基底外侧杏仁核微量注射ghrelin对大鼠条件性味觉厌恶记忆的影响
2023-08-26田欣裴彤赵鸿飞谭雯璐刘盼盼周宇
田欣 裴彤 赵鸿飞 谭雯璐 刘盼盼 周宇
[摘要]目的探討胃促生长素(ghrelin)对条件性味觉厌恶(CTA)记忆的影响及其可能的分子机制。方法将成年SD大鼠随机分为home cage组(未处理组)、对照组和实验组,CTA训练前20 min实验组大鼠双侧基底外侧杏仁核(BLA)注射15 μmol/L的ghrelin每侧0.5 μL,对照组大鼠BLA注射等量生理盐水。CTA训练24 h后进行记忆测试,用厌恶指数(AI)对CTA记忆进行量化分析。CTA实验结束30 min后取BLA组织,采用实时荧光定量PCR方法检测电压门控钾通道1(Kcna1)和电压门控钾通道4(Kcna4)的转录水平。结果实验组AI明显低于对照组,差异具有统计学意义(t=3.052,P<0.05)。与home cage组相比,CTA训练后对照组大鼠Kcna1转录水平下调(F=3.743,P<0.05),Kcna4转录水平上调(F=18.300,P<0.001);而实验组大鼠Kcna1和Kcna4的表达与home cage组比较差异均无显著性(P>0.05)。结论CTA训练引起BLA脑区Kcna1和Kcna4表达的可塑性变化。BLA微量注射ghrelin抑制大鼠CTA记忆的获取,这可能与ghrelin抑制BLA脑区Kcna1和Kcna4表达的可塑性变化有关。
[关键词]胃促生长素;基底外侧核;钾通道,电压门控;记忆;大鼠
[中图分类号]R338.2[文献标志码]A[文章编号]2096-5532(2023)03-0367-04
doi:10.11712/jms.2096-5532.2023.59.020[开放科学(资源服务)标识码(OSID)]
[网络出版]https://kns.cnki.net/kcms/detail/37.1517.R.20230302.1736.001.html;2023-03-0317:16:52
EFFECT OF MICROINJECTION OF GHRELIN IN THE BASOLATERAL AMYGDALA ON CONDITIONED TASTE AVERSION MEMORY IN RATS TIAN Xin, PEI Tong, ZHAO Hongfei, TAN Wenlu, LIU Panpan, ZHOU Yu (State Key Discipline: Physioloy (in Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of ghrelin on conditioned taste aversion (CTA) memory and to explore the possible molecular mechanism. MethodsAdult Sprague Dawley rats were randomly divided into home cage group (untreated group), control group, and experimental group. Rats in the experimental group received a single dose of ghrelin (15 μmol/L, 0.5 μL each side) in the bilateral basolateral amygdala (BLA) 20 min before CTA training, and rats in the control group were administrated an equal volume of normal saline in the BLA. Memory was evaluated 24 h after CTA training and quantitatively analyzed by the aversive index (AI). BLA tissues were obtained 30 min after CTA training, and quantitative real-time polymerase chain reaction was done to measure the mRNA expression of voltage-gated potassium channel 1 (Kcna1) and voltage-gated potas-sium channel 4 (Kcna4). ResultsThe AI in the experimental group was significantly lower than that in the control group (t=3.052,P<0.05). Compared with the home cage group, the control group had significantly downregulated Kcna1 transcript (F=3.743,P<0.05) but significantly upregulated Kcna4 transcript (F=18.300,P<0.001) after CTA training. However, the expression of both Kcna1 and Kcna4 transcripts showed no significant differences between the experimental group and the home cage group (P>0.05). ConclusionCTA training triggers plasticity changes in Kcna1 and Kcna4 expression in the BLA brain region. Ghrelin microinjected into the BLA inhibits CTA memory acquisition in rats, which may be associated with the suppressive effect of ghrelin on plasticity changes in Kcna1 and Kcna4 expression in the BLA brain region.
