m6A修饰在肝细胞癌发生发展及治疗中作用的研究进展*
2023-11-15黄伟健李柳艳曾达通危丹明熊丹丹
黄伟健, 李柳艳, 曾达通, 危丹明, 熊丹丹△
m6A修饰在肝细胞癌发生发展及治疗中作用的研究进展*
黄伟健1, 李柳艳2, 曾达通1, 危丹明2, 熊丹丹2△
(1广西玉林市红十字会医院病理科,广西 玉林,537000;2广西医科大学第一附属医院病理科,广西 南宁,530021)
肝细胞癌;RNA甲基化修饰;m6A修饰;治疗
肝细胞癌(hepatocellular carcinoma,HCC)是世界上第六大最常见的恶性肿瘤,也是肿瘤相关死亡的第四大原因[1]。据报道,2018年全球新增病例约841 000例,死亡病例约781 000例[2]。由于其早期症状隐匿,多数患者确诊时已处于疾病晚期,因此HCC的发病率与死亡率之比接近1[3]。目前,HCC潜在的分子发病机制在很大程度上尚不清楚[4]。探索HCC发生发展的分子机制对HCC早期诊断、精准治疗至关重要。
表观遗传学改变在肿瘤的发生发展中发挥着重要作用,传统的表观遗传修饰主要包括DNA甲基化、组蛋白修饰、染色质重构等[5]。近几年,RNA修饰逐渐成为表观遗传调控新的研究热点。其中,RNA的6-甲基腺嘌呤(6-methyladenosine, m6A)修饰是大多数真核生物RNA中最丰富的修饰并涉及RNA生命周期的几乎所有阶段,其特征是将一个甲基基团添加到核糖核苷酸的A碱基上,从而影响RNA分子的功能[6]。m6A修饰几乎存在于所有类型的RNA上,包括mRNA、长链非编码RNA(long non-coding RNA, lncRNA)、miRNA、核糖体RNA、环状RNA和小核RNA[7]。大量研究表明m6A修饰在多种肿瘤发生发展中起着重要作用,包括HCC[8]、宫颈癌[9]、乳腺癌[10]、子宫内膜癌[11]、前列腺癌[12]、非小细胞肺癌[13]、甲状腺癌[14]、食管癌[15]、结直肠癌[16]、胃癌[17]、骨肉瘤[18]等。m6A修饰在肿瘤的发生和进展中的作用具有两面性,通过甲基转移酶和去甲基化酶的双重调节维持RNA 甲基化修饰的动态可逆,调控RNA表达、剪接、翻译、稳定性、降解,从而调节包括HCC在内的肿瘤的进展。探索RNA m6A修饰在HCC中的作用及分子机制,寻找有效的治疗靶点,开发新的靶向干预策略,能够为HCC患者的个体化治疗方案提供更多可能性。
1 m6A概述
m6A修饰是指在RNA腺苷核苷酸的第六个氮原子上添加一个甲基基团,改变RNA分子的化学性质和空间结构,进而影响RNA的功能和调控[19]。m6A修饰过程由一组复杂的酶系统协同作用完成,该酶系统包括甲基转移酶(writers)、去甲基化酶(erasers)和读取蛋白(readers)[20]。其中,甲基转移酶(包括METTL3、METTL4、METTL5、METTL14、METTL16、WTAP、KIAA1429、RBM15/15B、ZCCHC4、ZC3H13、CBLL1、PCIF1)负责催化RNA腺苷酸发生m6A修饰并维持m6A甲基化的稳定性,去甲基化酶(包括FTO、ALKBH3、ALKBH5)介导已发生m6A修饰的碱基去甲基化,而读取蛋白(包括YTHDC1、YTHDC2、YTHDF1、YTHDF2、YTHDF3、HNRNPC、HNRNPG、HNRNPA2B1、IGF2BP1/2/3、FMRP、LRPPRC、eIF3、SND1、PRRC2A)的主要功能是识别并结合m6A位点,从而调控下游RNA的转录后翻译或调控RNA的稳定性(见图1)[6, 21]。
2 m6A修饰促进HCC发生、侵袭与转移
METTL3具有催化结构域,在m6A甲基化过程中起着重要作用。研究报道,METTL3介导的m6A修饰可通过稳定LINC00958(一种与脂肪生成相关的lncRNA)的RNA转录,促进其在HCC细胞系和组织中的表达上调,而LINC00958则通过抑制mir-3619-5p的表达,上调肝原性生长因子的表达,从而促进HCC的进展[22]。Chen等[23]报道METTL3通过m6A阅读蛋白YTHDF2依赖的方式促进细胞因子信号通路2抑制因子(suppressor of cytokine signaling 2,SOCS2)的m6A修饰,降低SOCS2稳定性,抑制其表达,从而发挥促进HCC进展的作用。Li等[24]研究显示m6A去甲基化酶FTO在HCC组织和细胞中显著上调,且与较差的预后相关,其可触发丙酮酸激酶M2 mRNA去甲基化,从而促进HCC进展。KIAA1429是一个常见的m6A“reader”,在HCC组织中表达升高且与HCC患者预后不良有关,其可通过诱导GATA3前体信使RNA的m6A修饰,促进GATA3前体信使RNA降解,导致GATA3表达量下降,从而促进HCC生长[25]。
