石漠化区露石岩-土界面流形成过程模拟试验
2023-01-16彭旭东戴全厚刘婷婷许胜兵岑龙沛
曾 庥,彭旭东,戴全厚,刘婷婷,许胜兵,岑龙沛
石漠化区露石岩-土界面流形成过程模拟试验
曾 庥,彭旭东※,戴全厚,刘婷婷,许胜兵,岑龙沛
(贵州大学林学院,贵州大学土壤侵蚀与生态修复研究中心,贵阳 550025)
岩-土界面是石漠化区露石岩面流和地表径流下渗转化为地下裂隙流的主要路径。作为地下裂隙流的重要组成部分,岩-土界面流对坡面降雨径流转化、水分地下快速渗漏以及土壤侵蚀/漏失具有重要影响。为探究喀斯特石漠化区露石岩-土界面流形成过程与转化机制,通过模拟典型露石岩-土界面,采用人工模拟降雨试验研究露石面-土壤组成的岩-土结构单元下地表径流及地表下壤中流、岩-土界面流及非岩-土界面流的形成过程及输出特征,探究其对岩周径流形成转化的影响。结果表明:岩-土界面流产流量在降雨过程中呈先增加后稳定的变化趋势;相同条件下,有出露岩面流形成的岩-土界面流(岩面倾角45°、60°、75°)产流量远大于仅有土壤水分下渗形成的岩-土界面流(岩面倾角90°),前者是后者的4.78~16.58倍。岩面倾角是影响岩周径流形成、转化的主要因素,岩面倾角越大则岩-土界面流对水分漏失总量贡献越小,而非岩-土界面流则相反;雨强次之。然而,雨强是影响初始产流时间、稳定产流时间的主要因素,二者均随雨强增大显著减小(<0.01);岩面倾角次之。岩-土界面的存在不仅直接形成岩-土界面流,同时对非岩-土界面流表现出较强的补给效应,约有一半的岩-土界面流最终以非岩-土界面流的形式流失。研究结果可为石漠化区产流过程及机制的深度揭示提供理论依据。
岩-土界面流;地下裂隙流;产流过程;径流损耗;出露岩石;石漠化区
0 引 言
中国西南喀斯特地区是世界上连片裸露碳酸盐岩面积最大、岩溶发育最强烈、生态环境最脆弱的地区,基岩大量出露[1-4],土层薄且缺乏过渡层,这一特征是石漠化的过程和结果,也是区分喀斯特区与非喀斯特区的重要指标,被形象地称为喀斯特区土壤“铁板烧效应”[5]。喀斯特区土壤剖面中通常缺乏C层(过渡层),土壤常与碳酸盐岩直接接触形成软硬明显不同的岩-土界面,在降雨等条件诱发下易发生水土流失而使基岩裸露,加速石漠化的形成[6-7]。基岩出露过程实际上是石面土壤、石周土壤被侵蚀的过程[8-10]。岩石形成弱透水面或不透水面,裸露岩石表面汇集的雨流与经岩-土界面上覆土壤入渗的水分在岩-土界面处汇集,并继续沿岩-土界面向下运移[11],造成坡地降雨沿岩-土界面流失,这一沿岩-土界面流动的雨流称为岩-土界面流。已有研究发现降雨雨水沿岩-土界面流失的现象,Yair等[12-13]分别在朱迪亚山脉和内盖夫沙漠的山脉上进行大规模滴灌试验后,发现出露岩石产生的连续径流几乎在喷洒开始后立即发生,沿岩面流动到周围土壤中,直至岩石周围土壤完全饱和,才会出现地表径流;但关于露石径流是究竟如何进入岩石周围土壤中还有待进一步研究。Wilcox 等[14]研究发现,岩溶区石灰岩的高导水率允许雨水相对快速地渗透到断裂基岩的最上层,在断裂基岩内,侧向优先流占主导地位,而岩-土界面流占比较小。Sohrt等[15]通过灌溉试验结果表明,出露岩石岩面产生形成的径流在地下继续沿岩-土界面优先流动,而作用在土表的降雨主要以垂直且更均匀的方式向下入渗;与直接从土壤表面渗透的雨水相比,出露岩石形成的径流渗透速度更快,渗透深度更大,具有更大的地下水补给潜力。出露岩石对石漠化坡地降雨产流具有重要影响,一方面,出露的岩石可直接成为降雨过程中的汇水面[10,16-17],另一方面,岩-土界面是影响坡面水文过程的重要路径[18-19],出露岩面拦截雨水或林下穿透雨,容易形成沿岩-土界面向下漏失的岩面流[20]。
