APP下载

动物源分离菌异质性耐药研究进展

2023-04-29赵冰梁玉蕾苑丽

国外医药抗生素分册 2023年3期
关键词:形成机制检测方法

赵冰 梁玉蕾 苑丽

摘要:细菌耐药性的持续发展是全世界公共卫生难题,结果导致临床医学和畜牧业防控耐药菌感染日益困难,不仅严重威胁了人类健康,而且制约了畜牧业的健康持续发展。异质性耐药是细菌耐药发展的中间环节,在一定条件下能发展为稳定耐药菌,从而进一步加重细菌耐药;同时还会导致临床用药治疗失败,延长病程或影响养殖业的经济效益。本文从异质性耐药菌的分类、危害、检测方法与判定标准、流行病学特征及形成机制进行综述,以期为畜牧业临床诊断与研究异质性耐药菌提供理论依据,并为有效遏制细菌耐药发展提供帮助。

关键词:异质性耐药;形成机制;判定标准;流行病学特征;动物源细菌;检测方法

中图分类号:R378        文献标志码:A         文章编号:1001-8751(2023)03-0173-05

Reviews on Heteroresistance of Bacteria Isolated from Animals

Zhao Bing,   Liang Yu-lei ,   Yuan Li

(College of Veterinary Medicine, Henan Agricultural University,    Zhengzhou   450046)

Abstract: The continuous development of bacterial resistance is a global public health problem. As a result, it is increasingly difficult to prevent and control drug-resistant bacterial infections in human medicine and animal husbandry, which not only seriously threatens human health, but also restricts the healthy and sustainable development of animal husbandry. Heteroresistance (HR) is an intermediate stage in the development of antibiotic resistance, which can develop into stable drug-resistant bacteria under certain conditions, thus further aggravating bacterial resistance. At the same time, it will lead to the failure of clinical drug treatment, prolong the course of disease or affect the economic benefits of stockbreeding. This article reviews the classification, harm, detection methods and criteria, epidemiological characteristics and formation mechanism of heteroresistant bacteria, in order to provide a theoretical basis for clinical diagnosis and research of heteroresistant bacteria in animal husbandry, as well as provide help for effectively curbing the development of drug resistance.

Key words: heteroresistance;   formation mechanism;   criteria;   epidemiological characteristics;   bacteria isolated from animal;   detection methods

通常情况下,细菌表型耐药与其携带的耐药质粒、耐药基因或突变、调控系统或多药外排系统突变等之间存在明显的相关性和可预测性[1]。然而,异质性耐药(Heteroresistance,HR)细菌的日益增加打破了这一常规。早在1947年,人们就在一株流感嗜血杆菌中发现了异质性耐药现象,约20年后,学者们又在一株葡萄球菌中观察到类似现象。但是,直到1970年,人们才将此现象正式命名为异质性耐药[2]。HR是细菌耐药的一种特殊类型,是同一个宿主的分离菌或一个克隆菌群对同一个药物的敏感性存在显著差异,从而出现敏感和耐药程度明显不同的细菌亚群共存的特殊菌群[3]。当选用美国临床实验室标准化协会(Clinical and laboratory standards institute,CLSI)或欧洲药敏试验委员会(The European committee on antimicrobial susceptibility testing,EUCAST)筛选的“敏感”药物治疗时,会出现病程延长、反复感染和治疗失败等后果,给临床有效防控造成困扰,并影响养殖业的经济效益和健康发展。同时,HR菌是敏感菌进化为耐药菌的重要途径之一,在抗菌药选择性压力下,此类菌株能转变为稳定耐药菌株。因此,研究HR菌的表型特征及形成机制对解决当今世界严重的细菌耐药难题具有重大意义。

