调节性T细胞在眼表疾病中作用的研究进展
2022-11-19阿婷曦邵春益
阿婷曦,邵春益,傅 瑶
上海交通大学医学院附属第九人民医院眼科,上海市眼眶病眼肿瘤重点实验室,上海 200011
调节性T 细胞(regulatory T cell,Treg 细胞)是一类具有免疫调节作用的T细胞,在抑制过度炎症反应、维持免疫平衡和诱导免疫耐受等方面发挥重要作用。GERSHON 和KONDO[1]最早在1970 年提出抑制性T 细胞这一概念,随后SAKAGUCHI 等[2]首次发现CD4+CD25+的T细胞具有抑制自身免疫反应的作用,将其命名为Treg 细胞,自此Treg 细胞成为免疫学领域的一个研究重点。
在解剖学上,眼表由角膜、结膜、眼睑及其上面的睑板腺、泪腺组成,长期暴露于各种环境刺激物、病原体和过敏原。为此,眼表具有成熟的免疫系统,包括先天性和适应性免疫,以提供保护作用[3]。眼表的黏膜免疫反应与其他部位的黏膜类似,可以简述为以下步骤:①抗原与黏膜上皮的相互作用。②启动先天性免疫系统。③眼表的抗原提呈细胞(antigen presenting cell,APC)捕获并处理抗原,再将其提呈给T 细胞。④效应T 细胞和Treg 细胞的分化、增殖、迁移和激活。⑤体液免疫反应。⑥黏膜先天性免疫、适应性免疫和神经系统之间广泛的相互作用[4]。然而为了使组织器官能发挥正常的功能,黏膜需维持无炎症的生理状态,这种无害抗原通过黏膜表面传递后引起的局部和全身免疫无应答的状态称为黏膜免疫耐受,由Treg 细胞参与调控[3]。除黏膜免疫系统外,前房相关免疫偏倚(anterior chamber associated immune deviation,ACAID)也参与眼部免疫耐受的维持,Treg 细胞在其中发挥重要作用[5]。免疫调节功能障碍被认为是许多眼表疾病的核心原因,因此本研究拟综述Treg 细胞的生物学特性及其在多种眼表疾病中作用的相关研究进展,并对靶向Treg 细胞的治疗在眼表疾病中的应用进行展望。
1 Treg细胞的生物学特性
Treg 细胞占外周血中CD4+T 细胞的5%~10%,特征性表达细胞膜标志物CD25 和细胞核转录因子叉头状蛋白P3(forkhead box P3,FOXP3)[6]。FOXP3的表达对Treg 细胞的发育和功能的维持起着至关重要的作用[7]。在某些条件如极端的炎症情况下,Treg细胞会变得不稳定,失去FOXP3 表达和免疫抑制功能,转化为效应T细胞,这种现象被称为Treg细胞的可塑性(plasticity)[8]。另有研究[9]发现CD127 的表达与FOXP3的表达及Treg细胞的抑制功能呈负相关,因此也将CD4+CD25+CD127lowT 细胞定义为纯化的Treg细胞。根据其来源不同Treg细胞被分为3类:胸腺衍生的Treg 细胞(tTreg 细胞,也称天然Treg 细胞)、特定环境抗原刺激诱导外周的初始CD4+T 细胞分化成的Treg 细胞(pTreg 细胞)以及体外利用转化生长因子-β(transforming growth factor β,TGF-β)等诱导初始CD4+T 细胞分化产生的Treg 细胞(iTreg细胞)[10]。目前尚无明确可区分人tTreg 细胞和pTreg细胞的表面标志物,因此目前常用于实验和临床研究的从人外周血中分离出来的Treg 细胞很可能同时含有tTreg细胞和pTreg细胞[11]。