虽然已有针对喀斯特区出露岩石降雨产流的系统研究,但多数仅侧重于地表土壤入渗、土壤水分变化、地表及地下产流以及表层岩溶带水文调蓄功能[21-23],而石漠化区出露岩石类型(石灰岩和白云岩等)及产状(倾向、倾角等)复杂、岩面形态(凹、凸等)多样,岩面流易受岩面形态影响以汇聚或分散方式分配到出露岩石周围并主要以岩-土界面流形式形成地下漏失,而部分岩面流进入岩周土壤并在叠加土壤下渗的雨水径流后以非岩-土界面流形式形成地下漏失。岩-土界面流对坡面降雨径流转化、水分地下快速渗漏以及土壤侵蚀/漏失具有重要影响。然而,针对岩-土界面流输出过程、影响因素及其对地下裂隙流贡献等尚不清楚。
因此,本研究通过模拟典型露石面-土壤组成的岩-土结构单元,采用人工模拟降雨试验研究地下裂隙流(分为岩-土界面流和非岩-土界面流)及地表径流、壤中流的输出过程及特征,探究岩-土界面流形成对岩周径流形成转化的影响,以期系统揭示喀斯特石漠化区产流过程及机制。
1 材料与方法
1.1 试验材料
试验土样采自贵州省贵阳市花溪区(106°39′18″E,26°19′17″N)碳酸盐岩发育的石灰性土坡耕地0~30 cm耕层土壤,其土壤砂粒(>0.05~1.00 mm)体积分数为9.27%、粉粒(0.002~0.05 mm)为75.34%、黏粒(<0.002 mm)为15.35%(中国制),土壤风干后过5 mm筛后装入规格为长1.0 m、宽0.5 m、深度0.35 m的试验钢槽(图1)中,自下而上按野外实测土壤紧实度分层装填(容重分别为1.2、1.0和0.9 g/cm3),每层10 cm,共30 cm,随后用特制木板耙平填土表面,压实边界处以减小边界效应影响。
图1 降雨装置示意图
1.2 试验设计
在对露石岩-土界面野外调查的基础上,以雨强、岩面倾角及岩面形状为驱动因子,以地表坡度、地下裂隙度、土层厚度等为试验条件,开展石漠化区露石岩-土界面流形成过程的研究。
自然条件下岩-土界面流的流动过程复杂且不易实测,本研究通过平直钢板模拟露石岩面及岩-土界面,以分析露石岩-土界面流形成过程与输出机制,其钢板长88 cm,宽50 cm;基于野外调查,出露岩石岩面倾角主要集中在40°~80°之间,因此设计4个岩面倾角,分别为45°、60°、75°和90°(对照),以反映岩面及岩-土界面占比及有效集雨面积的差异。基于前期研究[8,24],试验钢槽岩-土交界处裂隙宽度为2 cm,用于收集岩-土界面流,其中岩石以镶嵌的形式插入裂隙中,以保证岩-土界面流完全从裂隙处流出,避免混入非岩-土界面流;底部钢槽距岩-土界面10、20、30、40、50 cm处设置5条宽2 cm的裂缝,用于模拟和收集非岩-土界面流;在距土表深度10、20、30 cm处的钢槽四周打孔,孔隙直径为1 cm,间隔5 cm,用于模拟和收集壤中流[25];在与土壤表面齐平处设有地表径流收集装置。根据贵州喀斯特区侵蚀性降雨标准(降雨量15 mm左右)[26],设计雨强为26、49、63、98 mm/h共4个水平。每场降雨从开始产流计时,每10 min接一次样并测量其产流量,降雨历时140 min;每个岩面倾角依次从小雨强到大雨强为一个降雨周期,试验前,降小雨至土壤水分饱和,静置一夜,每次降雨结束后,调节岩石坡度并更换土壤。本试验设计地表坡度为15°。
1.3 模拟降雨
降雨试验在贵州大学林学院降雨大厅进行。试验采用自行设计的岩-土界面流模拟研究装置和便携式全自动下喷式人工降雨设备(型号:QYJY- 501)完成。降雨器降雨高度6 m,雨滴终点速度满足天然降雨特性,雨强采用手动调节,其变化范围在10~200 mm/h之间,调节时间低于30 s,调节精度±7 mm/h,降雨有效范围6.5 m×6.5 m,降雨均匀度高于85%。同时,在钢槽两侧放置多个雨量筒以测定每次降雨的实际雨强。每场降雨2次重复。
1.4 参数计算