血管生成是HCC生长和转移的必要条件,抗血管生成是HCC治疗的手段之一。1999年Maniotis等提出了血管生成拟态(vasculogenic mimicry,VM)这一概念,即肿瘤的功能性血供通道可能与内皮细胞无关,而是由侵袭性肿瘤细胞形成的。迄今为止,VM已在多种肿瘤类型中被检测,如黑色素瘤[26-28]、卵巢癌[29-30]、结直肠癌[31]、喉鳞癌[32, 33]、HCC[34-36]等,且与患者预后不良有关。VM不仅可为肿瘤细胞提供营养和氧气,还可以促进肿瘤细胞的转移[37]。有研究表明,m6A修饰在HCC VM的形成中起关键作用。METTL3参与了HCC VM的形成,其通过介导YAP1的m6A修饰,促进YAP1 mRNA的翻译,从而促进VM的形成,并进一步促进HCC迁移、侵袭,METTL3和YAP1可能通过阻碍VM的形成成为抗HCC转移的潜在治疗靶点[38]。
上皮-间充质转化(epithelial-mesenchymal transition,EMT)是上皮细胞转化为间充质细胞的短暂的、可逆的细胞去分化过程[39]。在肿瘤中,EMT被认为是一种促进肿瘤细胞浸润和转移的重要机制[40]。当肿瘤细胞发生EMT时,它们会从原始肿瘤部位脱离出来,通过血管和淋巴管进入血液和淋巴系统,进而转移到远处组织器官,形成远处转移。抑制肿瘤细胞的EMT过程,可以有效减缓肿瘤细胞的浸润和转移,从而提高肿瘤的治疗效果和预后。因此,探究肿瘤细胞EMT的分子机制,寻找EMT相关的分子靶点,并开发相关的药物,对于肿瘤治疗具有重要的临床意义。Lin等[41]证实METTL3可通过YTHDF1介导的m6A修饰促进Snail(EMT的关键转录因子)翻译,进一步促进肿瘤细胞EMT的发生及肿瘤细胞迁移、侵袭,提示m6A修饰在HCC EMT形成中可能发挥着重要作用,基于m6A修饰的分子靶向治疗可能能够通过逆转EMT过程抑制HCC转移。
以上证据均表明,m6A修饰在HCC的进展及转移中发挥着重要作用,有望成为HCC预后标志物及HCC治疗最具潜力的分子靶标。
3 m6A修饰与HCC治疗的关系
3.1m6A修饰与HCC耐药有研究揭示METTL3在索拉非尼耐药的HCC细胞中低表达,缺氧条件下,METTL3的消耗会促进HCC对索拉非尼耐药,METTL3和YTHDF1可共同介导FOXO3的m6A修饰,从而增加FOXO3mRNA稳定性,而FOXO3则通过下调自噬相关基因(、、、、、)的表达,增强肝癌细胞对索拉非尼的敏感性[42]。另有研究表明METTL3下调可抑制mRNA的m6A修饰,通过诱导细胞凋亡,使HCC对阿帕替尼敏感[43]。m6A修饰的circRNA-SORE通过调节β-catenin信号传导来维持HCC中的索拉非尼耐药性[44]。m6A修饰通过上调HCC中lncRNA NIFK-AS1,促进HCC进展和索拉非尼耐药性[45]。总之,对m6A修饰在耐药机制中的作用及其调控网络的深入研究,有望为提高HCC患者化疗的敏感性提供理论支持。
3.2m6A修饰与HCC局部消融治疗有研究显示m6A-YTHDF1-EGFR轴促进射频消融不足(insufficient radiofrequency ablation,IRFA)后HCC进展,证实了IRFA通过m6A mRNA甲基化依赖性机制促进HCC转移,该研究为靶向m6A修饰与EGFR抑制剂联合使用以抑制射频消融后HCC转移提供了科学依据[46]。Xiao等[47]构建了一种抗原捕获纳米平台,用于将肿瘤相关抗原和m6A去甲基化酶抑制剂(FTO抑制剂)共递送到肿瘤浸润树突状细胞中,结果显示,HCC组织内注射纳米药物后进行热消融可促进树突状细胞成熟,改善肿瘤组织对效应T细胞的浸润并产生免疫记忆,与免疫检查点抑制剂协同作用,抑制肿瘤生长和远处转移。
