不同水肥浓度配比对三年生藤椒品质的影响
2022-11-11吴玉丹张翔宇吴宗兴宋小军叶敏李奎阳梁颇
吴玉丹, 张翔宇, 吴宗兴, 宋小军, 叶敏, 李奎阳, 梁颇
1. 四川省林业科学研究院,四川 成都 610081;2. 南部县自然资源和规划局,四川 南部 637300;3. 四川安龙天然林技术有限责任公司,四川 都江堰 611800
花椒(Zanthoxylumbungeanum)为芸香科花椒属小乔木[1],距今已有 2 600 多年的种植历史[2]。性喜阳,比较耐旱,在我国分布十分广泛,从东北南部到西南北部,从东南沿海地带到西藏东南地区皆有分布,在青海海拔2500m的坡地也有栽种。藤椒作为花椒中一个独特的品种,由于其树体寿命长,单株产量高,抗性强,果皮色正味佳,价格呈稳定上升趋势,在提高农民经济收入,改善农村经济结构等方面发挥了巨大作用,特别在四川,成了当地农民的主要经济来源之一[3]。
传统的藤椒种植过程中,施肥和灌水一般是分开进行的,特别是在降水量少的地区,一个生产周期内需要对进入丰产期的藤椒施肥4~6次,灌水2~4次,不仅耗费较多劳动力,而且由于施肥使用的是固态肥料,有效吸收率低,往往需要过量施肥才能满足藤椒的生长和结果需要以及达到理想的生产效果。而过量的施肥不仅会造成肥料和人工的浪费,也会造成土壤结构板结、pH值发生变化等一系列问题。因此,本研究利用水肥一体化设备、已建成的3a生藤椒林,集成集水灌溉技术,对水资源进行收集和合理利用,通过进行不同水肥浓度配比试验,对试验藤椒树的叶片、果实进行采样,并做营养元素、营养物质和总精油含量分析,试验总结水、肥配比方案,进行藤椒水肥一化管理,以此来提高藤椒水分和肥料利用率,提升藤椒树体生长质量和果实品质,为藤椒产业化发展合理施放水肥提供科学依据。
1 试验地概况
试验地选择在四川省资阳市乐至县孔雀乡,距成都约107 km,距资阳市县城约79 km。地处东经105°02′,北纬30°17′,海拔409 m,属亚热带季风气候,年平均温度16.7℃,极端高温38.3℃,极端低温-1℃到-2℃,年均日照1 330 h,年平均降雨量949.4 mm,但分布不均,夏季降雨量占全年50%左右,气候炎热,湿度大、云雾多、日照少,降雨少,全年冬季严寒、夏季酷暑,冬干春旱[3]。
2 试验材料与方法
2.1 试验材料
试验材料来自乐至县孔雀乡孔雀寺村周家坡3年生进入结果期的藤椒树,平均树高173 cm,平均基径3.52 cm。
试验肥料:勇好复合肥N+P2O5+K2O(17-17-17),总养分≥51%,产自山西凯美佳肥业有限公司。
2.2 试验设计
不同水肥浓度配比:CK(对照)、I(肥18 kg,水300 L)、II(肥36 kg,水300 L)、III(肥54 kg,水300 L)、IV(肥72 kg,水300 L)、V(肥90 kg,水300 L)和VI(肥108 kg,水300)共7个处理,每个处理3次重复,每个重复10株藤椒树。
2.3 采样与保存
藤椒叶片与果实混合取样:每个处理随机采10个小样,制成一个300 g混合样品,采集的样品放入干净的聚乙烯样品包装袋,封口标记后带回实验室5℃冷藏保存[3]。
2.4 测定叶片和果实中营养元素含量
采用凯氏定氮法、李大强[5-6]等方法对藤椒叶片中氮(N)、磷(P)、钾(K)、硼(B)、镁(Mg)、叶绿素B、叶绿素总量和藤椒果实中的粗脂肪、粗蛋白和精油含量进行测定,分析其显著性。
2.5 数据收集与统计分析
通过Microsoft office 2013整理计算数据,利用SPSS进行(ANOVA)方差分析和多重比较。
3 结果与分析
3.1 不同水肥浓度配比对叶片中主要营养元素含量的影响