钢槽集雨面积为裸露岩面与土壤表面水平投影面积之和。通过调节岩面倾角改变相应的岩石集雨面积与土壤表面集雨面积。有效集雨面积计算公式如下:
岩面11cos(1)
土表22cos15°(2)
总岩面土表(3)
式中岩面为出露岩石集雨面积,m2;土表为土表集雨面积,m2;1为出露岩石宽度,m;1为出露岩石长度,m;2为土表宽度,m;2为土表长度,m;为岩石倾角,(°)。
露头岩面(出露地表部分)投影面积为岩面流有效集雨面积,其在无损失时形成的径流为岩面流理论值;整个岩面投影面积为岩-土界面流有效集雨面积,其在无土壤覆盖时理论上形成的径流为岩-土界面流理论值,而其岩石上覆土壤会改变雨流通路,一部分岩面流进入土壤,造成岩-土界面流损耗。
c=a−b(4)
=c/a(5)
a=0.44·cos(·Π/180°)·/60(6)
式中a为岩-土界面流理论值,mm,b为岩-土界面流实测值,mm;c为岩-土界面流损耗量,mm;为岩-土界面流损耗率,%。0.44为岩石面积,m2;0.44·cos(·Π/180°)为岩-土界面流(含岩面流)投影集雨面积,m2;为雨强,mm/h;/60为降雨历时,h。
2 结果与分析
2.1 岩-土界面流产流过程
岩-土界面流产流量在降雨过程中呈先增加后稳定的变化趋势(图2)。相同岩面倾角下,岩-土界面流初始产流时间随雨强的增大而减小;而相同雨强下,岩-土界面流初始产流时间随岩面倾角增大无明显变化。从产流开始到产流稳定所需时间与初始产流时间规律相似。非岩-土界面流初始产流时间变化规律不明显,但其均早于岩-土界面流,且小于12.30 min。由于岩面倾角90°下不产生岩面流,只有少量土壤入渗水分沿岩-土界面流动,即使雨强为98 mm/h时产流最大值也仅有1.29 mm;同时,有露石岩面汇流形成的岩-土界面流(岩面倾角为45°、60°、75°)产流量远大于仅有土壤水分下渗形成的岩-土界面流(岩面倾角为90°),前者是后者的4.78~16.58倍。
图2 不同岩面倾角下岩-土界面流产流量随降雨历时变化过程
对比不同倾角岩-土界面产流趋势可知(图3),岩-土界面流随倾角的增大而减小,随雨强的增大而增大;非岩-土界面产流量与岩-土界面规律相似,非岩-土界面流会受到来自岩面流的影响,其原因是岩面流在进入岩-土交界处时,一部分岩面流凭借其初速度冲入土壤[15],被土壤吸收转化成非岩-土界面流,且倾角越小,岩面流对非岩-土界面流产流量影响越大。同一条件下,非岩-土界面流远大于岩-土界面流,降雨流失的方式主要是以土壤吸收后向下入渗为主[27]。
图3 不同雨强下岩-土界面流统计特征随岩面倾角的变化关系
2.2 岩-土界面流损耗特征
喀斯特区岩石往往以出露的形式镶嵌在土层中,岩面的镶嵌使部分原本沿岩面入渗的岩面流进入土壤,造成岩-土界面流的损耗(表1)。可以发现,雨强对岩-土界面流损耗影响不大;而岩面倾角对岩-土界面流损耗有着明显影响,倾角越小,岩-土界面流损耗越大,岩面倾角45°损耗均超过50%。损耗的岩面流在初速度、重力与土壤阻力共同作用下,一部分进入土表形成地表径流;一部分进入土壤形成壤中流;而绝大部分进入土壤最终转化为非岩-土界面流,是地下裂隙流重要的源区之一。
2.3 岩-土界面流对水分流失贡献分析
分析各径流对水分流失的贡献可知(图4),相同岩面倾角下,产流分配比(为各径流占总径流量的比例)在不同雨强间差异不明显,而相同雨强下,产流分配比在不同岩面倾角间差异明显;岩-土界面流对水分流失贡献占比(5%~33%)随倾角增大而减小,非岩-土界面流对水分流失贡献占比(64%~95%)随倾角增大而增大,推测岩面倾角是影响降雨产流分配较为重要的因素,雨强次之。相同岩面倾角下,雨强对岩-土界面水分流失占比影响不大;而相同雨强下,岩-土界面流水分流失占比随倾角的增大而减小。非岩-土界面流对水分流失占比与岩-土界面流规律相反。有露石岩面汇流产生的岩-土界面流(岩面倾角45°、60°、75°)水分流失贡献远大于仅有土壤水分下渗形成的岩-土界面流(岩面倾角为90°)。本试验中,地表径流仅出现在雨强为98 mm/h 时以及岩面倾角45°、雨强63 mm/h时(集雨面积最大);而壤中流受岩面倾角与雨强共同作用的影响,但两者对降雨水分流失的贡献较小(1%~3%)。对比各径流对降雨产流流失贡献占比发现,非岩-土界面流是形成地下裂隙流的主要径流方式之一。