Treg 细胞通过多种方式发挥免疫抑制作用,包括:①分泌产生抑制性细胞因子TGF-β、白细胞介素-35(interleukin-35,IL-35)和IL-10,参与调节多种谱系的T 细胞分化和功能,发挥免疫抑制作用[12-13]。②高表达CD25[又称白介素-2 受体α(IL-2Rα)],竞争性结合T 细胞增殖所必需的细胞因子IL-2,阻止T 细胞的继续增殖,导致已有细胞的代谢中断和细胞死亡[14]。③表达抑制性共刺激受体细胞毒性T 淋巴细胞相关抗原4(cytotoxic T-lymphocyteassociated antigen-4,CTLA-4),与效应T细胞竞争结合APC 表面共刺激分子CD80 和CD86,控制效应T细胞的数量和影响免疫应答[15];同时促进APC 产生吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO),其代谢物可以发挥免疫抑制作用[16]。④表达淋巴细胞活化基因3(LAG3,又称CD223),通过与APC 表达的Ⅱ类主要组织相容性复合体(major histocompatibility complex class Ⅱ,MHC-Ⅱ)结合,诱导免疫耐受[17]。⑤高表达环磷酸腺苷(cyclic adenosine monophosphate,cAMP),调节效应T细胞和APC 的功能活性[18]。⑥分泌颗粒酶B(granzyme B)和穿孔素-1(perforin-1)诱导自然杀伤细胞(natural killer cell,NK细胞)和细胞毒性T细胞的溶解[19]。
此外,最近的研究结果[20]表明,Treg 细胞也存在于健康组织,如骨骼肌、内脏脂肪组织和皮肤的毛囊干细胞龛中,表达不同的归巢和迁移标志物,称为组织调节性T 细胞(tissue regulatory T cell),且具有抑制炎症以外的功能。
2 Treg细胞与眼表疾病
2.1 干眼症
干眼症是眼科常见疾病,泪膜和眼表协会(Tear Film and Ocularsurface Society,TFOS)干眼症工作小组(Dry Eye Workshop,DEWS)发布的专家共识(TFOS DEWS Ⅱ)将其定义为以泪膜稳态丧失并伴有泪膜不稳定和高渗状态、眼表炎症和损伤以及神经感觉异常等眼部症状的多因素眼表疾病[21]。其核心驱动因素是干燥压力诱发的炎症恶性循环,与CD4+T细胞的活化和浸润有关[22-23]。在胆碱能受体拮抗剂诱发的小鼠干眼模型和环境诱导的小鼠干眼模型中均可以观察到引流区淋巴结中Treg细胞的抑制能力受损、辅助性T 细胞17(helper T cell 17,Th17)/Treg 稳态失衡,体内阻断IL-17可以恢复Treg细胞的功能,并显著降低干眼的严重程度、延缓疾病进展[24-25]。
通过靶向Treg 细胞治疗干眼症已在动物模型上取得较好效果。SIEMASKO等[26]发现过继体外扩增产生的FOXP3+Treg 细胞至干眼模型小鼠可以有效减少泪液中炎症因子的含量,抑制免疫介导的炎症反应。RATAY 等[27]通过增加泪腺中趋化因子CCL22的局部释放,诱导内源性Treg 细胞的募集,与未经治疗组相比,引流区效应性CD4+T 细胞的数量和泪腺中CD4+IFN-γ+(γ 干扰素)Th1 细胞的浸润减少,泪液分泌增加,杯状细胞增多,上皮病变减少,说明局部增加功能正常的Treg 细胞数量也能改变免疫失衡,进而有效减轻实验性干眼模型中的炎症反应,从而缓解干眼的相关症状。此外,静脉注射色素上皮衍生 因 子(pigment epithelium-derived factor,PEDF)可以通过增加干眼小鼠的Treg 细胞数量和增强免疫抑制功能,减轻干眼的严重程度[28]。间充质干细胞及其外泌体疗法可以抑制Th17 细胞、诱导Treg 细胞的增殖,减轻干燥综合征的严重程度[29-30]。由此可见,通过细胞疗法或者药物干预等手段增加Treg 细胞的循环或局部数量、增强其抑制功能,可能实现对干眼症的治疗和改善。
2.2 眼表过敏性疾病
