Kv7钾离子通道对大鼠条件性味觉厌恶记忆作用
2023-08-26高珊珊杨鑫付嘉豪邵非翟洪霞周宇
高珊珊 杨鑫 付嘉豪 邵非 翟洪霞 周宇
[摘要]目的探讨基底外侧杏仁核(BLA)微量注射Kv7钾离子通道激动剂或拮抗剂对大鼠条件性味觉厌恶(CTA)情绪记忆获取及提取的影响。方法成年雄性Wistar大鼠BLA埋管后随机分为8组,实验组分别于不同时间经BLA微量注射Kv7钾离子通道激动剂(retigabine)或拮抗剂(XE-991),其对照组注射生理盐水。采用CTA行为范式评价Kv7通道激动剂及拮抗剂对CTA情绪记忆获取及提取的影响。结果训练前注射retigabine组大鼠味觉厌恶指数较注射生理盐水组大鼠明显下降,差异有统计学意义(t=3.384,P<0.05);记忆提取前注射retigabine组大鼠味觉厌恶指数与注射生理盐水组大鼠比较差异无显著性(P>0.05)。训练前和记忆提取前注射XE-991组大鼠与注射生理盐水组大鼠相比,味觉厌恶指数差异均无显著性(P>0.05)。结论Kv7钾离子通道的激活抑制CTA记忆获取,该作用可能与降低BLA神经元兴奋性有关。
[关键词]钾通道,电压门控;基底外侧核;情绪;记忆;大鼠
[中图分类号]R338.2[文献标志码]A[文章编号]2096-5532(2023)03-0364-03
doi:10.11712/jms.2096-5532.2023.59.019[开放科学(资源服务)标识码(OSID)]
[网络出版]https://kns.cnki.net/kcms/detail/37.1517.R.20230303.1117.005.html;2023-03-0610:09:43
EFFECT OF KV7 CHANNEL ON CONDITIONED TASTE AVERSION MEMORY IN RATS GAO Shanshan, YANG Xin, FU Jiahao, SHAO Fei, ZHAI Hongxia, ZHOU Yu (Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the effect of microinjection of Kv7 channel agonist or antagonist into the basolateral amygdala (BLA) on the acquisition and retrieval of conditioned taste aversion (CTA) memory in rats. MethodsAdult male Wistar rats were randomly divided into eight groups after BLA catheter embedding. The rats in experimental groups were given intra-BLA microinjection of Kv7 channel agonist (retigabine) or antagonist (XE-991), and those in control groups were given injection of normal saline. The CTA behavioral paradigm was used to evaluate the effect of Kv7 channel agonist or antagonist on the acquisition and retrieval of memory. ResultsCompared with the rats injected with normal saline, the rats injected with retigabine before CTA training had a significant reduction in taste aversion index (t=3.384,P<0.05), and there was no significant difference in taste aversion index between the rats injected with retigabine and those injected with normal saline before memory retrieval (P>0.05). There was no significant difference in taste aversion index between the rats injected with XE-991 and those injected with normal saline before training and memory retrieval (P>0.05). ConclusionKv7 channel activation inhibits the acquisition of CTA memory in rats, possibly by reducing BLA neuronal excitability.
[KEY WORDS]potassium channels, voltage-gated; basolateral nuclear complex; emotions; memory; rats
杏仁核由基底外侧杏仁核(BLA)和中央杏仁核构成,是情绪学习和记忆最重要的脑结构。BLA的神经元回路对于情绪记忆的获取、巩固、提取和消退至关重要[1-4]。BLA神经元表达多种不同类型的受体,具有高度的可塑性。BLA脑区NMDA 受体依赖的突触可塑性改变可能是情绪记忆获取的关键[5-7]。KCNQ即Kv7是一种电压依赖的钾离子通道,它参与调节神经元的兴奋性,在学習记忆、行为及感知觉功能调节中起到至关重要的作用[8-11]。抑制Kv7钾离子通道可以通过增强突触后动作电位爆发期间和之后的除极化促进NMDA受体开放,有助于诱导长时程增强的产生[12]。因此,我们猜测调控BLA脑区的KCNQ钾离子通道可能会影响情绪记忆的多个进程,包括记忆的获取、巩固以及提取。本研究旨在利用药理学方法和条件性味觉厌恶(CTA)行为范式,探讨BLA Kv7钾离子通道活动对大鼠味觉厌恶情绪记忆获取和提取的影响。