3.3m6A修饰与基于微环境的免疫治疗肿瘤微环境(tumor microenvironment, TME)相关的研究因其对促进免疫治疗的作用而备受人们的关注。TME不仅包括恶性细胞本身,还包括周围组织和免疫细胞等多种细胞成分,以及不同的细胞因子和分子信号,这些因素共同影响肿瘤生长、转移和对治疗的反应[48]。最近的研究表明,m6A修饰在TME中也扮演着重要的调控角色。基于m6A调节因子表达模式的m6A评分可能有助于肿瘤患者风险分层和精准免疫治疗策略的确定[4]。Wei等[49]基于m6A评分鉴定出三种不同的HCC肿瘤微环境相关表型:免疫衰竭型、免疫激活型和免疫免疫型。其中免疫衰竭型以T细胞耗竭和巨噬细胞富集为特征,此类型更具有侵袭性,转化生长因子-β抑制剂和免疫检查点抑制剂的组合可以潜在地提高这些患者的疗效。虽然免疫检查点疗法已经彻底改变了肿瘤治疗方式,但仍有部分患者对免疫检查点治疗没有反应或产生耐药性。Yang等[50]的一项研究显示,m6A RNA去甲基化酶FTO在抗PD-1免疫疗法的耐药性的产生中起着重要作用,抑制FTO表达可有效改善肿瘤患者对PD-1免疫治疗的反应。此外,YTHDF1缺失导致CD8+ T细胞升高,树突状细胞中具有m6A修饰的溶酶体蛋白酶mRNA的翻译受到抑制,导致摄入的抗原降解速度减慢,从而促进体内树突状细胞介导的抗原交叉提呈和交叉启动,使抗PD-L1治疗的免疫反应增敏[51]。METTL3催化的m6A修饰以YTHDF2依赖的mRNA降解方式抑制HCC中的SOCS2表达,并通过IL2‐STAT5途径维持Treg细胞的免疫抑制功能,从而促进HCC增殖和转移[23]。m6A修饰在非编码RNA中也有一定的研究。Peng等[52]报道脂多糖通过介导lncRNAMIR155HG的m6A修饰上调PD-L1表达,促进HCC细胞的免疫逃逸。Song等[53]在HCC中鉴定出m6A相关的lncRNA标签,证实该标签可能用于预测HCC患者化疗和免疫治疗的治疗反应。先天免疫可以通过外源性和内源性RNA以不同的方式激活,由于circRNA的闭合环结构,其被认为能够从终端监控系统中逃逸,而m6A修饰有助于circRNA翻译,并帮助外源circRNA逃避免疫监测,人类circRNA可能由共价m6A修饰标记,这对于先天免疫的识别至关重要,但m6A修饰是如何通过影响circRNA免疫转录本的翻译而参与先天免疫还有待进一步研究[54]。以上证据表明,m6A修饰可能是免疫逃逸的调节因子和潜在的免疫治疗预测因子,在调节HCC免疫微环境中发挥着重要作用。深入研究m6A修饰的机制,不仅可以提高我们对HCC免疫治疗的理解,还可以为个体化免疫治疗方案的制定提供支持和指导,促进免疫治疗的进一步发展和应用。
4 总结
综上所述,在过去的几年里,研究人员对m6A修饰在肿瘤中的作用进行了广泛的研究,m6A调节因子的失调在促进或抑制HCC的发展中起着至关重要的作用。通过有效的抑制剂来靶向失调的m6A调节因子可达到治疗肿瘤的效果,但这些抑制剂的缺点也是不容忽视的,如特异性较差,副作用较大等,因此将其与化疗、放疗或免疫治疗联合应用可能在治疗各种类型的癌症,尤其是针对那些对现有治疗方法具有耐性的肿瘤具有可观的治疗潜力。m6A调控基因可作为HCC患者分子分型和预测预后的生物标志物,但目前未有研究报道m6A调控因子的异常表达及m6A修饰水平的改变能否用于HCC的早期诊断,研究外周血RNA m6A修饰水平的变化,对为HCC患者开发新的非侵入性早期筛查手段具有重要的现实意义。
[1] Pan F, Lin XR, Hao LP, et al. The role of RNA methyltransferase METTL3 in hepatocellular carcinoma: results and perspectives[J]. Front Cell Dev Biol, 2021, 9:674919.
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424.
[3] Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: new trends[J]. J Hepatol, 2020, 72(2):250-261.
[4] Yin T, Zhao L,Yao S. Comprehensive characterization of m6A methylation and its impact on prognosis, genome instability, and tumor microenvironment in hepatocellular carcinoma[J]. BMC Med Genomics, 2022, 15(1):53.