表1 岩-土界面流损耗特征
图4 不同岩面倾角下岩-土界面产流占比
2.4 各影响因子对岩-土界面产流特征相关性分析
由雨强和岩面倾角与产流特征之间的线性关系及相关性系数(图5)可知,雨强对岩-土界面初始产流时间存在极显著负相关(<0.01,=−0.776),初始产流时间随雨强增大呈线性减小,而雨强对非岩-土界面初始产流时间无明显影响;岩面倾角对岩-土界面流与非岩-土界面流初始产流时间均无明显影响。雨强对岩-土界面与非岩-土界面稳定产流时间均存在极显著负相关(<0.01,分别为−0.772、−0.623),稳定产流时间随雨强增大呈线性减小;而倾角对稳定产流时间无明显影响。雨强对岩-土界面与非岩-土界面产流量均存在极显著正相关(<0.01,分别为0.589、0.814),产流量随雨强增大呈线性增大;而岩面倾角对岩-土界面产流量存在极显著负相关(<0.01,=−0.709),对非岩-土界面存在显著负相关(<0.05,=−0.506),产流量随倾角增大呈线性减小。
注:*,显著(P<0.05);*,极显著(P<0.01)。
3 讨 论
3.1 岩面流及岩-土界面流形成过程
降雨条件下,出露岩面汇集的岩面流在岩-土界面交界处遇到土壤后,一部分继续沿岩面入渗;另一部分进入土壤中,形成非岩-土界面流,但二者最终以地下裂隙流形成向下漏失。本研究发现,有出露岩面汇流形成的岩-土界面流产流量远大于仅有土壤水分入渗形成的岩-土界面流;随着岩面倾角减小,岩-土界面流产流量增大,其原因是裸露的岩石增大了汇水面积,形成的岩面流沿岩-土界面入渗,以及从岩-土交界处进入土表的岩面流还未来得及形成地表径流就以壤中流的方式向下入渗,遇到不透水或弱透水的岩面后转换成岩-土界面流,加大了土壤水分漏失。Zhang等[28]对喀斯特地区岩面以及土面的研究也发现,在裸岩出露较多的喀斯特地区,岩面会对周围土面的水分进行再分配,约一半的岩面产流会以径流的形式流入周围的土面,也就是说约50%的岩面流进入了岩-土界面。还有研究表明,岩面是喀斯特区降雨产流的源区,大量径流会随着岩面向下输送到周围土壤,沿着岩-土界面补充深层土壤水分,岩-土界面的水分响应比同一深度的土壤水分快得多[29],说明岩-土界面流是最先形成地下裂隙流的径流形式。
本研究中,岩面倾角越大,岩-土界面流损耗越小,越有利于岩面流及岩-土界面流沿岩-土界面下渗,但对水分流失的贡献反而越小,其原因是倾角大的岩面有效集雨面积小,对整体水分流失贡献占比小。简言之,相同体积的岩面流能更多地沿角度大的岩-土界面入渗,但减小岩面倾角,可以促使更多的岩面流进入土壤,这对岩周土壤水分起到了更好的补充。覃自阳等[30]通过研究岩层倾向对喀斯特槽谷区地表/地下产流过程的影响,也发现相似的结论,在逆层坡条件下,地下产流与岩层倾角存在显著负相关关系(<0.05),其最高为60°,最低为90°。这表明,岩面倾角对岩-土界面流的形成及转化具有重要影响,倾角越小越能够促使更多的雨水径流快速进入地下。
3.2 岩-土界面流对水土流失/漏失的影响