1 HR菌的分类

HR菌的本质是细菌对同一个药物的敏感性有显著差异,在整个HR细菌群体中数量较多的称为优势亚群,一般占到整个菌群的90% ~ 99%,其他的称为次要亚群[2]。按来源可将其分为多克隆HR菌和单克隆HR菌。前者是指细菌从同一宿主的相同感染部位同时或先后分离获得,尽管属于同一种细菌,但它们的遗传背景明显不同。后者是指在单一克隆细菌培养液中含有敏感/耐药程度明显不同的亚群[3]。

按各亚群的耐药表型可将HR菌分为3种类型[2-4]:(1)各亚群均对某一药物耐药,但耐药程度有明显差异;CLSI检测耐药,改用其他药物治疗。(2)各亚群均对某一药物敏感,但敏感程度明显不同,其中优势亚群敏感性最高;CLSI检测敏感,且该药物治疗有效;但在该药物的持续选择性压力下,次要亚群有发展为耐药菌的潜能。(3)各亚群对某一药物的敏感/耐药程度明显不同,其中优势亚群敏感,次要亚群(可能不止一种)呈现不同程度的耐药(故又叫耐药亚群);治疗初期CLSI检测对该药敏感,但选用该药治疗无效。其中最后一种易用药失败,对临床危害最大。

按各亚群是否能在没有抗菌药的选择性压力下持续存在,将HR菌的亚群分为稳定耐药亚群和不稳定耐药亚群。前者是指在不含抗菌药的培养基内持续培养40~50代后,该亚群仍然保持原有的耐药特性,而后者是指在不含抗菌药的培养基内持续培养后,该亚群的耐药可发生逆转,甚至重新恢复对该抗菌药的敏感性,临床中较为常见[3,5]。

2 HR菌的危害

近年来研究发现,多数病原菌对抗菌药均能产生HR[3,6-8],HR菌对临床的危害主要包括以下两种。

2.1 在药物选择性压力下,HR菌能发展为稳定耐药菌

当生长环境中存在抗菌药时,异质性耐药菌中敏感的优势亚群被抑杀,而耐药亚群会迅速生长,从而逐渐替代敏感亚群发展为优势菌群,进而异质性耐药菌成为稳定耐药菌[9-12]。2020年,Band等[9]通过评估临床分离的耐碳青霉烯类肠杆菌对β-内酰胺类抗生素的HR比例,证明对β-内酰胺类抗生素的HR随着抗生素的使用而发展,并逐渐被耐药所取代。但是,当生长环境中不含抗菌药时,异质性耐药菌各耐药亚群的发展趋势尚不明晰。如果耐药亚群的生长适应性代价与优势亚群差异不大,各亚群间组成比例是保持恒定还是会发生改变?如果耐药亚群的生长适应性代价较大,其生长速度会明显低于优势亚群,当完全被后者替代后,该异质性耐药菌可能会重新逆转为敏感菌。但是,逆转的敏感菌是否仍然保持异质的特性?而且当再次接触抗菌药后能否或需要多长时间会再次成为异质性耐药菌?目前尚未见有相关报道。

2.2 HR菌感染会导致治疗失败

在临床病例中分离鉴定的异质性耐药菌,由于菌群中的优势亚群仍为敏感菌,耐药亚群所占比例很低,所以采用CLSI/EUCAST推荐的药敏试验获得的MIC值是抗菌药抑制优势亚群的最小浓度,筛选出的敏感药物仅能抑杀异质性耐药菌中敏感的优势亚群,对占少数的耐药亚群(不超过10%)不仅不能抑制,反而还提供了一个促进其生长繁殖的有利环境,且最终会导致病程延长和抗菌药治疗失败[3-4,13-14]。2017年,Band团队[14]在研究黏菌素异质性耐药阴沟肠杆菌感染小鼠的治疗试验中发现,在持续给药治疗过程中,耐药亚群由最初的<10%迅速增殖到了80%,并导致黏菌素治疗失败。2020年,Zhang等[15]发现阿米卡星和美罗培南异质性耐药的肺炎克雷伯菌导致了小鼠感染模型治疗失败。