[5] Acuña-Ruiz A, Carrasco-López C, Santisteban P. Genomic and epigenomic profile of thyroid cancer[J]. Best Pract Res Cl En, 2023, 37(1):101656.
[6] Liu L, Li H, Hu D, et al. Insights into6-methyladenosine and programmed cell death in cancer[J]. Mol Cancer, 2022, 21(1):32-47.
[7]张哲明,吴艳,卞涛. RNA m6A修饰在肺部疾病中的研究进展[J]. 中国病理生理杂志, 2021, 37(9):1719-1723.
Zhang ZM, Wu Y, Bian T. Progress in role of RNA m6A modification in lung diseases[J]. Chin J Physiol, 2021, 37(9):1719-1723.
[8] Chen Y, Peng C, Chen J, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1):127.
[9] Wang Q, Guo X, Li L, et al.6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification[J]. Cell Death Dis, 2020, 11(10):911-920.
[10] Anita R, Paramasivam A, Priyadharsini JV, et al. The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients[J]. Am J Cancer Res, 2020, 10(8):2546-2554.
[11] Zhang L, Wan Y, Zhang Z, et al. IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression[J]. Theranostics, 2021, 11(3):1100-1114.
[12] Ji G, Huang C, He S, et al. Comprehensive analysis of m6A regulators prognostic value in prostate cancer[J]. Aging, 2020, 12(14):14863-14884.
[13] Shi H, Zhao J, Han L, et al. Retrospective study of gene signatures and prognostic value of m6A regulatory factor in non-small cell lung cancer using TCGA database and the verification of FTO[J]. Aging, 2020, 12(17):17022-17037.
[14] Wang K, Jiang L, Zhang Y, et al. Progression of thyroid carcinoma is promoted by the m6A methyltransferase METTL3 through regulating m6A methylation on TCF1[J]. Onco Targets Ther, 2020, 13:1605-1612.
[15] Zhao H, Xu Y, Xie Y, et al. m6A regulators is differently expressed and correlated with immune response of esophageal cancer[J]. Front Cell Dev Biol, 2021, 9:650023.
[16] Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer[J]. Mol Cancer, 2020, 19(1):129.
[17] Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer[J]. Cancer Med, 2019, 8(10):4766-4781.
