APP下载

GH4169高温合金激光冲击强化层微观结构和微动疲劳行为研究

2022-11-08俞延庆周留成宫健恩方修洋周杰蔡振兵

表面技术 2022年10期
关键词:微动形貌寿命

俞延庆,周留成,宫健恩,方修洋,周杰,蔡振兵

GH4169高温合金激光冲击强化层微观结构和微动疲劳行为研究

俞延庆1,周留成2,宫健恩1,方修洋1,周杰1,蔡振兵1

(1.西南交通大学 机械工程学院,成都 610031;2.空军工程大学 航空工程学院 等离子体动力学重点实验室,西安 710038)

提高GH4169镍基高温合金的微动疲劳寿命。利用激光冲击强化(LSP)技术对GH4169高温合金榫试样进行表面强化处理并研究其微动疲劳性能。借助激光共聚焦显微镜(LCSM)、X射线衍射仪(XRD)、电子背散射衍射(EBSD)、显微硬度计、X射线应力分析仪、光学显微镜(OM)、扫描电子显微镜(SEM)及高频疲劳试验机,对激光冲击强化前后的GH4169高温合金的微观组织、硬度、残余应力、微动疲劳寿命、断口形貌和裂纹扩展情况进行分析。激光冲击强化后表面硬度提高了17.3%,硬化层深度约为0.63 mm,表面残余压应力为331.5 MPa。经激光冲击强化后变形层中晶粒未发生明显细化,表明激光诱导冲击波主要引起GH4169高温合金中位错的形成而不是位错的运动。在20 kN峰值载荷下,尽管强化后的断裂机制没有发生明显的变化,但是强化后榫试样的微动疲劳寿命比未处理的试样提高了827%,裂纹从多疲劳源转变为单疲劳源,裂纹萌生位置从表面转移到距表面234 μm的次表面,激光冲击强化显著提升了GH4169的萌生抗力和扩展速率,扩展区域的疲劳条带间距从未处理的0.50 μm增加到了强化后的1.01 μm,这可能与残余应力的突变与松弛有关。在激光冲击强化后获得硬化层和残余应力场共同影响下,GH4169高温合金榫试样的微动疲劳寿命得到了显著提升。

GH4169高温合金;激光冲击强化;微观结构;微动疲劳;断口形貌;裂纹扩展

航空发动机涡轮叶片与叶盘通常采用榫头/榫槽结构进行连接。但是,在高温、高压、高转速、交变载荷作用下,榫头/榫槽界面上接触应力较大,相对位移较小,易遭受微动损伤[1-2]。榫头/榫槽接触面处的微动损伤会导致局部应力集中,进而导致裂纹的形核与早期扩展,最终导致微动疲劳断裂,见图1[3]。微动疲劳损伤是导致涡轮叶片使用寿命降低的重要原因之一[4]。因此,开展榫试样的微动疲劳防护很有必要。

图1 涡轮叶片微动疲劳损伤断裂形貌[3]

常规的表面机械强化技术主要包括喷丸(SP)、超声纳米辊压(UNSM)和激光冲击强化(LSP)等技术[5-6]。由于较高的经济性,喷丸强化技术是工业中最常见的防护手段。Zhao等[7]采用喷丸处理GH4169高温合金,发现喷丸会在材料表层形成纳米晶、形变孪晶、硬化层(~90 μm)和残余压应力场,进而显著提升材料的疲劳寿命。Jing等[8]采用超声纳米辊压强化GH4169高温合金,1次强化后表面硬度提高了27.4%,残余压应力达到1 070.6 MPa,疲劳寿命提高了3.6倍。