3 HR菌的判定标准及检测方法

尽管临床菌株中异质性耐药现象时有发生,但迄今为止国际上尚无统一、公认的判定标准。2015年,El-Halfawy和Valvano提出当细菌能在不低于含有4倍MIC值药物的培养基上生长时,即为该药的异质性耐药菌[2]。2019年,Andersson等[3]建议异质性耐药菌的判定标准不仅要符合上述条件,而且检出频率应不低于1×10-7 CFU/mL。

由于CLSI/EUCAST推荐的药敏检测方法并不能鉴定细菌是否为异质性耐药菌,为临床及时有效监控造成困难。目前,异质性耐药菌检测方法主要包括三种:纸片扩散法、Etest法和群体分析法(Population analysis profiling,PAP)[3,16]。前两种方法均为初筛,当抑菌圈中出现有散在菌落时即为疑似异质性耐药菌。方法简便、直观;但可信度较低,还不能确定异质性耐药菌中各耐药亚群的耐药程度及亚群数量。第三种方法能定量分析,但步骤繁琐,耗时耗力,且技术性强,临床推广应用困难[3,17]。同时,上述三种方法还须借助绘制药物的杀菌动力学曲线才能将异质性耐药菌和持留菌进行有效区分[18]。

4 HR菌的流行病学特征

尽管异质性耐药菌的流行特征已有一些报道,但截至目前,研究主要局限在医院感染分离菌,如葡萄球菌、链球菌、结核分枝杆菌和肠球菌等革兰阳性菌[3,7,19-21];铜绿假单胞菌、鲍曼不动杆菌、阴沟肠杆菌、沙门菌、幽门螺杆菌等革兰阴性菌[8,22-25]。同时,仅有少量文献涉及到大肠埃希菌,且仍为医院感染分离[10,26,27]。涉及到的抗菌药多为人用重要或新型药物,如阿莫西林、头孢地洛,头孢吡肟、哌拉西林/他唑巴坦和碳青霉烯类等β-内酰胺类[10,22,28-30],庆大霉素、妥布霉素、阿米卡星和奈替米星等氨基糖苷类[31],氟喹诺酮类[21]及万古霉素[7]、替加环素[8]、黏菌素[6,32]、利福平[33]、磷霉素[27]和磺胺甲噁唑/甲氧苄啶[19]等。目前动物源分离菌的HR报道较少,主要涉及到猪源大肠埃希菌、鸡源金黄色葡萄球菌、沙门菌、鲍曼不动杆菌和牛源葡萄球菌[34-38]。本课题组2018年在12株猪源大肠埃希菌中发现了黏菌素HR菌[34],2020年又在4株对磷霉素敏感的鸡源大肠埃希菌中发现了磷霉素HR菌[39],说明目前兽医临床分离菌中已有异质性耐药菌的存在,解释了临床通过CLSI/EUCAST选用抗菌药治疗失败的原因;同时也表明研究兽医临床分离菌对抗菌药异质性耐药的迫切性和必要性。

5 HR菌的形成机制

5.1 稳定耐药亚群形成的机制

目前,稳定耐药亚群形成的机制包含三种方式:一是耐药亚群发生了稳定的遗传学突变。如细菌基因组或质粒中耐药基因的碱基发生移码、插入或缺失等变异[3]。2008年,Matteo等[28]发现幽门螺杆菌对阿莫西林的异质性耐药是由于青霉素结合蛋白PBP-1A发生了突变。2020年,Morales-León等[39]在研究肺炎克雷伯菌的黏菌素异质性耐药形成机制时发现,PhoPQ和MgrB中存在多种突变是其稳定耐药亚群形成的主要原因。二是非特异性耐药基因的表达发生改变。如多药外排泵的表达上调、膜孔蛋白相关基因缺失或表达下调等[3]。2011年,Lee 等[40]在检测鲍曼不动杆菌的亚胺培南异质性耐药菌时发现,多数异质性耐药菌携带的β-内酰胺酶(blaADC-29)启动子区插入了ISAba1,而ISAba1自身携带的启动子又明显升高了blaADC-29的表达量,从而产生异质性耐药。本课题组在研究猪源大肠埃希菌对黏菌素的异质性耐药形成机制时发现,PmrB 蛋白的93位氨基酸变异可显著上调双组分信号转导系统PmrAB的表达量,从而导致稳定耐药亚群的产生[34]。在研究鸡源大肠埃希菌对磷霉素的HR形成机制时发现,编码磷霉素转运蛋白GlpT的基因glpT表达量显著下降是导致耐药亚群敏感性降低的主要原因[39]。三是耐药亚群的生长适应性代价与优势亚群差异不明显[40,42]。