[18] Li J, Rao B, Yang J, et al. Dysregulated m6A-related regulators are associated with tumor metastasis and poor prognosis in osteosarcoma[J]. Front Oncol, 2020, 10:769.
[19] He PC, He C. m6A RNA methylation: from mechanisms to therapeutic potential[J]. EMBO J, 2021, 40(3):e105977.
[20] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10):608-624.
[21] Qu N, Bo X, Li B, et al. Role of6-methyladenosine (m6A) methylation regulators in hepatocellular carcinoma[J]. Front Oncol, 2021, 11:755206.
[22] Zuo X, Chen Z, Gao W, et al. m6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1):5-24.
[23] Chen M, Wei L, Law CT, et al. RNA6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018, 67(6):2254-2270.
[24] Li J, Zhu L, Shi Y, et al. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation[J]. Am J Transl Res, 2019, 11(9):6084-6092.
[25] Lan T, Li H, Zhang D, et al. KIAA1429 contributes to liver cancer progression through6-methyladenosine-dependent post-transcriptional modification of GATA3[J]. Mol Cancer, 2019, 18(1):186-204.
[26] Delgado-Bellido D, Fernández-Cortés M, Rodríguez MI, et al. VE-cadherin promotes vasculogenic mimicry by modulating kaiso-dependent gene expression[J]. Cell Death Differ, 2019, 26(2):348-361.
[27] Liang X, Sun R, Zhao X, et al. Rictor regulates the vasculogenic mimicry of melanoma via the AKT-MMP-2/9 pathway[J]. J Cell Mol Med, 2017, 21(12):3579-3591.
[28] Zhang W, Zhou P, Meng A, et al. Down-regulating myoferlin inhibits the vasculogenic mimicry of melanoma via decreasing MMP-2 and inducing mesenchymal-to-epithelial transition[J]. J Cell Mol Med, 2018, 22(3):1743-1754.
[29] 姚瑶,夏敏,侯聪,等. ABT-737对TAMs与SKOV3细胞共培养中卵巢癌细胞生长与血管拟生作用的影响[J]. 中国临床药理学与治疗学, 2022, 27(2):144-153.
Yao Y, Xia M, Hou C, et al. The effect of ABT-737 on the growth and angiogenic mimicry of ovarian cancer cells in co-culture with TAMs and SKOV3 cells[J]. Chin J Clin Pharmacol Ther, 2022, 27(2):144-153.
[30] 俞岚,武世伍,宋文庆,等. 卵巢上皮癌中血管生成拟态和E-钙黏蛋白表达及其临床意义[J]. 中国病理生理杂志, 2011, 27(11):2120-2125.
Yu L, Wu SW, Song WQ, et al. Vasculogenic mimicry and E-cadherin expression in epithelial ovarian cancer[J]. Chin J Physiol, 2011, 27(11):2120-2125.
[31] Li W, Zong S, Shi Q, et al. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin[J]. Sci Rep, 2016, 6:37534.
[32] Bedal KB, Grässel S, Spanier G, et al. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells[J]. Carcinogenesis, 2015, 36(11):1429-1439.
[33] Wang F, Li XK, Xu HY, et al. N-cadherin participated in invasion and metastasis of human esophageal squamous cell carcinoma via taking part in the formation of vasculogenic mimicry[J]. Med Oncol, 2015, 32(2):480-487.
[34] Sun B, Zhang S, Zhang D, et al. Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma[J]. Oncol Rep, 2006, 16(4):693-698.
[35] Liu WB, Xu GL, Jia WD, et al. Prognostic significance and mechanisms of patterned matrix vasculogenic mimicry in hepatocellular carcinoma[J]. Med Oncol, 2011, 28:228-238.
[36] Guzman G, Cotler SJ, Lin AY, et al. A pilot study of vasculogenic mimicry immunohistochemical expression in hepatocellular carcinoma[J]. Arch Pathol Lab Med, 2007, 131(12):1776-1781.
[37] Zheng N, Zhang S, Wu W, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma[J]. Pharmacol Res, 2021, 166:105507.
[38] Qiao K, Liu Y, Xu Z, et al. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway[J]. Angiogenesis, 2021, 24(1):83-96.