喷丸和超声纳米辊压2种技术是通过机械碰撞的方式使材料表层发生塑性变形的方法。而激光冲击强化技术是通过高能量密度的激光穿过透明约束层作用于金属材料表面覆盖的吸收层时,吸收层吸收激光能量后迅速气化爆炸,并形成大量等离子体冲击波使材料表层发生塑性变形的方法[9-10]。尽管激光冲击强化技术的强化效果会稍弱于其他2种技术,但强化深度会更高[11]。Cao等[12]对GH202高温合金进行了激光冲击强化处理,发现在高能激光冲击诱导塑性变形过程中,位错滑移和孪晶同时产生,表面产生许多小角度晶界和孪晶,激光冲击强化对晶粒细化、小角度晶界的形成和力学性能的改善有积极作用。Geng等[13]采用5 GW/cm2的能量密度强化镍基单晶高温合金,发现位错在γ相通道中滑移与攀移并剪切γ′相产生高密度位错,进而显著提高单晶高温合金的显微硬度和残余压应力。硬度提高了约54%,残余压应力达到约600 MPa。Ning等[14]采用6.02 GW/cm2能量密度激光冲击强化GH4169高温合金,材料的硬度最高达到了29.8%,影响层深度最高达到了0.8 mm。Geng等[15]采用5 GW/cm2能量密度处理IN 718合金,3次冲击后表面残余压应力达到655 MPa,影响层深达到了1.3 mm。Lu等[16]报道了不同冲击次数后304不锈钢表层微观组织的演变规律。1次冲击后,晶粒内部形成了平行的孪晶。随着冲击次数增加到3次,不同方向的孪晶发生交叉并最终导致晶粒细化。

GH4169镍基合金作为一种析出强化高温合金,因其优异的力学性能、抗氧化性能、耐腐蚀性能和抗蠕变性能,被广泛用于制造航空发动机叶片或叶盘等部件[17-18]。本文采用6.58 GW/cm2功率密度对GH4169高温合金榫试样进行1次激光冲击强化处理,对强化前后的表面形貌、微观组织结构、显微硬度和残余应力进行了测试。最后,在20 kN峰值载荷下对强化前后的GH4169高温合金进行微动疲劳试验,对比分析强化前后的疲劳寿命、裂纹形貌和断口形貌。

1 试验

1.1 材料

基体材料选用锻造后的GH4169镍基高温合金,成分如表1所示。锻造后进行了固溶、时效热处理,得到的微观组织形貌如图2所示。基体主要由γ相组成,大量针状δ相交叉分布在γ基体中,而棒状和球状δ相分布在晶界上。

表1 GH4169镍基高温合金的化学成分

Tab.1 Chemical composition of GH4169 superalloy

图2 GH4169的微观组织形貌

1.2 激光冲击强化及微动疲劳试验

图3为激光冲击强化及微动疲劳试验示意图。切取如图3b所示的榫试样及微动垫试样。为保证榫试样和微动垫界面的良好接触,榫试样厚度设计为8 mm,微动垫厚度设计为12 mm。榫试样经过抛光研磨后再进行激光冲击强化处理,强化加工面为榫试样与微动垫接触的两侧面,扫描路径完全覆盖了榫试样的侧面。激光冲击强化试验在西安天瑞达公司YS80-R200B设备上进行。采用厚度为1 mm的水层作为约束层,厚度为0.13 mm的黑胶带作为吸收层。其中,激光能量为5 J,脉冲宽度为20 ns,光斑直径为2.2 mm,搭接率为50%,重复频率为1 Hz,扫描次数为1 次。

强化结束后,在中机GPS100高频疲劳试验机上对强化前后的榫试样进行微动疲劳试验,见图3c。微动垫通过过渡配合装配在其夹具中并在拉-拉载荷的作用下完全固定。在榫试样的侧面放置数字显微镜对裂纹扩展情况进行监测。微动疲劳试验在室温下进行,所施加的峰值载荷为20 kN,应力比为0.1。

1.3 性能测试及组织观察

采用激光共聚焦显微镜(LCSM,VK-X1000,Keyence,日本)对激光冲击强化前后的表面进行观察,获得表面三维形貌、二维轮廓和面粗糙度(a)。使用X射线衍射仪(XRD,Empyrean,Panalytical,荷兰)对比分析强化前后GH4169高温合金的物相组成,选用的射线为Cu Kα射线,2范围为20°~100°。使用电子背散射衍射(EBSD,Nordly Max3,Oxford,英国)对强化后表层微观组织进行分析。使用X射线应力分析仪(D8 Advance,BRUCKER,德国)测量激光冲击强化后的表面残余应力,其应力衍射仪参数选择Co Kα射线,衍射晶面为(311)。使用显微硬度计(KELITI-000ZB,科理特,中国)对强化后深度方向上的硬度进行测试,载荷为200 g,保压时间为15 s。采用光学显微镜(OM,VHX-6000,Keyence,日本)和扫描电子显微镜(SEM,Phenom Pro,飞纳,中国)对断口形貌进行分析。