1材料与方法
1.1实验材料
1.1.1实验动物成年雄性Wistar大鼠,体质量280~320 g,购自中国济宁绿康药业实验动物中心。大鼠于(21±2)℃恒温、(50±10)%恒湿、12 h/12 h等长日夜循环光照条件下饲养,可自由进水、饮食。实验开始前大鼠至少适应实验室环境1周。本研究得到青岛大学动物伦理委员会的批准。
1.1.2主要试剂 XE-911和retigabine购自英国TOCRIS公司;氯化锂(LiCl)和甜味剂邻苯甲酰磺酰亚胺钠购于美国Sigma公司。
1.2BLA埋管
大鼠腹腔注射80 g/L的水合氯醛溶液5 mL/kg,待深度麻醉后将其固定于立体定位仪(瑞沃德)上,在颅骨正中顶端开口后剥离组织露出清晰的前囟,将长度为1.5 cm的不锈钢外导管(22 gauge)放置于双侧BLA 区的上方(前囟后2.8 mm,左右旁开各5.2 mm,深度7.5 mm),用416胶和自凝牙托粉固定导管,并用不锈钢内芯封闭导管,以免外部杂物堵塞导管。
1.3动物分组及局部微量注射
将埋管后大鼠随机分为8组,实验组分别于不同时间经BLA微量注射retigabine或XE-991,其对照组注射生理盐水。微量注射器通过聚乙烯管与注射用内管相连接,注射用内管深入到BLA区域。实验组使用微量蠕动泵以0.25 μL/min恒定流量将retigabine(5 μmol/L,每侧0.75 μL)[13]或XE-991(1 μmol/L,每侧0.75 μL)[14]缓慢注射到BLA中,对照组注射等量生理盐水。给药20~30 min后进行CTA实验。
1.4CTA實验
实验开始前大鼠先禁水24 h,然后进行适应。在适应时,准备两个装有15 mL自来水的吸管,让大鼠饮用10 min;两管交换位置,再让大鼠饮用10 min。每天定时进行适应,共适应4 d。第5天进行训练,准备两个相同的吸管,各装有2 g/L的甜味剂15 mL,让大鼠饮用10 min。20 min后腹腔注射100 mmol/L LiCl(2 mL,100 g),24 h后进行测试,测试前经埋管注射生理盐水或retigabine或XE-991,观察给药对CTA记忆的影响。
用厌恶指数(AI)来定量评价CTA记忆,AI=消耗的水的量/消耗的水和甜味剂的总量×100%。以50%作为随机临界点,AI越高说明味觉厌恶记忆越好。
1.5统计学处理
应用Graph Pad Prism 6.0软件进行统计学分析。实验结果以±s形式表示,两组之间AI比较采用双尾t检验,各组AI与临界值50%相比较采用单样本t检验。P<0.05表示差异有显著性。
2结果
2.1BLA注射retigabine对大鼠CTA记忆的影响
训练前注射retigabine组和注射生理盐水组大鼠AI分别为(41.39±15.75)%和(72.65±18.69)%(n=7),注射retigabine组大鼠和注射生理盐水组大鼠相比AI明显下降,差异具有统计学意义(t=3.384,P<0.05);注射retigabine组大鼠AI与临界值50%相比差异无显著性(P>0.05)。CTA记忆提取前注射retigabine组和注射生理盐水组大鼠AI分别为(81.22±10.43)%和(74.17±18.02)%(n=7),两组大鼠AI比较差异无显著性(P>0.05);注射retigabine组大鼠AI明显高于临界值50%(t=7.329,P<0.05)。以上结果提示,BLA注射Kv7钾离子通道激动剂retigabine抑制大鼠CTA记忆的获取,但不影响CTA记忆的提取。
2.2BLA注射XE-991对大鼠CTA记忆的影响
训练前注射XE-991组和注射生理盐水组大鼠AI分别为(78.75±21.94)%和(81.66±17.39)%(n=7),CTA记忆提取前注射XE-991组大鼠和注射生理盐水组大鼠AI分别为(77.43±21.10)%和(74.30±15.03)%(n=7)。训练前和记忆提取前注射XE-991组大鼠与注射生理盐水组大鼠相比,AI差异均无显著性(P>0.05);训练前和记忆提取前注射XE-991组大鼠AI均高于临界值50%(t=3.707、3.184,P<0.05)。以上结果提示,BLA注射Kv7钾离子通道拮抗剂XE-991不影响大鼠CTA记忆的获取以及提取。
3讨论
已发现人类有70多种钾离子通道,其中Kv7即KCNQ钾离子通道激活产生的电流是一种时间和电压依赖性、低阈值、非失活的钾电流,它在神经元动作电位的阈值附近被激活,对于调节神经元兴奋性和神经冲动发放频率起重要作用[15]。当神经元除极化产生动作电位时,由于Kv7/KCNQ钾离子通道被激活后会持续开放,钾离子外流促使神经元膜电位快速回到静息状态,从而导致神经元兴奋性降低。因此,增强Kv7/KCNQ钾离子通道的激活可能在一定程度上会降低神经元兴奋性,反之抑制该通道则会促进膜电位除极化,增强神经元兴奋性,诱导更多神经冲动的发放[16-17]。
KCNQ通道对学习记忆起着重要的调节作用,其介导的电压依赖性钾电流为M电流。M1型胆碱受体的激动剂可通过抑制M电流增加BLA神经元的兴奋性[18]。激活CA1锥体细胞上表达的M1型受体也可以抑制Kv7钾离子通道[5,19]。KCNQ2亚基突变的小鼠出现多动、认知改变、脑形态学改变以及海马依赖的空间记忆损害等表现[20]。有研究发现,注射KCNQ通道拮抗剂XE-991可增强恐惧记忆,而注射KCNQ通道激动剂retigabine能够抑制恐惧记忆[13]。条件性恐惧记忆和CTA记忆是实验室常用的两种情绪记忆行为学范式,被广泛用于情绪记忆获取、巩固、提取、消退过程及其机制的研究[21]。本研究采用CTA行为范式观察KCNQ钾离子通道对情绪记忆获取和提取过程的调节作用,结果表明,激活KCNQ通道抑制大鼠CTA记忆的获取,但对记忆的提取无影响。KCNQ通道激活对CTA记忆获取的阻断作用可能与BLA神经元的兴奋性受抑有关。
[參考文献]
[1]BOCCHIO M, NABAVI S, CAPOGNA M. Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories[J]. Neuron, 2017,94(4):731-743.