藤椒叶片中氮(N)元素含量是:IV>V>III>II>I>VI>CK,磷(P)元素含量是:IV>V>III>VI>II>I>CK,钾(K)元素含量是:IV>III>II>V>I>VI>CK。氮(N)元素、磷(P)元素、钾(K)元素含量的平均值均在水肥浓度为IV(肥72 kg,水300 L)处理下最高,氮(N)元素含量比对照提高77.4%,,磷(P)元素含量比对照提高117.1%,钾(K)元素含量比对照提高50.3%。在水肥浓度为I(肥18 kg,水300 L)处理下磷元素含量最低,仅为对照的13.6%;在水肥浓度为VI(肥108 kg,水300 L)处理下氮(N)元素和钾(K)元素含量最低,氮(N)元素和钾(K)元素含量仅比对照提高23.6%和22.6%。除N元素中处理Ⅳ、V、III与I之间差异不显著;P元素中处理II、I与对照之间,VI、II与I之间,V、III、VI与II之间,V、III与VI之间,Ⅳ与III之间差异不显著;K元素中处理I与VI之间,V与I之间,III与II之间,Ⅳ与III之间差异不显著而外,各处理与对照之间,各处理之间均有极显著的差异。(见表1)
表 1 叶片中主要元素含量表Tab. 1 Contents of main elements in leaves
3.2 不同水肥浓度配比对叶片中微量元素和叶绿素含量的影响
由表2可知,硼(B)元素:IV>III>V>II>VI>I>ck;镁(Mg)元素:IV>V>III>II>VI>I>ck;叶绿素A:IV>V>III>VI>II>I>ck;叶绿素B:IV>III>II>V>I>VI>ck;叶绿素总量:IV>V>III>VI>II>I>ck。其中,硼(B)、镁(Mg)、叶绿素A、叶绿素B、叶绿素总量平均值均在水肥浓度为IV(肥72 kg,水300 L)处理下最高;硼(B)、镁(Mg)、叶绿素A、叶绿素总量在水肥浓度为I(18 kg,水300 L)处理下最低。叶绿素B在水肥浓度为VI(肥108 kg,水300 L)处理下最低。除硼(B)各处理与对照之间、叶片中叶绿素总量中处理Ⅳ与对照之间有极显著差异而外,镁(Mg)元素中处理V、III、II、VI与I之间,处理V、III、II与VI之间,处理Ⅳ、V、III与Ⅱ之间,处理Ⅳ、V与III之间,处理Ⅳ与V之间差异不显著;叶绿素A、叶绿素B各处理与对照之间,各处理之间差异不显著;叶绿素总量中其余处理与对照处理之间差异不显著,各处理之间差异不显著。
表 2 叶片中微量元素和叶绿素含量表Tab. 2 Contents of trace elements and chlorophyll in leaves
3.3 不同水肥配方对果实中各营养物质含量的影响
与不施肥处理相对比,在水肥一体化灌溉方式下,经过不同水肥浓度处理的三年生藤椒果实中各主要营养物质、风味物质含量均值如表3。
由表3知,果实中粗蛋白含量:IV>V>III>VI>II>I>ck;果实中粗脂肪含量:IV>V>III>VI>II>I>ck;果实中精油含量:IV>V>III>VI>II>I>ck。其中,果实中粗蛋白、粗脂肪、精油含量平均值均在水肥浓度为IV(肥72 kg,水300 L)处理下最高,在水肥浓度为I(18 kg,水300 L)处理下最低。除粗蛋白中处理V与III之间差异不显著;粗脂肪中处理VI、II与I之 间,处 理III、VI与II之间,处理III与VI之间,处理V与III之间差异不显著而外,各处理与对照之间、各处理之间均有极显著的差异。
表 3 果实中各营养物质含量表Tab. 3 Contents of various nutrients in fruits
4 讨论
(1)藤椒叶片中主要营养元素氮(N)、磷(P)、钾(K)元素含量的平均值均在水肥浓度为肥72 kg+水300 L处理下最高,氮(N)元素含量比对照提高77.4%,磷(P)元素含量比对照提高117.1%,钾(K)元素含量比对照提高50.3%。
(2)藤椒叶片中微量元素硼(B)、镁(Mg)和叶绿素A、叶绿素B、叶绿素总量平均值均在水肥浓度为肥72 kg+水300 L处理下最高,硼(B)元素含量比对照提高89.5%、镁(Mg)元素含量比对照提高67.9%、叶绿素A含量比对照提高85.6%、叶绿素B元素含量比对照提高19.6%,叶绿素总量元素含量比对照提高60.8%。
(3)藤椒果实中粗蛋白、粗脂肪、精油含量平均值均在水肥浓度为肥72 kg+水300 L处理下最高,粗蛋白含量比对照提高90.1%、粗脂肪含量比对照提高93.3%、精油含量比对照提高218.2%。
总之,为节约成本,达到最佳生产成效,生产中应该选择处理Ⅳ配方,即肥72 kg+水300 L的处理进行推广应用。