眼表的过敏性疾病包括季节性过敏性结膜炎、常年性过敏性结膜炎、春季角膜结膜炎和特应性角膜结膜炎等一系列疾病,与抗原特异性IgE 介导的Ⅰ型超敏反应和抗原特异性T细胞介导的Ⅳ型超敏反应密切相关。研究[31-32]发现过敏性结膜炎患者中存在免疫失调,与健康对照相比,常年性过敏性结膜炎人群外周血单核细胞中CD4+CD25+FOXP3+Treg 细胞的数量减少,CD4+CD25+FOXP3-T 细胞的数量增加,提示Treg 细胞受损可能参与过敏性结膜炎的发生发展。SUMI等[33]发现胸腺切除术和PC61(抗CD25 抗体)消耗小鼠体内的CD25+T 细胞导致豚草(ragweed,RW)致敏的小鼠结膜嗜酸性粒细胞浸润增多,增加实验性过敏性结膜炎 (experimental allergic conjunctivitis,EC)的严重程度,而过继正常小鼠的CD4+CD25+T 细胞至致敏小鼠可以有效抑制EC 的发展。另一项研究[34]发现,具有免疫调节作用的合成糖脂α-半乳糖神经酰胺(α-galactosylceramide,α-GalCer),可以通过增加CD4+CD25+FOXP3+Treg细胞的数量抑制EC 的发展,提示Treg 细胞有希望成为过敏性结膜炎的治疗靶点。
2.3 眼表感染性疾病
发生感染时,Treg细胞的主要功能是控制过度的炎症反应以防止组织损害、减少对宿主的伤害,但在某些情况下Treg 细胞的免疫抑制能力会减弱机体的免疫监测能力,促进病毒的潜伏[35]。1型单纯疱疹病毒(HSV-1)复发引起的角膜基质炎为先天性免疫与适应性免疫介导的慢性炎症反应,其中效应性CD4+T细胞为主要驱动因素,而Treg细胞在其中也发挥着重要作用[36]。通过PC61 耗竭小鼠体内的Treg 细胞后,HSV-1诱导的角膜基质炎的严重程度增加,而疾病早期过继Treg 细胞可以抑制角膜的免疫炎症[37-38]。BHELA 等[39]运用FOXP3 表达追踪转基因小鼠品系(FOXP3Cre-GFP:Rosa26lsl-Td-Tomato),观察到病毒诱导的角膜炎症状态下角膜Treg 细胞可塑性的变化,发现HSV-1 感染眼部后,角膜中Treg 细胞是不稳定的,可转化为具有效应Th1 细胞表型的ex-Treg细胞,分泌IFN-γ,参与角膜基质炎的发生。此外,过继的体外诱导的正常功能iTreg 细胞在角膜炎症的环境下也高度不稳定,部分转化为促进角膜基质炎发生的Th1 表型的ex-Treg 细胞[39]。而在这种情况下,氮杂胞苷、视黄酸和维生素C 等药物能够维持FOXP3+Treg 细胞特异性去甲基化区(Treg-specific demethylated region,TSDR)的去甲基化,有助于促进Treg 细胞的稳定性并改善其功能,更有效抑制角膜基质炎的进展[39-40]。
2.4 角膜移植排斥
Treg细胞疗法在诱导同种异体移植物的免疫耐受或者预防移植物抗宿主病(graftversushost disease,GVHD)方面已经得到广泛的研究[41]。Treg 细胞通过抑制宿主对移植物的免疫反应,促进机体对移植物的耐受,在降低角膜移植排斥过程中方面发挥着重要作用,CD25+CD4+Treg 细胞的耗竭可加速角膜移植排斥的发生[42-43]。植床存在炎症或新生血管的宿主更易对移植的角膜产生排斥反应,此类高危宿主的pTreg 细胞(而非tTreg 细胞)的数量和功能被抑制,表现为FOXP3 表达丢失,CTLA-4 表达降低,IL-10和TGF-β 的分泌减少,并且与pTreg 细胞向分泌IL-17 和IFN-γ 的ex-Treg 细胞的病理性转换有关[44-46]。因此,通过不同途径,靶向Treg 细胞来减少角膜移植的排斥反应具有很好的发展前景。小剂量的IL-2治疗可以显著增加CD4+CD25+FOXP3+Treg 细胞的数量,增强其免疫抑制功能,进而可提高角膜同种异体移植物的存活率[47]。在小鼠异体角膜移植模型中,结膜下注射Treg 细胞可以抑制角膜和淋巴组织中APC 的成熟,使角膜中IL-10、TGF-β 表达增加,CD45+炎症细胞侵入减少,移植成功率增加[48]。
2.5 眼表组织修复