5.2 不稳定耐药亚群的形成机制

目前发现不稳定耐药亚群形成的机制有两种:一是耐药基因的突变诱导了其他代偿性变异。临床中,有部分耐药基因的突变会提高细菌的生长适应性代价。当生存环境中缺少抗菌药时,较高的生长适应性代价会诱导细菌发生其他代偿性的变异,从而尽可能降低自身的生长代价;而生长代价的降低常常伴随着菌株的耐药程度下降,结果就形成了对抗菌药耐药有明显差异的亚群。此种机制已在氨基糖苷类、替加环素、碳青霉烯类和磺胺-抗菌增效剂等异质性耐药菌中发现[5,8,41,43]。二是细菌本身发生了非稳定性耐药突变。如耐药基因通过串联扩增来增加其拷贝数,从而上调其表达量[3,5]。2018年,Schechter等[30]发现大肠埃希菌中TEM-1型β-内酰胺酶在基因组中的串联扩增是导致该菌对哌拉西林/他唑巴坦异质性耐药的主要原因。2019年,Nicoloff等[5]发现一株头孢吡肟异质性耐药鼠伤寒沙门菌,且证实其形成机制与细菌携带的blaCARB-2基因发生了串联扩增有关。由于基因的串联扩增不稳定,易于丢失,所以由此获得的耐药亚群也不稳定。当生存环境中缺少抗菌药时,基因的串联扩增消失,亚群的耐药表型丢失并逆转为敏感。

6 展望

尽管HR现象很早就已发现,但是,由于其各亚群的组成在不同条件下是动态变化的,再加上国际上判定标准不统一,且检测手段繁琐,所以目前国内外有关动物源HR菌的研究较少,尤其是形成分子机制的文献更少。为遏制动物源分离菌耐药的持续发展,深入系统研究HR菌的产生机制是至关重要的,希望能引起相关学者专家的重视。

参 考 文 献

Hughes D, Andersson D I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance[J]. FEMS Microbiol Rev, 2017, 41(3): 374-391.

EI-Halfawy O M, Valvano M A. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clin Microbiol Rev, 2015, 28(1): 191-207.

Andersson D I, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17(8): 479-496.

Band V I, Weiss D S. Heteroresistance: A cause of unexplained antibiotic treatment failure?[J]. PLoS Pathog, 2019, 15(6): e1007726.

Nicoloff H, Hjort K, Levin B R, et al. The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification[J]. Nat Microbiol, 2019, 4(3): 504-514.

Kapel N, Caballero J D, MacLean R C. Localized pmrB hypermutation drives the evolution of colistin heteroresistance[J]. Cell Rep, 2022, 39(10): 110929.

Bathavatchalam Y D, Solaimalai D, Amladi A, et al. Vancomycin heteroresistance in Staphylococcus haemolyticus: elusive phenotype[J]. Future Sci OA, 2021, 7(7): Fso710.

Jo J, Ko K S. Tigecycline heteroresistance and resistance mechanism in clinical isolates of Acinetobacter baumannii[J]. Microbiol Spectr, 2021, 9(2): e0101021.

Band V I, Weiss D S. Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance[J]. PLoS Biol, 2021, 19(7): e3001346.

Sun J D, Huang S F, Yang S S, et al. Impact of carbapenem heteroresistance among clinical isolates of invasive Escherichia coli in Chongqing, southwestern China[J]. Clin Microbiol Infect, 2015, 21(5):469. e1-10.