[2]JANAK P H, TYE K M. From circuits to behaviour in theamygdala[J]. Nature, 2015,517(7534):284-292.
[3]LEDOUX J. The amygdala[J]. Current Biology, 2007,17(20):R868-R874.
[4]SWANSON L W, PETROVICH G D. What is the amygdala[J]? Trends in Neurosciences, 1998,21(8):323-331.
[5]FONTN-LOZANO A, SUREZ-PEREIRA I, DELGADO-GARCA J M, et al. The M-current inhibitor XE991 decreases the stimulation threshold for long-term synaptic plasticity in healthy mice and in models of cognitive disease[J]. Hippocampus, 2011,21(1):22-32.
[6]LEDOUX J E. Emotion circuits in the brain[J]. Annual Review of Neuroscience, 2000,23:155-184.
[7]MAREN S, QUIRK G J. Neuronal signalling of fear memory[J]. Nature Reviews Neuroscience, 2004,5(11):844-852.
[8]VERVAEKE K, GU N, AGDESTEIN C, et al. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release[J]. The Journal of Physiology, 2006,576(Pt 1):235-256.
[9]NAFFAA M M, AL-EWAIDAT O A. Ligand modulation of KCNQ-encoded (Kv7) potassium channels in the heart and nervous system[J]. European Journal of Pharmacology, 2021,906:174278.
[10]ABD-ELSAYED A A, IKEDA R, JIA Z F, et al. KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia[J]. Molecular Pain, 2015,11:45.
[11]CAVALIERE S, MALIK B R, HODGE J J L. KCNQ channels regulate age-related memory impairment[J]. PLoS One, 2013,8(4):e62445.
[12]PETROVIC M M, NOWACKI J, OLIVO V, et al. Inhibition of post-synaptic Kv7/KCNQ/M channels facilitates long-term potentiation in the Hippocampus[J]. PLoS One, 2012,7(2):e30402.
[13]YOUNG M B, THOMAS S A. M1-muscarinic receptors promote fear memory consolidation via phospholipase C and the M-current[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014,34(5):1570-1578.
[14]ESAKI H, IZUMI S, FUKAO A, et al. Nicotine enhances object recognition memory through inhibition of voltage-depen-dent potassium 7 channels in the medial prefrontal cortex of mice[J]. Journal of Pharmacological Sciences, 2021,147(1):58-61.
[15]WANG J J, LI Y. KCNQ potassium channels in sensory system and neural circuits[J]. Acta Pharmacologica Sinica, 2016,37(1):25-33.
[16]HANSEN H H, EBBESEN C, MATHIESEN C, et al. The KCNQ channel opener retigabine inhibits the activity of me-sencephalic dopaminergic systems of the rat[J]. The Journal of Pharmacology and Experimental Therapeutics, 2006,318(3):1006-1019.
[17]TROMPOUKIS G, RIGAS P, LEONTIADIS L J, et al. Ih, GIRK, and KCNQ/Kv7 channels differently modulate sharp wave-ripples in the dorsal and ventral Hippocampus[J]. Molecular and Cellular Neurosciences, 2020,107:103531.
[18]WOMBLE M D, MOISES H C. Muscarinic inhibition of M-current and a potassium leak conductance in neurones of the rat basolateral amygdala[J]. The Journal of Physiology, 1992,457(1):93-114.
[19]MARRION N V, SMART T G, MARSH S J, et al. Muscarinic suppression of the M-current in the rat sympathetic ganglion is mediated by receptors of the M1-subtype[J]. British Journal of Pharmacology, 1989,98(2):557-573.
[20]PETERS H C, HU H, PONGS O, et al. Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior[J]. Nature Neuroscience, 2005,8(1):51-60.
[21]MOLERO-CHAMIZO A, RIVERA-URBINA G N. Taste processing: insights from animal models[J]. Molecules (Basel, Switzerland), 2020,25(14):3112.
(本文編辑马伟平)