图3 激光冲击强化和微动疲劳示意图

2 结果及分析

2.1 表面完整性分析

GH4169高温合金强化前后的三维形貌和二维轮廓如图4所示。未处理样品表面较为平整,无明显的凹坑,测得表面粗糙度a为1.62 μm。而激光冲击强化后,由于激光和水约束层相互作用并产生高压等离子冲击材料表面,导致表面形成大量的凹坑,表面粗糙度a也增加到13.89 μm。

图5a展示了激光冲击强化后显微硬度随深度的变化规律。其中,深度为0 μm处的硬度值是从表面获取的。激光冲击强化后表面硬度从427.6HV0.2增加到501.6HV0.2,增加了17.3%。由于激光冲击波在材料内部传递时会逐渐耗散,表面显微硬度值最大,并随着深度的增加而逐渐降低。当深度超过0.63 mm时,硬度值下降到基体水平。激光冲击强化后表面的残余应力值列在表2中。强化后,表面残余应力从227.4 MPa变为‒331.5 MPa。GH4169高温合金表面在激光冲击强化后形成了残余压应力场。图5b为激光冲击强化前后GH4169的XRD图谱。激光冲击强化后GH4169保持着和基体相同的γ相衍射峰,无新的衍射峰出现,材料经激光冲击强化后未发生明显的相变[19]。但是,局部放大图中可以看出,强化后的γ(111)峰向左发生了移动,表明GH4169在激光诱导冲击波作用下发生了晶格畸变并导致微观应变的增加[20],进而导致表层残余压应力场和硬化层的形成。

图4 激光冲击强化前后GH4169高温合金的三维形貌及二维轮廓

图5 激光冲击强化前后GH4169高温合金的硬度和XRD图谱

表2 激光冲击强化前后GH4169高温合金表面残余应力

Tab.2 Residual stress of GH4169 superalloy before and after LSP MPa

图6a展示激光冲击强化后GH4169高温合金表层的反极图(Inverse pole figure,IPF)。随着深度的增加,GH4169高温合金的平均晶粒尺寸从28.61 μm增加到了30.02 μm。表层区域的晶粒尺寸并没有发生明显的细化。对应区域的局部取向差分布图(Kernel Average Misorientations,KAM)如图6b所示。KAM可以反映材料内部的塑性变形程度,更高的KAM值代表材料塑性变形程度越高[21]。可以看出,尽管表层区域内晶粒没有明显细化,但是在深度约0.63 mm的次表层内形成了大量0°~2°小角度取向差。图6c和图6d分别为变形区和基体的晶界角结果。基体和形变区的小角度晶界(LAGBs)比例分别为7%和19%。激光冲击强化后,大角度晶界向小角度晶界发生了转变,这主要归因于塑性变形引发的位错强化或亚晶粒的形成[22]。上述结果表明,激光诱导冲击波在GH4169高温合金表层迅速传递时引起的塑性变形主要是位错的形成而不是位错的运动[23]。位错的形成导致了晶粒内部位错密度的增加,进而导致变形层内材料性能的提升。

激光冲击强化过程中,冲击波峰值压力可采用Fabbro公式进行计算,如式(1)所示。其中,为内能转化为热能的系数,其值为0.25[24];为基体与约束层的折合声阻抗;0为激光的功率密度,其值为6.58 GW/cm2。

折合声阻抗的计算公式如式(2)所示。其中,1为基材的声阻抗,其值为0.165×106g/(cm2·s);2为水约束层的声阻抗,其值为4.6×106g/(cm2·s)[25]。

因此,强化过程中的峰值冲击波压力值为3.86 Gpa。根据冲击波压力值可以计算激光冲击强化过程中诱导的形变层深度[26-27],如式(3)所示。其中,e为弹性波传播速度;p为塑性波传播速度;为脉宽,其值为20 ns;HEL为GH4169高温合金的Hugoniot 弹性极限,其值为1.7 Gpa[25]。

塑性波传播速度e和弹性波传播速度p公式分别如式(4)和式(5)所示。其中,和是Lame’s常数;为GH4169高温合金的密度,其值为8 240 kg/m3[24]。

和的计算公式分别如式(6)和式(7)所示。其中,为GH4169高温合金的弹性模量,其值为210 Gpa;为GH4169高温合金的泊松比,其值为0.321。

根据式(1)—(7)计算得到单点叩击后GH4169高温合金的形变层深度为318 μm,这远小于实际值(0.63 mm)。这主要是由于实际加工过程中的多光斑叠加导致形变层产生的累加效应[25],进而导致残余应力层厚度的增加。