本研究中,石漠化露石面与土壤组成的岩-土结构单元的地表产流最小雨强在49~63 mm/h,其数值高于魏兴萍等[31]对岩溶槽谷区坡耕地野外监测结果(25~50 mm/h),同样也高于彭旭东等[32]对喀斯特坡耕地产流产沙临界值的研究(30~50 mm/h),这是因为设计的岩-土结构单元有效降雨面积相对较小,较小雨强下土壤表面还未充分形成径流就以壤中流的方式向下流失,当遇到岩石界面后沿界面流失,这说明岩面以倾斜方式镶嵌在土壤中,可以增大地表径流临界雨强。陈洪松等[27]通过大型径流小区(1 000 m2)长期野外径流监测的结果显示,石漠化峰丛坡地地表径流较非喀斯特区低,不同土地利用方式坡面次降雨径流系数均<5%,地表产流很少,降雨几乎全部入渗。本试验中,只有在最大雨强(98 mm/h)下才明显观测到岩-土界面流和非岩-土界面流中带有少量泥沙。因此,喀斯特区土壤地下漏失是降雨长年累月作用的结果,仅通过室内模拟试验是难以明显观测到土壤地下漏失的。
本研究发现,雨强对岩-土界面初始产流时间存在极显著的负相关(<0.01,=−0.776),初始产流时间随雨强增大呈线性减小,而雨强对非岩-土界面初始产流时间无明显影响;说明相同条件下,岩-土界面流对雨强变化做出快速反应,非岩-土界面流则不然,其原因是岩-土界面流由于有界面的存在,水分流失的稳定通路快速形成,当雨强由小变大时,能够迅速表现出差异;而非岩-土界面流水分流失来源主要是土表承接降雨后向下入渗,虽然初始产流时间小于岩-土界面流,但其从初始产流达到稳定产流时间大于岩-土界面,根本原因在于土壤本身具有缓冲作用,且受土壤机械组成、团聚体和孔隙的影响。降雨初期,水分在土壤中的运移尚未形成稳定的通路,故初始产流时间对雨强的变化不如岩-土界面流敏感。然而,一旦水分在土壤中运移的稳定通路形成,对雨强的变化就会相当灵敏,故稳定产流时间与雨强呈极显著负相关(<0.01,=−0.623)。吴尧等[33]将土壤入渗过程分为三个阶段:入渗瞬变阶段(0~8 min)、入渗渐变阶段(8~30 min)、入渗稳定阶段(30~120 min),表明土壤的入渗过程主要受土壤机械组成、团聚体和孔隙组成的综合影响,这很好地解释了本研究的结果。
岩-土界面流是造成喀斯特区表层土壤水分地下漏失的重要方式。现有研究已发现喀斯特水文过程的异质性和复杂性,本研究重点分析了平直型露石岩-土界面流的产流过程及输出机制,但关于其他类型出露岩石(如内凹、外凸、不规则等)产流过程的认知还需更进一步的研究。
4 结 论
1)岩-土界面流产流量在降雨过程中呈先增加后稳定的变化趋势。相同条件下,有露石岩面流形成的岩-土界面流(岩面倾角45°、60°和75°)产流量远大于仅有土壤水分下渗形成的岩-土界面流(岩面倾角90°),前者是后者的4.78~16.58倍。
2)雨强对岩-土界面流损耗影响不大;而岩面倾角对岩-土界面流损耗有着明显影响,倾角越小,岩-土界面流损耗越大,岩面倾角45°损耗均超过50%。岩-土界面的存在不仅直接形成岩-土界面流,同时对非岩-土界面流表现出较强的补给效应,约有一半的界面流最终以非岩-土界面流的形式流失。
3)岩面倾角是影响降雨产流分配的主要因素,雨强次之;岩-土界面流对水分流失贡献占比(5%~33%)随倾角增大而减小,非岩-土界面流对水分流失贡献占比(64%~95%)随倾角增大而增大。地表径流、壤中流对水分流失贡献占比极小(1%~3%)。
4)岩-土界面流与非岩-土界面流产流量随雨强增大而增大,随岩面倾角增大而减小;初始产流时间、稳定产流时间随雨强增大而减小,而岩面倾角对初始产流时间、稳定产流时间无明显影响。
[1] Zhang Y, Long Y, Zhang X, et al. Using depression deposits to reconstruct human impact on sediment yields from a small karst catchment over the past 600 years[J]. Geoderma, 2020, 363: 114168.
