41] Hertzano R, Dror AA, Montcouquiol M, et al. Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system[J]. Eur J Neurosci, 2007, 25(4):999-1005.

[42] Hertzano R, Montcouquiol M, Rashi-Elkeles S, et al. Transcription profiling of inner ears fromPou4f3/ddlidentifies Gfi1 as a target of the Pou4f3 deafness gene[J]. Hum Mol Genet, 2004, 13(18):2143-2153.

[43] Fritzsch B, Silos-Santiago I, Bianchi LM, et al. The role of neurotrophic factors in regulating the development of inner ear innervation[J]. Trends Neurosci, 1997, 20(4):159-164.

[44] Ernfors P, Lee KF, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits[J]. Nature, 1994, 368(6467):147-150.

[45] Ernfors P, Lee KF, Kucera J, et al. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents[J]. Cell, 1994, 77(4):503-512.

[46] Agerman K, Hjerling-Leffler J, Blanchard MP, et al.gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development[J]. Development, 2003, 130(8):1479-1491.

[47] Ernfors P, Van De Water T, Loring J, et al. Complementary roles of BDNF and NT-3 in vestibular and auditory development[J]. Neuron, 1995, 14(6):1153-1164.

[48] Solomon S, Xu Y, Wang B, et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2α, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs[J]. Mol Cell Biol, 2007, 27(6):2324-2342.

[49] Tornari C, Towers ER, Gale JE, et al. Regulation of the orphan nuclear receptor Nr2f2 by the DFNA15 deafness gene Pou4f3[J]. PLoS One, 2014, 9(11):e112247.

[50] Huang M, Sage C, Li H, et al. Diverse expression patterns of LIM-homeodomain transcription factors (LIM-HDs) in mammalian inner ear development[J]. Dev Dyn, 2008, 237(11):3305-3312.

[51] Rodel B, Tavassoli K, Karsunky H, et al. The zinc finger protein Gfi-1 can enhance Stat3 signaling by interacting with the Stat3 inhibitor Pias3[J]. Embo J, 2000, 19(21):5845-5855.

[52] Matern MS, Milon B, Lipford EL, et al. Gfi1 functions to repress neuronal gene expression in the developing inner ear hair cells[J]. Development, 2020, 147(17):dev186015.

[53] Xiang M, Gao WQ, Hasson T, et al. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells[J]. Development, 1998, 125(20):3935-3946.

[54] Yu HV, Tao L, Llamas J, et al. Pou4f3 pioneer activity enables Atoh1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism[J]. Proc Natl Acad Sci U S A, 2021, 118(29):e2105137118.

[55] Ohyama T, Groves AK. Generation of Pax2-Cre mice by modification of a Pax2 bacterial artificial chromosome[J]. Genesis, 2004, 38(4):195-199.

[56] García-Añoveros J, Clancy JC, Foo CZ, et al. Tbx2 is a master regulator of inner versus outer hair cell differentiation[J]. Nature, 2022, 605(7909):298-303.

[57] Lee S, Song JJ, Beyer LA, et al. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea[J]. Sci Rep, 2020, 10(1):21397.

[58] Wallis D, Hamblen M, Zhou Y, et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival[J]. Development, 2003, 130(1):221-232.

[59] Dabdoub A, Puligilla C, Jones JM, et al. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea[J]. Proc Natl Acad Sci U S A, 2008, 105(47):18396-18401.

[60] 冯晓,齐麟,孟娟.斑马鱼耳聋基因Gfi与POU4f3的关联性[J]. 河南大学学报(医学版), 2014, 33(4):267-269.

Feng X, Qi L, Meng J. The relation between Gfi and Pou4f3 by zebrafish[J]. J Henan Univ (Med Sci), 2014, 33(4):267-269.

Advances in study ofgene synergizing with POU4F3 and Gfi1 to promote hair cell regeneration

He Cairong1, Yang Ying1, Huang Jinwei1, Chen Fengjiao2, Lu Ying3, Ding Jie1△

[1(),,,550025,;2,550002,;3,,,550025,]

Hair cell regeneration and functional remodeling is an effective method of treating sensorineural deafness. In recent years, direct reprogramming techniques have made substantial progress in the field of hair cell regeneration.is an essential gene that is involved in hair cell morphology and maturation. POU domain class 4 transcription factor 3 (Pou4f3)plays a crucial role in the development of all hair cells within the sensory epithelium.Growth factor indepondent-1 (Gfi1) is an important transcription factor that is required for hair cell development and survival. Studies have demonstrated that the synergistic regulation of Atoh1, Pou4f3 and Gfi1 promotes hair cell differentiation, as well as functional maturation,. However, the regulatory mechanisms of these three factors in the development, maturation, and establishment of the auditory function of hair cells are still to be further explored. The aim of this paper is to elucidate the function and mechanistic relationship between Atoh1, Pou4f3 and Gfi1 in the functional remodeling of hair cells, as well as to determine the feasibility of using the Atoh1-Pou4f3-Gfi1 direct reprogramming strategy in order to restore human hearing in the future.

hair cell regeneration; direct reprogramming; interoperability mechanisms; hearing loss

R363; R763.3

A

10.3969/j.issn.1000-4718.2023.09.016

1000-4718(2023)09-1666-09

2023-03-15

2023-06-19

国家自然科学基金资助项目(No. 32260163; No. 81960838);贵州省科技计划项目(黔科合基础⁃ZK[2021]一般108);贵州省高层次创新人才(黔科合平台人才-GCC[2022]027-1)

Tel: 18085108128; E-mail: 47734092@qq.com

(责任编辑:余小慧,罗森)

猜你喜欢

毛细胞内耳耳蜗
听力下降也要查血脂
耳蜗微音器电位临床操作要点
幕上毛细胞星形细胞瘤的MR表现及误诊分析
恐龙内耳的秘密
让永久性耳聋患者有望恢复听力的蛋白质
鸟纲类生物鸡用于耳蜗毛细胞再生领域研究进展
如何认识耳蜗内、外毛细胞之间的关系
DR内听道像及多层螺旋CT三维重建对人工耳蜗的效果评估
豚鼠耳蜗Hensen细胞脂滴的性质与分布
内耳显影助力眩晕疾病诊断