[39] 王照岩,杨玉玲,杨志一,等.miR-125a-5p通过GSK-3β/Snail信号通路抑制乳腺癌细胞的上皮-间充质转化[J]. 中国病理生理杂志, 2018, 34(6):1008-1013.
Wang ZY, Yang YL, Yang ZY, et al. miR-125a-5p suppresses epithelial-mesenchymal transition via GSK-3β/ Snail signaling pathway in breast cancer cells[J]. Chin J Physiol,2011, 27(11):2120-2125.
[40] Aiello NM, Maddipati R, Norgard RJ, et al. EMT subtype influences epithelial plasticity and mode of cell migration[J]. Dev Cell, 2018, 45(6):681-695.
[41] Lin X, Chai G, Wu Y, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1):2065.
[42] Lin Z, Niu Y, Wan A, et al. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy[J]. EMBO J, 2020, 39(12):e103181.
[43] Ke W, Zhang L, Zhao X, et al. P53 m6A modulation sensitizes hepatocellular carcinoma to apatinib through apoptosis[J]. Apoptosis, 2022, 27(5-6): 426-440.
[44] Xu J, Wan Z, Tang M, et al.6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling[J]. Mol Cancer, 2020, 19(1): 163-178.
[45] Chen YT, Xiang D, Zhao XY, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance[J]. Hum Cell, 2021, 34(6): 1800-1811.
[46] Su T, Huang M, Liao J, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma metastasis through6-methyladenosine mRNA methylation-dependent mechanism[J]. Hepatology, 2021, 74(3):1339-1356.
[47] Xiao Z, Li T, Zheng X, et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation[J]. Bioact Mater, 2022, 21:57-68.
[48] Zhang F, Liu H, Duan M, et al. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application[J]. J Hematol Oncol, 2022, 15(1):84-121.
[49] Wei J, Fang DL, Zhou W, et al.6-methyladenosine (m6A) regulatory gene divides hepatocellular carcinoma into three subtypes[J]. J Gastrointest Oncol, 2021, 12(4):1860-1872.
[50] Yang S, Wei J, Cui YH, et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade[J]. Nat Commun, 2019, 10(1):2782.
[51] Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743):270-274.
[52] Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression[J]. Cell Biol Toxicol, 2022, 38(6):1159-1173.
[53] Song D, Tian Y, Luo J, et al. An6-methyladenosine-associated lncRNA signature for predicting clinical outcome and therapeutic responses in hepatocellular carcinoma[J]. Ann Transl Med, 2022, 10(8):464-478.
[54] Zhang L, Hou C, Chen C, et al. The role of6-methyladenosine (m6A) modification in the regulation of circRNAs[J]. Mol Cancer, 2020, 19(1):105.
Advances in role of m6A modification in development and treatment of hepatocellular carcinoma
HUANG Weijian1, LI Liuyan2, ZENG Datong1, WEI Danming2, XIONG Dandan2△
(1,,537000,;2,,530021,)
6-methyladenosine (m6A) modification of RNA is the most abundant modification in most eukaryotic RNAs and is involved in almost all stages of the RNA lifecycle, playing crucial roles in regulating RNA expression, splicing, translation, stability, degradation, etc. Recent studies have suggested that m6A modification plays a significant role in the pathogenesis of hepatocellular carcinoma (HCC); however, the underlying molecular mechanisms remain unclear. This review summarizes the current research progress on the role of m6A modification in HCC progression, drug resistance, radiofrequency ablation therapy, and immunotherapy, aiming to provide valuable insights for the precise treatment of HCC patients.
hepatocellular carcinoma; RNA methylation modification; m6A modification; treatment
R735.7; R363
A
10.3969/j.issn.1000-4718.2023.09.021
1000-4718(2023)09-1702-06
2023-01-16
2023-04-13
广西自然科学基金资助项目(No. 2022GXNSFBA035657);广西壮族自治区卫生健康委员会自筹经费科研课题(No. Z20210764)
Tel: 0771-5356534; E-mail: xiongdandan@gxmu.edu.cn
(责任编辑:李淑媛,罗森)