在机体受伤后,入侵的病原体、坏死的碎片、凝血反应和组织内的免疫细胞引发炎症反应,促进组织修复和瘢痕形成,然而过度的炎症反应会导致病理性纤维化,损害组织功能。Treg细胞可以通过影响中性粒细胞、诱导巨噬细胞分化和抑制效应T细胞参与的免疫反应来间接调节再生[49]。近年来研究发现,Treg细胞除经典的免疫抑制功能外,还能通过其他途径在组织修复和再生方面发挥作用,包括促进骨骼肌再生[50]、促进皮肤伤口愈合[51]、促进毛囊干细胞增殖和分化[52]、促进心肌细胞增殖[53]等。然而目前对Treg 细胞在眼表组织损伤修复中的作用研究较少。YAN 等[54]发现在小鼠角膜碱烧伤急性期的结膜下注射Treg 细胞不仅能抑制过度炎症反应,改善眼表环境,还能促进小鼠碱烧伤后角膜上皮修复,恢复角膜透明,推测这些作用与局部增高的双调蛋白(amphiregulin,AREG)有关。AREG 是上皮生长因子受体(epidermal growth factor receptor,EGFR)的配体之一,通常由上皮细胞、间充质细胞和淋巴细胞等分泌。AREG 与细胞上的EGFR 结合,可促进这些细胞的增殖和迁移[55]。另一研究[56]发现,Treg 细胞通过分泌IL-10 而非细胞间直接接触的方式抑制IFN-γ 和肿瘤坏死因子α (tumor necrosis factor α,TNF-α) 诱导的角膜内皮细胞的死亡。此外,ALTSHULER 等[57]发现角膜缘外缘存在CD4+CD25+FOXP3+Treg 细胞,在结膜下注射PC61.5(也是抗CD25 抗体)消耗Treg 细胞后,静止角膜缘干细胞(quiescent limbal stem cell,qLSC)的标志物CD63 和糖蛋白激素α 亚基2(glycoprotein hormone subunit α 2,GPHA2)显著下降,而细胞增殖水平上升,推测Treg 细胞的缺失或功能抑制导致了qLSC 静止状态的丧失,伤口愈合延迟。
3 结语与展望
FOXP3+Treg 细胞是眼表微环境的重要组成部分,它们积极地参与抑制针对自身、微生物和环境抗原的异常或过度的免疫反应,在眼表的免疫调节中发挥着重要作用。基于Treg 细胞诱导免疫耐受的能力,扩增FOXP3+Treg 细胞或者增强其免疫抑制能力已成为治疗自身免疫性疾病或者其他免疫相关疾病,以及防止器官移植排斥反应的重要方法[58]。最简单的方式为过继细胞疗法,即从患者体内分离纯化循环Treg细胞,在体外扩增达到一定数量后回输至患者体内[58]。目前主流的Treg 细胞来源为患者的自体外周血或是脐带血,通过流式细胞仪,或是带标记的磁珠分选CD4+CD25+T细胞或抑制能力更强的CD4+CD25+CD127lowT 细 胞[59]。Treg 细 胞 过 继 疗 法 在 治 疗GVHD[60]、1 型糖尿病[61]、克罗恩病[62]等疾病的临床试验中已取得良好的结果。另有研究证明,小剂量的IL-2可安全有效增加丙型肝炎病毒相关性血管炎患者[63]和慢性GVHD患者[64]体内Treg细胞的数量。
然而目前在眼表领域中Treg 细胞的研究还停留在基础阶段,缺乏基于眼表疾病的临床试验,基础研究和临床研究之间存在脱节。要将Treg 细胞运用于眼表的疾病还有许多科学问题需要解决。比如,SHAO 等[48]研究发现小鼠球结膜下注射Treg 细胞,6 h 后Treg 细胞即可迁移至角膜和同侧淋巴结,48 h达高峰值,但7 d 后仅检测到很少量的细胞。Treg 细胞是否需要多次注射使其能在眼表长期发挥生物学效应仍待研究。此外,部分Treg 细胞的不稳定性和可塑性也给其临床应用带来挑战。
总而言之,随着对Treg 细胞领域的深入研究,使用新技术来改变细胞的基因组,以增强Treg 细胞功能、稳定性、持久性和抗原特异性,提高Treg 细胞过继疗法的治疗潜力是未来的发展方向。更进一步地探究Treg 细胞在眼表疾病发生发展中的作用,针对性地开展靶向FOXP3+Treg 的治疗方法在眼表疾病
领域具有广阔的前景。
利益冲突声明/Conflict of Interests
所有作者声明不存在利益冲突。
All authors disclose no relevant conflict of interests.