[KEY WORDS]ghrelin; basolateral nuclear complex; potassium channels, voltage-gated; memory; rats
胃促生长素(ghrelin)是一种含有28个氨基酸的多肽激素,主要由哺乳动物的胃细胞分泌,对调节进食、葡萄糖代谢和能量稳态至关重要,对学习和记忆等多种脑功能也发挥着复杂的调控作用[1]。有研究发现,ghrelin通过激活海马中的内源性生长激素促分泌素受体(GHS-R1a)来促进学习和记忆[2-3]。而本团队的前期研究发现,ghrelin通过激活GHS-R1a损害杏仁核相关的情绪记忆[4]。杏仁核是情绪学习和记忆最重要的脑结构,被认为是整个情绪记忆神经网络的核心。条件性味觉厌恶(CTA)是用来研究厌恶记忆过程的常用行为学范式。已有研究表明,基底外侧杏仁核(BLA)是CTA记忆环路形成的关键脑区[5-8]。而ghrelin能够调节BLA脑区锥体神经元的兴奋性[9-15]。电压门控钾离子通道在调节神经元兴奋性中起着关键作用,并与阿尔兹海默病、帕金森病和精神障碍等神经系统疾病密切相关[15-25]。电压门控钾通道1(Kcna1)和电压门控钾通道4(Kcna4)属于电压门控钾通道的Shaker亚家族,对中枢和外周神经系统的兴奋性有重要调节作用。因此,本研究一方面观察BLA微量注射ghrelin对CTA记忆获取的影响,同时利用实时荧光定量PCR技术观察ghrelin对Kcna1和Kcna4基因表达的影响,以初步探讨ghrelin对CTA记忆获取影响的可能分子机制。
1材料与方法
1.1动物及分组
成年SD大鼠,体质量280~320 g,购自青岛派特福德白鼠养殖专业合作社。饲养条件为21 ℃恒温、50%恒湿、12 h/12 h昼夜等长循环光照,大鼠可自由进食、饮水、活动。大鼠适应实验室环境至少1周后进行实验。将SD大鼠随机分为home cage组(A组)、对照组(B组)和实验组(C组),每组7只。实验组大鼠双侧BLA注射15 μmol/L的ghrelin每侧0.5 μL,对照组大鼠BLA注射等量的生理盐水,home cage组大鼠不做任何处理。本研究得到青岛大学动物伦理委员会批准。
1.2杏仁核埋管
大鼠腹腔注射80 g/L水合氯醛溶液5 mL/kg,待麻醉后将大鼠俯卧位固定于脑立体定位仪上。碘附消毒皮肤后,于颅骨顶端正中开口,剥离骨膜,暴露前后囟。调节大鼠头部,使其前囟和后囟位于同一水平面上。参照大鼠脑图谱(Paxinos&Watson,2005)定位,于颅骨表面钻孔,利用脑立体定位仪,将事先磨好并消毒的不锈钢外导管(22 gauge,长度1.5 cm)置于双侧BLA区的上方(前囟后2.8 mm,旁开5.2 mm,深度7.5 mm),用416胶和自凝牙托粉固定套管,并用自制不锈钢内芯封闭套管,以免外部杂物堵塞套管。术后大鼠休息7 d。
1.3微量注射
CTA训练前20 min进行BLA区给药。将注射用内管(28 gauge)连接到微量注射器上,注射用内管在脑区的深度比外管长出0.8 mm,到达大鼠BLA区域。使用微量蠕动泵,将药物以0.25 μL/min的恒定流量缓慢注射到BLA区,给药时间为2 min,给药量为每侧0.5 μL。药物注射完毕,要将内管保留在原位超过5 min,等药物吸收后再缓慢移出,以防药物溢出。
1.4CTA实验
大鼠禁水24 h,准备2支都装有15 mL自来水的相同吸管,让大鼠饮用10 min。然后互换位置,再让大鼠饮用10 min。每天定时进行适应,共适应4 d。第5天进行训练,准备2支都装有15 mL 2 g/L甜味剂(Saccharin sodium salt hydrate,Sigma,美国)的相同吸管,让大鼠饮用10 min,20 min后腹腔注射100 mmol/L氯化锂20 mL/kg,24 h后测试。测试方法:在鼠笼中放6支吸管,3支装有5 mL自来水,另3支装有同体积的2 g/L甜味剂,交叉放置,让大鼠自由饮用20 min,然后测量吸管内剩余的液体量。用厌恶指数(AI)作为评价指标,AI=消耗的水的量/消耗的水和甜味剂的总量×100%。以50%作为随机临界点,AI比50%高的越多说明味觉厌恶记忆越好,反之,AI越接近50%说明味觉厌恶记忆越差。
1.5实时荧光定量PCR法检测Kcna1和Kcna4 mRNA表达
CTA实验完成30 min后,将3组小鼠断颈处死,取出两侧杏仁核。实时荧光定量PCR方法检测Kcna1和Kcna4 mRNA表达:用RNA提取试剂盒(Invitrogen 1404690)提取细胞总RNA,用RNA逆转录试剂盒(Invitrogen 18080-051)将mRNA逆转录成cDNA,采用SYBR Green染料法定量检测目的基因Kcna1和Kcna4 及内参照基因GAPDH表达,按照荧光定量PCR说明书配制PCR反应体系,采用两步法经过40个循环完成扩增,采用2-△△CT法计算目的基因相对表达量。PCR扩增引物及其序列见表1。