Wang X, Kang Y, Luo C, et al. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination[J].MBio, 2014, 5(1): e00942-13.

Hjort K, Nicoloff H, Andersson D I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica[J]. Mol Microbiol, 2016, 102(2): 274-289.

Band V I, Crispell E K, Napier B A, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1(6): 16053.

Band V I, Satola S W, Burd E M, et al. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. MBio, 2018, 9(2): e02448-17.

Zhang F, Ding M, Yan X, et al. Carbapenem-resistant K. pneumoniae exhibiting clinically undetected amikacin and meropenem heteroresistance leads to treatment failure in a murine model of infection[J]. Microb Pathog, 2021, 160: 105162.

张亚会, 李文茹, 谢小保. 铜绿假单胞菌异质性耐药的研究进展[J]. 微生物学通报, 2022, 49(3): 1167-1176.

Liu H, Jia X, Zou H, et al. Detection and characterization of tigecycline heteroresistance in E. cloacae: clinical and microbiological findings[J]. Emerg Microbes Infect, 2019, 8(1): 564-574.

Dewachter L, Fauvart M, Michiels J. Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance[J]. Mol Cell, 2019, 76(2): 255-267.

Nurjadi D, Chanthalangsy Q, Zizmann E, et al. Phenotypic detection of hemin-inducible trimethoprim-sulfamethoxazole heteroresistance in Staphylococcus aureus[J]. Microbiol Spectr, 2021, 9(2): e0151021.

Li P, Wei Y, Li G, et al. Comparison of antimicrobial efficacy of eravacycline and tigecycline against clinical isolates of Streptococcus agalactiae in China: In vitro activity, heteroresistance, and cross-resistance[J]. Microb Pathog, 2020, 149: 104502.

Rigouts L, Miotto P, Schats M, et al. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: detection by genotypic and phenotypic assays in experimentally mixed populations[J]. Sci Rep, 2019, 9(1): 11760.

Jia X, Ma W, He J, et al. Heteroresistance to cefepime in Pseudomonas aeruginosa bacteraemia[J]. Int J Antimicrob Agents, 2020, 55(3): 105832

Mashaly G E, Mashaly M E. Colistin-heteroresistance in carbapenemase-producing Enterobacter species causing hospital-acquired infections among Egyptian patients[J]. J Glob Antimicrob Resist, 2021, 24: 108-113.

Zhang C Z, Zhang Y, Ding X M, et al. Emergence of ciprofloxacin heteroresistance in foodborne Salmonella enterica serovar Agona[J]. J Antimicrob Chemother, 2020, 75(10): 2773-2779.

Arévalo-Jaimes B V, Rojas-Rengifo D F, Jaramillo C A, et al. Genotypic determination of resistance and heteroresistance to clarithromycin in Helicobacter pylori isolates from antrum and corpus of colombian symptomatic patients[J]. BMC Infect Dis, 2019, 19(1): 546.

Liao W, Lin J, Jia H, et al. Resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China[J]. Infect Drug Resist, 2020, 13: 3551-3561.

Lucas A E, Ito R, Mustapha M M, et al. Frequency and mechanisms of spontaneous fosfomycin nonsusceptibility observed upon disk diffusion testing of Escherichia coli[J]. J Clin Microbiol, 2018, 56(1): e01368-17 .

Matteo M J, Granados G, Olmos M, et al. Helicobacter pylori amoxicillin heteroresistance due to point mutations in PBP-1A in isogenic isolates[J]. J Antimicrob Chemother, 2008, 61(3): 474-477.

Karakonstantis S, Rousaki M, Kritsotakis E I. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and in vivo emergence of resistance[J]. Antibiotics (Basel ), 2022, 11(6): 723.

Schechter L M, Creely D P, Garner C D, et al. Extensive gene amplification as a mechanism for piperacillin-tazobactam resistance in Escherichia coli[J]. mBio, 2018, 9(2): e00583-18.