作者贡献/Authors'Contributions
阿婷曦负责论文初稿的撰写,邵春益参与了论文的审阅和修订,傅瑶提出构思以及参与论文的审阅和修订。所有作者均阅读并同意了最终稿件的提交。
A Tingxi drafted the original manuscript;SHAO Chunyi participated in the reviewing and editing;FU Yao conceived the idea and participated in the reviewing and editing.All the authors have read the last version of paper and consented for submission.
·Received:2022-02-07
·Accepted:2022-05-23
·Published online:2022-08-12
参·考·文·献
[1] GERSHON R K, KONDO K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J]. Immunology, 1970,18(5):723-737.
[2] SAKAGUCHI S, SAKAGUCHI N,ASANO M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[3] GALLETTI J G, GUZMÁN M, GIORDANO M N. Mucosal immune tolerance at the ocular surface in health and disease[J].Immunology,2017,150(4):397-407.
[4] GALLETTI J G,DE PAIVA C S. The ocular surface immune system through the eyes of aging[J]. Ocul Surf,2021,20:139-162.
[5] HORI J, YAMAGUCHI T, KEINO H, et al. Immune privilege in corneal transplantation[J]. Prog Retin Eye Res,2019,72:100758.
[6] GROVER P, GOEL P N, GREENE M I. Regulatory T cells:regulation of identity and function[J]. Front Immunol, 2021, 12:750542.
[7] FONTENOT J D, GAVIN M A, RUDENSKY A Y. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J].Nat Immunol,2003,4(4):330-336.
[8] KOMATSU N,OKAMOTO K,SAWA S,et al. Pathogenic conversion of Foxp3+T cells into TH17 cells in autoimmune arthritis[J]. Nat Med,2014,20(1):62-68.
[9] LIU W H, PUTNAM A L, ZHOU X Y, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells[J]. J Exp Med,2006,203(7):1701-1711.
[10] SHEVACH E M, THORNTON A M. tTregs, pTregs, and iTregs:similarities and differences[J]. Immunol Rev,2014,259(1):88-102.
[11] RAFFIN C, VO L T, BLUESTONE J A. Tregcell-based therapies:challenges and perspectives[J]. Nat Rev Immunol, 2020, 20(3):158-172.
[12] SANJABI S, OH S A, LI M O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection[J]. Cold Spring Harb Perspect Biol,2017,9(6):a022236.
[13] WANG R X,YU C R,DAMBUZA I M,et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med,2014,20(6):633-641.
[14] CHINEN T,KANNAN A K,LEVINE A G,et al. An essential role for the IL-2 receptor in T reg cell function[J]. Nat Immunol,2016,17(11):1322-1333.
[15] WING J B, ISE W, KUROSAKI T, et al. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responsesviathe coreceptor CTLA-4[J]. Immunity, 2014, 41(6):1013-1025.
[16] YAN Y P,ZHANG G X,GRAN B,et al. IDO upregulates regulatory T cellsviatryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J].J Immunol,2010,185(10):5953-5961.
[17] BAUCHÉ D, JOYCE-SHAIKH B, JAIN R, et al. LAG3+regulatory T cells restrain interleukin-23-producing CX3CR1+gut-resident macrophages during group 3 innate lymphoid cell-driven colitis[J].Immunity,2018,49(2):342-352.e5.
[18] ALMAHARIQ M, MEI F C, WANG H, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression[J]. Biochem J,2015,465(2):295-303.
[19] CAO X F, CAI S F, FEHNIGER T A, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity,2007,27(4):635-646.
[20] MUÑOZ-ROJAS A R, MATHIS D. Tissue regulatory T cells:regulatory chameleons[J]. Nat Rev Immunol,2021,21(9):597-611.
[21] CRAIG J P, NICHOLS K K, AKPEK E K, et al. TFOS DEWS Ⅱdefinition and classification report[J]. Ocular Surf, 2017, 15(3):276-283.