1.6統计学分析
应用Graph Pad Prism 6软件进行统计学分析。实验结果以±s表示,两组比较采用双尾t检验,与随机值50%相比较采用单样本t检验;多组比较采用单因素方差分析(One-way ANOVA),继以Turkey法进行组间两两比较。P<0.05表示差异具有统计学意义。
2结果
2.1训练前微量注射ghrelin对大鼠CTA记忆获取的影响
CTA测试结果显示,对照组和实验组大鼠AI分别为(87.69±9.50)%和(40.92±11.58)%(n=7),实验组大鼠AI与对照组相比较明显降低(t=3.052,P<0.05)。对照组大鼠AI显著高于随机值50%(t=9.180,P<0.001),实验组大鼠AI接近随机值50%(t=3.489,P<0.05)。表明实验组大鼠味觉厌恶记忆差于对照组,提示训练前BLA微量注射ghrelin可抑制大鼠CTA记忆的获取。
2.2ghrelin对CTA训练大鼠BLA脑区Kcna1和Kcna4转录的影响
与home cage组相比,CTA训练后对照组大鼠BLA脑区Kcna1的转录水平明显下调(F=3.743,P<0.05),Kcna4转录水平明显上调(F=18.300,P<0.001);而实验组大鼠Kcna1和Kcna4的表达与home cage组比较差异均无显著性(P>0.05)。见表2。
3讨论
本文研究结果表明,经BLA注射15 μmol/L的ghrelin(每侧0.5 μL)可以抑制大鼠味觉条件性厌恶记忆的获取。这一研究结果与以往ghrelin及GHS-R1a促进学习和记忆的报道不一致[1-5]。推测可能的原因为,研究的脑区、药物剂量、采用的行为范式以及动物的年龄和遗传背景等均不同。值得注意的是,先前的许多研究中ghrelin的用量均较大(100 ng~100 μg),这可能远远超出了其生理值范围[6-9]。而本研究中仅向BLA脑区注射了低剂量的ghrelin(12 ng)。有文献报道,在中枢神经系统中只有下丘脑中少量细胞能够产生ghrelin,而外周循环中的ghrelin也只有少量能够通过血-脑脊液屏障到达杏仁核等深部脑区[10-11]。因此,本研究中ghrelin的作用可能更接近其生理作用,而不是药理作用。本研究结果与部分人体研究结果一致,这些研究表明血清ghrelin水平与健康个体和轻度认知障碍病人的认知功能呈负相关[12-15]。
研究发现,ghrelin可增加树突棘密度并促进长时程增强的诱导和维持,这被认为是海马脑区ghrelin调节长期记忆巩固和维持的重要突触机制。ghrelin调节记忆获取的机制尚未明确。除了学习诱导的突触强度的可塑性变化外,神经元内在兴奋性的可塑性变化也被认为是学习和记忆的关键细胞机制[16-21]。我们的前期研究结果表明,ghrelin可调节外侧杏仁核神经元的兴奋性。电压门控钾通道对神经元兴奋性起着至关重要的调控作用[22-25]。有研究发现,Kcna1通道在杏仁核微环路中的兴奋性和前馈抑制中起重要的调控作用,并且与癫痫发作有关[25]。本研究结果显示,CTA记忆获取时BLA脑区Kcna1基因表达下调,而Kcna4基因表达上调。表明BLA区ghrelin微量注射阻断了记忆获取过程中Kcna1和Kcna4表达的可塑性变化,这一作用可能与ghrelin所致BLA神经元的兴奋性异常以及味觉厌恶记忆无法正常形成有关。
综上所述,BLA脑区微量注射ghrelin可抑制CTA记忆获取,这一过程可能与ghrelin阻碍记忆编码过程中特定钾通道的可塑性变化从而影响神经元兴奋性相关。本研究结果为深入探讨ghrelin及GHS-R1a调控学习记忆的分子机制提供了新的实验依据。
[参考文献]
[1]ANDREWS Z B. The extra-hypothalamic actions of ghrelin on neuronal function[J]. Trends in Neurosciences, 2011,34(1):31-40.
[2]DIANO S, FARR S A, BENOIT S C, et al. Ghrelin controls hippocampal spine synapse density and memory performance[J]. Nature Neuroscience, 2006,9(3):381-388.
[3]RIBEIRO L F, CATARINO T, SANTOS S D, et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the Hippocampus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(1):E149-E158.