Stojowska-Sw?drzyńska K, ?upkowska A, Kuczyńska-Wi?nik D, et al. Antibiotic heteroresistance in Klebsiella pneumoniae[J]. Int J Mol Sci, 2021, 23(1): 449.

Wang Y, Ma X, Zhao L, et al. Heteroresistance is associated with in vitro regrowth during colistin treatment in carbapenem-resistant Klebsiella pneumoniae[J]. Front Microbiol, 2022, 13: 868991.

Ng K C S, Supply P, Cobelens F G J, et al. How well do routine molecular diagnostics detect rifampin heteroresistance in Mycobacterium tuberculosis? [J]. J Clin Microbiol, 2019, 57(11): e00717-19.

Kuang Q, He D, Sun H, et al. R(93)P Substitution in the PmrB HAMP domain contributes to colistin heteroresistance in Escherichia coli isolates from swine[J]. Antimicrob Agents Chemother, 2020, 64(11): e01509-20.

Zwe Y H, Chin S F, Kohli G S, et al. Whole genome sequencing (WGS) fails to detect antimicrobial resistance (AMR) from heteroresistant subpopulation of Salmonella enterica[J]. Food Microbiol, 2020, 91: 103530.

Mello P L, Pinheiro L, Martins L A, et al. Short communication: β-Lactam resistance and vancomycin heteroresistance in Staphylococcus spp. isolated from bovine subclinical mastitis[J]. J Dairy Sci, 2017, 100(8): 6567-6571.

Sancak B, Yagci S, Gür D, et al. Vancomycin and daptomycin minimum inhibitory concentration distribution and occurrence of heteroresistance among methicillin-resistant Staphylococcus aureus blood isolates in Turkey[J]. BMC Infect Dis, 2013, 13: 583.

?a?lan E, Nigiz ?, Sancak B, et al. Resistance and heteroresistance to colistin among clinical isolates of Acinetobacter baumannii[J]. Acta Microbiol Immunol Hung, 2020, 67(2): 107-111.

Zhao B, Han H, He K, et al. Decreased cyclic-AMP caused by ATP contributes to fosfomycin heteroresistance in avian Escherichia coli[J].J Antimicrob Chemother, 2022, 78(1):216-224.

Morales-León F, Lima CA, González-Rocha G, et al. Colistin heteroresistance among extended spectrum β-lactamases-producing Klebsiella pneumoniae[J]. Microorganisms, 2020, 8(9): 1279.

Lee H Y, Chen C L, Wang S B, et al. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: mechanism and clinical implications[J]. Int J Antimicrob Agents, 2011, 37(4): 302-308.

Cannatelli A, Giani T, D'Andrea M M, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin[J]. Antimicrob Agents Chemother, 2014, 58(10): 5696-5703.

Fernández Cuenca F, Sánchez Mdel C, Caballero-Moyano F J, et al. Prevalence and analysis of microbiological factors associated with phenotypic heterogeneous resistance to carbapenems in Acinetobacter baumannii[J]. Int J Antimicrob Agents, 2012, 39(6): 472-477.

收稿日期:2022-09-02

作者简介:赵冰,硕士,主要从事细菌分离及耐药机制研究。

*通讯作者:苑丽,教授,主要研究细菌耐药机制及耐药逆转。

猜你喜欢

形成机制检测方法
基于城乡双向流通的商贸流通组织体系形成机制分析
从药品价值链角度分析药品价格形成机制
关于食品中氟烯草酸的检测方法的研究
浅谈沥青路面施工的非均匀性及检测方法
宫颈内人乳头瘤病毒的研究进展
食品质量安全公众参与能力的构成要素及形成机制研究
浅析房地产价格的形成机制及影响因素
组织承诺与个体行为研究综述与展望
电力计量装置异常原因及监测方法分析
小儿氨酚黄那敏颗粒有关物质对氯苯乙酰胺检测方法的建立