[22] BRON A J,DE PAIVA C S,CHAUHAN S K,et al. TFOS DEWS Ⅱpathophysiology report[J]. Ocular Surf,2017,15(3):438-510.
[23] SCHAUMBURG C S,SIEMASKO K F,DE PAIVA C S,et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis[J]. J Immunol,2011,187(7):3653-3662.
[24] CHEN Y H, CHAUHAN S K, LEE H S, et al. Effect of desiccating environmental stressversussystemic muscarinic AChR blockade on dry eye immunopathogenesis[J]. Invest Ophthalmol Vis Sci, 2013,54(4):2457-2464.
[25] CHAUHAN S K, EL ANNAN J, ECOIFFIER T, et al.Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol,2009,182(3):1247-1252.
[26] SIEMASKO K F, GAO J P, CALDER V L, et al.In vitroexpanded CD4+CD25+Foxp3+regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation[J].Invest Ophthalmol Vis Sci,2008,49(12):5434-5440.
[27] RATAY M L, GLOWACKI A J, BALMERT S C, et al. Tregrecruiting microspheres prevent inflammation in a murine model of dry eye disease[J]. J Control Release,2017,258:208-217.
[28] SINGH R B, BLANCO T, MITTAL S K, et al. Pigment epitheliumderived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease[J]. Am J Pathol, 2021, 191(4):720-729.
[29] YAO G H, QI J J, LIANG J, et al. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN- β/IL-27 signaling axis[J]. Theranostics, 2019, 9(26): 8253-8265.
[30] XU J J,WANG D D,LIU D Y,et al. Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome[J].Blood,2012,120(15):3142-3151.
[31] NIETO J E, CASANOVA I, SERNA-OJEDA J C, et al. Increased expression of TLR4 in circulating CD4+T cells in patients with allergic conjunctivitis andin vitroattenuation of Th2 inflammatory response by α-MSH[J]. Int J Mol Sci,2020,21(21):7861.
[32] GALICIA-CARREÓN J, SANTACRUZ C, AYALA-BALBOA J, et al. An imbalance between frequency of CD4+CD25+FOXP3+regulatory T cells and CCR4+and CCR9+circulating helper T cells is associated with active perennial allergic conjunctivitis[J]. Clin Dev Immunol,2013,2013:919742.
[33] SUMI T, FUKUSHIMA A, FUKUDA K, et al. Thymus-derived CD4+CD25+T cells suppress the development of murine allergic conjunctivitis[J]. Int Arch Allergy Immunol,2007,143(4):276-281.
[34] FUKUSHIMA A, SUMI T, ISHIDA W, et al. Depletion of thymusderived CD4+CD25+T cells abrogates the suppressive effects of alpha-galactosylceramide treatment on experimental allergic conjunctivitis[J]. Allergol Int,2008,57(3):241-246.
[35] YU W C, GENG S, SUO Y Z, et al. Critical role of regulatory T cells in the latency and stress-induced reactivation of HSV-1[J]. Cell Rep,2018,25(9):2379-2389.e3.
[36] LOBO A M,AGELIDIS A M, SHUKLA D. Pathogenesis of herpes simplex keratitis: the host cell response and ocular surface sequelae to infection and inflammation[J]. Ocul Surf,2019,17(1):40-49.
[37] SEHRAWAT S, SUVAS S, SARANGI P P, et al.In vitro-generated antigen-specific CD4+CD25+Foxp3+regulatory T cells control the severity of herpes simplex virus-induced ocular immunoinflammatory lesions[J]. J Virol,2008,82(14):6838-6851.
[38] SUVAS S,AZKUR A K,KIM B S,et al. CD4+CD25+regulatory T cells control the severity of viral immunoinflammatory lesions[J]. J Immunol,2004,172(7):4123-4132.
[39] BHELA S, VARANASI S K, JAGGI U, et al. The plasticity and stability of regulatory T cells during viral-induced inflammatory lesions[J]. J Immunol,2017,199(4):1342-1352.
[40] VARANASI S K, REDDY P B J, BHELA S, et al. Azacytidine treatment inhibits the progression of herpes stromal keratitis by enhancing regulatory T cell function[J]. J Virol,2017,91(7):e02367-e02316.