[4]朱倩倩. Ghrelin/GHS-R1a通路對大鼠味觉厌恶情绪记忆的调控作用及分子机制探讨[D]. 青岛:青岛大学, 2014.
[5]CHEN L, XING T R, WANG M, et al. Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory through activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats[J]. European Journal of Neuroscience, 2011,33(2):266-275.
[6]CARLINI V P, VARAS M M, CRAGNOLINI A B, et al. Differential role of the Hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin[J]. Biochemical and Biophysical Research Communications, 2004,313(3):635-641.
[7]CARLINI V P, MONZN M E, VARAS M M, et al. Ghrelin increases anxiety-like behavior and memory retention in rats[J]. Biochemical and Biophysical Research Communications, 2002,299(5):739-743.
[8]GOSHADROU F, RONAGHI A. Attenuating the effect of Ghrelin on memory storage via bilateral reversible inactivation of the basolateral amygdale[J]. Behavioural Brain Research, 2012,232(2):391-394.
[9]SONG L G, ZHU Q Q, LIU T W, et al. Ghrelin modulates lateral amygdala neuronal firing and blocks acquisition for conditioned taste aversion[J]. PLoS One, 2013,8(6):e65422.
[10]ZHU Q Q, XIAO K W, YU M, et al. Ghrelin but not nesfatin-1 affects certain forms of learning and memory in both rats and mice[J]. Brain Research, 2013,1541:42-51.
[11]CABRAL A, LPEZ SOTO E J, EPELBAUM J, et al. Is ghrelin synthesized in the central nervous system[J]? International Journal of Molecular Sciences, 2017,18(3):638.
[12]KERN A, MAVRIKAKI M, ULLRICH C, et al. Hippocampal dopamine/DRD1 signaling dependent on the ghrelin receptor[J]. Cell, 2015,163(5):1176-1190.
[13]SPITZNAGEL M B, BENITEZ A, UPDEGRAFF J, et al. Serum ghrelin is inversely associated with cognitive function in a sample of non-demented elderly[J]. Psychiatry and Clinical Neurosciences, 2010,64(6):608-611.
[14]BELLAR D, GLICKMAN E L, JUDGE L W, et al. Serum ghrelin is associated with verbal learning and adiposity in a sample of healthy, fit older adults[J]. BioMed Research International, 2013,2013:202757.
[15]YOSHINO Y, FUNAHASHI Y, NAKATA S, et al. Ghrelin cascade changes in the peripheral blood of Japanese patients with Alzheimer's disease[J]. Journal of Psychiatric Research, 2018,107:79-85.
[16]CAO X, ZHU M, HE Y, et al. Increased serum acylated ghrelin levels in patients with mild cognitive impairment[J]. Journal of Alzheimer's Disease: JAD, 2018,61(2):545-552.
[17]DAOUDAL G, DEBANNE D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms[J]. Learning & Memory (Cold Spring Harbor, N Y), 2003,10(6):456-465.
[18]ZHANG W, LINDEN D J. The other side of the engram: experience-driven changes in neuronal intrinsic excitability[J]. Nature Reviews Neuroscience, 2003,4(11):885-900.
[19]DISTERHOFT J F, OH M M. Learning, aging and intrinsic neuronal plasticity[J]. Trends in Neurosciences, 2006,29(10):587-599.
[20]MATTHEWS E A, LINARDAKIS J M, DISTERHOFT J F. The fast and slow afterhyperpolarizations are differentially modulated in hippocampal neurons by aging and learning[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2009,29(15):4750-4755.
[21]OH M M, OLIVEIRA F A, DISTERHOFT J F. Learning and aging related changes in intrinsic neuronal excitability[J]. Frontiers in Aging Neuroscience, 2010,2:2.
[22]OH M M, DISTERHOFT J F. Increased excitability of both principal neurons and interneurons during associative learning[J]. The Neuroscientist, 2015,21(4):372-384.
[23]YASOSHIMA Y, YAMAMOTO T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats[J]. Neuroscience, 1998,84(1):1-5.
[24]KIM M J, MIZUMORI S J Y, BERNSTEIN I L. Neuronal representation of conditioned taste in the basolateral amygdala of rats[J]. Neurobiology of Learning and Memory, 2010,93(3):406-414.
[25]CHEN L X, CUMMINGS K A, MAU W, et al. The role of intrinsic excitability in the evolution of memory: significance in memory allocation, consolidation, and updating[J]. Neuro-biology of Learning and Memory, 2020,173:107266.
(本文編辑马伟平)