[2] 王世杰. 喀斯特石漠化:中国西南的最严重的生态地质环境问题[J]. 矿物岩石地球化学通报,2003,22(2):120-126.
Wang Shijie. Karst rock desertification: The most serious ecological and geological environmental problem in southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(2): 120-126. (in Chinese with English abstract)
[3] 种国双,海月,郑华,等. 石漠化遥感信息提取方法进展[J]. 应用科学学报,2021,39(6):961-968.
Zhong Guoshuang, Hai Yue, Zheng Hua, et al. Progress in remote sensing information extraction methods for rocky desertification[J]. Journal of Applied Sciences, 2021, 39(6): 961-968. (in Chinese with English abstract)
[4] Liao S B, Cai H, Tian P J, et al. Combined impacts of the abnormal and urban heat island effect in Guiyang, a typical Karst Mountain City in China[J]. Urban Climate, 2022, 41: 101014.
[5] 李建明,王志刚,王爱娟,等. 退耕还林恢复年限对岩溶槽谷区石漠化土壤物理性质的影响[J]. 农业工程学报,2020,36(1):99-108.
Li Jianming, Wang Zhigang, Wang Aijuan, et al. Effects of the restoration period of returning farmland to forests on the physical properties of rocky desertification soil in the karst trough valley area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 99-108. (in Chinese with English abstract)
[6] Lan X, Ding G J, Dai Q H, et al. Assessing the degree of soil erosion in karst mountainous areas by extenics[J]. Catena, 2022, 209: 105800.
[7] 张信宝,王世杰,贺秀斌,等. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J]. 地球与环境,2007,35(3):202-206.
Zhang Xinbao, Wang Shijie, He Xiubin, et al. Soil creep in the weathered crust of carbonate rocks and soil underground leakage on karst slopes[J]. Earth and Environment, 2007, 35(3): 202-206. (in Chinese with English abstract)
[8] Peng X D, Dai Q H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China[J]. International Soil and Water Conservation Research 2022, 10(2): 217-227.
[9] Peng H, Yang W, Aira Sacha N F, et al. Hydrochemical characteristics and health risk assessment of groundwater in karst areas of southwest China: A case study of Bama, Guangxi[J]. Journal of Cleaner Production, 2022, 341: 130872.
[10] Jiang Y, Gao J, Yang L, et al. The interactive effects of elevation, precipitation and lithology on karst rainfall and runoff erosivity[J]. Catena, 2021, 207: 105588.
[11] 付同刚,陈洪松,张伟,等. 喀斯特小流域土壤含水率空间异质性及其影响因素[J]. 农业工程学报,2014,30(14):124-131.
Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Spatial heterogeneity of soil moisture content and its influencing factors in karst small watersheds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)
[12] Yair A. Hillslope hydrology water harvesting and areal distribution of some ancient agricultural systems in the northern Negev desert[J]. Journal of Arid Environments, 1983, 6(3): 283-301.
[13] Lange J, Greenbaum N, Husary S, et al. Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope[J]. Hydrological Processes, 2003, 17(2): 279-296.
[14] Wilcox B P, Taucer P I, Munster C L, et al. Subsurface storm flow is important in semiarid karst shrub lands[J]. Geophysical Research Letters, 2008, 35(10): L10403.
[15] Sohrt J, Ries F, Sauter M, et al. Significance of preferential flow at the rock soil interface in a semiarid karst environment[J]. Catena, 2014, 123: 1-10.
[16] 王世杰. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶,2002,21(2):101-105.
Wang Shijie. Discussion on the concept of karst rock desertification and its scientific connotation[J]. Karst in China 2002, 21(2): 101-105. (in Chinese with English abstract)
[17] 罗旭玲,王世杰,白晓永,等. 西南喀斯特地区石漠化时空演变过程分析[J]. 生态学报,2021,41(2):680-693.