[41] LAM A J, HOEPPLI R E, LEVINGS M K. Harnessing advances in T regulatory cell biology for cellular therapy in transplantation[J].Transplantation,2017,101(10):2277-2287.
[42] CHAUHAN S K, SABAN D R, LEE H K, et al. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation[J].J Immunol,2009,182(1):148-153.
[43] HORI J,TANIGUCHI H,WANG M C, et al. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts[J]. Invest Ophthalmol Vis Sci,2010,51(12):6556-6565.
[44] INOMATA T, HUA J, DI ZAZZO A, et al. Impaired function of peripherally induced regulatory T cells in hosts at high risk of graft rejection[J]. Sci Rep,2016,6:39924.
[45] INOMATA T, HUA J, NAKAO T, et al. Corneal tissue from dry eye donors leads to enhanced graft rejection[J]. Cornea, 2018, 37(1):95-101.
[46] HUA J, INOMATA T, CHEN Y H, et al. Pathological conversion of regulatory T cells is associated with loss of allotolerance[J]. Sci Rep,2018,8(1):7059.
[47] TAHVILDARI M, OMOTO M, CHEN Y H, et al.In vivoexpansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation[J]. Transplantation,2016,100(3):525-532.
[48] SHAO C Y, CHEN Y H, NAKAO T, et al. Local delivery of regulatory T cells promotes corneal allograft survival[J].Transplantation,2019,103(1):182-190.
[49] LI J T, TAN J, MARTINO M M, et al. Regulatory T-cells: potential regulator of tissue repair and regeneration[J]. Front Immunol, 2018,9:585.
[50] SCHIAFFINO S, PEREIRA M G, CICILIOT S, et al. Regulatory T cells and skeletal muscle regeneration[J]. FEBS J, 2017, 284(4):517-524.
[51] NOSBAUM A, PREVEL N, TRUONG H A, et al. Cutting edge:regulatory T cells facilitate cutaneous wound healing[J]. J Immunol,2016,196(5):2010-2014.
[52] ALI N W,ZIRAK B,RODRIGUEZ R S,et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation[J]. Cell,2017,169(6):1119-1129.e11.
[53] LI J T, YANG K Y, TAM R C Y, et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner[J]. Theranostics, 2019, 9(15):4324-4341.
[54] YAN D, YU F, CHEN L B, et al. Subconjunctival injection of regulatory T cells potentiates corneal healingviaorchestrating inflammation and tissue repair after acute alkali burn[J]. Invest Ophthalmol Vis Sci,2020,61(14):22.
[55] ARPAIA N, GREEN J A, MOLTEDO B, et al. A distinct function of regulatory T cells in tissue protection[J]. Cell, 2015, 162(5): 1078-1089.
[56] COCO G, FOULSHAM W, NAKAO T, et al. Regulatory T cells promote corneal endothelial cell survival following transplantationviainterleukin-10[J]. Am J Transplant,2020,20(2):389-398.
[57] ALTSHULER A, AMITAI-LANGE A, TARAZI N, et al. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing[J]. Cell Stem Cell,2021,28(7):1248-1261.e8.
[58] PILAT N, SPRENT J. Treg therapies revisited: tolerance beyond deletion[J]. Front Immunol,2021,11:622810.
[59] MACDONALD K N, PIRET J M, LEVINGS M K. Methods to manufacture regulatory T cells for cell therapy[J]. Clin Exp Immunol,2019,197(1):52-63.
[60] BRUNSTEIN C G, MILLER J S, MCKENNA D H, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics,toxicity profile, and clinical effect[J]. Blood, 2016, 127(8): 1044-1051.
[61] BLUESTONE J A, BUCKNER J H, FITCH M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells[J]. Sci Transl Med,2015,7(315):315ra189.
[62] DESREUMAUX P, FOUSSAT A, ALLEZ M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.e2.
[63] SAADOUN D, ROSENZWAJG M, JOLY F, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis[J].N Engl J Med,2011,365(22):2067-2077.
[64] KORETH J, MATSUOKA K I, KIM H T, et al. Interleukin-2 and regulatory T cells in graft-versus-host disease[J]. N Engl J Med,2011,365(22):2055-2066.