Luo Xuling, Wang Shijie, Bai Xiaoyong, et al. Analysis of spatio-temporal evolution of rocky desertification in southwest Karst region[J]. Acta Ecologica Sinica, 2021, 41(2): 680-693. (in Chinese with English abstract)
[18] 杨振华,宋小庆,苏维词. 西南喀斯特地区坡地产流过程及其利用技术[J]. 地球科学,2019,44(9):2931-2943.
Yang Zhenhua, Song Xiaoqing, Su Weici. Slope flow process and its utilization technology in southwest karst area[J]. Earth Science, 2019, 44(9): 2931-2943. (in Chinese with English abstract)
[19] Dai Q H, Peng X D, Yang Z, et al. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area[J]. Catena, 2017, 152: 218-226.
[20] Shen Y X, Yu Y, Manuel Esteban L B, et al. Change of soil K, N and P following forest restoration in rock outcrop rich karst area[J]. Catena, 2020, 186: 104395.
[21] Mcguire K J, Mcdonnell J J. Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities[J]. Water Resources Research, 2010, 46(10): W10543.
[22] Fu Z Y, Chen H S, Xu Q X, et al. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments[J]. Hydrological Processes, 2016, 30(5): 795-811.
[23] Fiori A, Russo D, Lazzaro M D. Stochastic analysis of transport in hillslopes: Travel time distribution and source zone dispersion[J]. Water Resources Research, 2009, 45(8): 2263-2289.
[24] Dai Q H, Peng X D, Yang Z, et al. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area[J]. Catena, 2017, 152: 218-226.
[25] Yan Y J, Dai Q H, Yuan Y F, et al. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China[J]. Geoderma: An International Journal of Soil Science, 2018(5): 30-40.
[26] 戴全厚,严友进. 西南喀斯特石漠化与水土流失研究进展[J]. 水土保持学报,2018,32(2):1-10.
Dai Quanhou, Yan Youjin. Research progress on rocky desertification and soil erosion in Southwest Karst[J]. Journal of Soil and Water Conservation, 2018, 32(2): 1-10. (in Chinese with English abstract)
[27] 陈洪松,杨静,傅伟,等. 桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征[J]. 农业工程学报,2012,28(16):121-126.
Chen Hongsong, Yang Jing, Fu Wei, et al. Characteristics of aborted sand production on slopes of different land use patterns in the karst peak cluster in northwest Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 121-126. (in Chinese with English abstract)
[28] Zhang J, Wang S, Fu Z Y, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in southwest China[J]. Journal of Hydrology, 2022, 609: 127779.
[29] Peng X D, Dai Q H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China[J]. International Soil and Water Conservation Research, 2022, 10(2): 217-227.
[30] 覃自阳,甘凤玲,何丙辉. 岩层倾向对喀斯特槽谷区地表/地下产流过程的影响[J]. 水土保持学报,2020,34(5):68-75,80.
Qin Ziyang, Gan Fengling, He Binghui. Effects of rock stratigraphic propensity on surface/underground flow processes in karst trough valley area[J]. Journal of Soil and Water Conservation, 2020, 34(5): 68-75. 80. (in Chinese with English abstract)
[31] 魏兴萍,袁道先,谢世友. 运用137Cs与土壤营养元素探讨重庆岩溶槽谷区山坡土壤的流失和漏失[J]. 水土保持学报,2010,24(6):16-19.
Wei Xingping, Yuan Daoxian, Xie Shiyou. Using137Cs and soil nutrients to discuss soil loss and leakage on hillsides in Chongqing karst trough valley[J]. Journal of Soil and Water Conservation, 2010, 24(6): 16-19. (in Chinese with English abstract)
[32] 彭旭东,戴全厚,李昌兰,等. 模拟雨强和地下裂隙对喀斯特地区坡耕地养分流失的影响[J]. 农业工程学报,2017,33(2):131-140.
Peng Xudong, Dai Quanhou, Li Changlan, et al. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in Karst Region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 131-140. (in Chinese with English abstract)
[33] 吴尧,姚健,吴永波. 岷江上游典型植被下土壤分形特征及对水分入渗的影响[J]. 水土保持通报,2012,32(2):12-16.
Wu Yao, Yao Jian, Wu Yongbo. Soil fractal characteristics and effects on water infiltration under typical vegetation in the upper reaches of the Min River[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 12-16. (in Chinese with English abstract)
Simulation test on the formation of rock-soil interface flow from outcrops in the rocky desertification areas
Zeng Xiu, Peng Xudong※, Dai Quanhou, Liu Tingting, Xu Shengbing, Cen Longpei
(,,,550025,)
Rock-soil interface is one of the main paths to transform from the outcrop rock surface flow and surface runoff infiltrating into the underground fissure flow in the rocky desertification area. Among them, the rock-soil interface flow has posed a significant influence on the transformation of rainfall runoff, rapid underground leakage of water, and soil erosion or leakage on slopes. This study aims to explore the formation process and transformation mechanism of the rock-soil interface flow from the outcrops in the karst rocky desertification area. A series of artificial rainfall experiments were carried out after simulating a typical rock-soil interface from outcrops. Specifically, the driving factors were rainfall intensity, rock surface inclination, and rock surface shape. The test conditions were the surface slope, underground fissure density, and soil layer thickness. An investigation was made on the production and output characteristics of the surface runoff and such subsurface flows as the interflow, rock-soil and non-rock-soil interface flow under the rock-soil structure unit with the exposed rock surface and soil. Then, the formation of the rock-soil interface flow was analyzed to clarify the influence on the transformation of runoffs around outcrops. Results showed that: 1) The amount of flow at the rock-soil interface increased first and then stabilized during the rainfall process. The amount of rock-soil interface flow formed by rock surface flows from the outcrops (rock surface inclination surface were 45°, 60°, and 75°) was much greater than that by only the seepage flow in the soil (rock surface inclination was 90°) under the same conditions, where was 4.78 to 16.58 times of the latter. 2) There was little effect of rainfall intensity on the loss of the rock-soil interface flow. However, the rock surface inclination presented a significant impact on the loss of the rock-soil interface flow. The smaller rock surface inclination was, the greater the loss of the rock-soil interface flow was, in which the loss was more than 50% at the rock surface inclination of 45°. The rock-soil interface was directly formed by the rock-soil interface flow. A strong recharge was obtained on the non-rock-soil interface flow, where about half of the interfacial flow was eventually lost in the form of non-rock-soil interface flow. 3) The rock surface inclination was the main factor affecting the generation and distribution of rainfall runoff, followed by the rainfall intensity. The rock-soil interface flow contributed to the total water loss, and then decreased with the increase of the rock surface inclination, whereas, there was an increasing proportion of non-rock-soil interface flow to the total water loss. The surface runoff and interflow contributed little to the water loss. 4) Both the yields of rock-soil interface flow and non-rock-soil interface flow increased with the increase of rainfall intensity, but decreased with the increase of the rock surface inclination. The initial and stable flow generation times decreased with the increase in rainfall intensity. But there was no effect of the rock surface inclination on the initial and stable flow generation times. The time to form the stable production and flow path at the rock-soil interface was faster than that at the non-rock-soil interface. Once a stable path for water migration was formed, there was a rapid response to the changes in the rainfall intensity. The finding can also provide a theoretical basis for the generation and mechanism of runoff around outcrops in the rocky desertification area.
rock-soil interface flow; underground fissure flow; runoff producing process; runoff losses; outcrop; rocky desertification area
10.11975/j.issn.1002-6819.2022.17.012
S157.1
A
1002-6819(2022)-17-0110-08
曾庥,彭旭东,戴全厚,等. 石漠化区露石岩-土界面流形成过程模拟试验[J]. 农业工程学报,2022,38(17):110-117.doi:10.11975/j.issn.1002-6819.2022.17.012 http://www.tcsae.org
Zeng Xiu, Peng Xudong, Dai Quanhou, et al. Simulation test on the formation of rock-soil interface flow from outcrops in the rocky desertification areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 110-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.012 http://www.tcsae.org
2022-08-16
2022-08-31
国家自然科学基金资助项目(42007067,42267054);贵州省科技计划项目(黔科合基础[2020]1Y176);贵州省普通高等学校青年科技人才成长项目(黔教合KY字[2021]082);贵州省高层次创新型千层次人才项目;贵州省一流学科建设项目(GNYL[2017]007)
曾庥,研究方向为喀斯特土壤侵蚀与水土保持。Email:Zx2021023482@163.com。
彭旭东,博士,副教授,研究方向为喀斯特土壤侵蚀与水土保持。Email:bipxd@126.com。