2.2 微动疲劳行为分析

图7a为20 kN峰值载荷下榫试样的疲劳全寿命。激光冲击强化显著提高了榫试样的微动疲劳寿命,在22 kN峰值载荷下,全寿命较未处理试样提高了827%。图7b展示了激光冲击强化前后裂纹长度随循环次数的变化曲线。根据文献[28-29],裂纹萌生寿命可以规定为裂纹达到可见的长度。由于监测时采用的数字显微镜可以在裂纹长度达到0.5 mm时观察到裂纹出现,因此将裂纹萌生寿命取为裂纹长度达到0.5 mm时的循环周次。可以看出,未处理试样的扩展寿命约占全寿命的54.4%,而激光冲击强化后试样的扩展寿命约占全寿命的0.3%。激光冲击强化可以显著提高GH4169高温合金榫试样的裂纹萌生抗力,裂纹萌生寿命主要负责全寿命的提升。但是,当裂纹一旦萌生并达到一定长度后,裂纹迅速扩展,扩展速率比未处理的试样更快。

图7 激光冲击强化前后GH4169高温合金的疲劳寿命及裂纹扩展

图8a和图8b展示了激光冲击强化前后的裂纹形貌。未处理试样的裂纹从接触前端萌生且几乎垂直于接触表面。随着裂纹长度的增加,裂纹会逐渐向下偏转。由于接触前端承受较大的剪应力和切向应力[30],接触前端承受较大的应力集中和塑性变形,导致接触前端发生严重的黏着磨损。黏着磨损会导致大量微裂纹的萌生,尽管大量的微裂纹在磨损中被去除,但部分未去除的微裂纹会向下扩展并形成主裂纹[31]。在应力集中和微动磨损的共同作用下,裂纹在接触前端萌生,如图8a所示。而激光冲击强化形成的主裂纹却没有位于接触前端,这可能和裂纹的萌生有关。除此之外,随着裂纹长度的增加,裂纹也会逐渐向下偏转,这个和未处理试样的规律一致,暗示着强化后断裂机制并未发生明显的变化。

图8c和图8d展示了强化前后接触区域的表面形貌。由于应力集中,接触前端区域发生了严重的黏着磨损,而其他接触区域主要以小面积的剥落为主。尽管强化后接触前端附近仍遭受更严重的磨损,但是其他接触区域也覆盖着大量的磨屑,磨损较未处理试样反而更严重。一方面,经激光冲击强化后榫试样的微动疲劳寿命得到了显著提升,导致接触副更长周次的磨损,进而导致更多的磨屑生成。另一方面,强化后GH4169高温合金表层硬度得到了一定程度的提升,而微动垫表面未进行强化,微动垫遭受了更严重的磨损,部分磨屑通过材料转移堆积在激光诱导冲击波形成的凹坑里,导致更多的磨屑产生。从表面形貌可以看出,强化后的裂纹根部沿厚度方面并不一致,只有一侧位于接触前端,具体原因将结合断口形貌进行分析。

图8 激光冲击强化前后GH4169高温合金的表截面形貌

图9为未处理试样的断口形貌。在应力集中和微动磨损的共同作用下,接触表面下可以观察到多个典型的线状疲劳源。除此之外,裂纹源附近堆积着一些磨屑,如图9a和图9b所示,这可能和微动诱导的裂纹反复开合有关[32]。由于试验过程中施加的是拉-拉载荷,裂纹通常不会发生闭合。但是,当施加了最大应力后开始卸载,与微动垫接触的区域变形会受到限制,而未接触的区域迅速回弹,此时裂纹有可能发生了闭合[33]。在裂纹扩展初期,断口形貌呈现典型的准解理特征,如图9c所示。随着裂纹进一步扩展到距表面约5 mm处,断口形貌从准解理特征转变为以疲劳条带为主的韧性断裂特征。除此之外,断口中观察到了硬化相δ相的破碎。这是由于位错会在主滑移面上滑移并剪切δ相,进而形成平面滑移带,最终导致δ相断裂[34]。

图10为相同载荷下激光冲击强化后GH4169高温合金的断口形貌。和未处理试样相同,随着裂纹的扩展,断口形貌从初期的准解理特征转变成以疲劳条带为主的韧性断裂特征,断裂机制并没有发生明显的变化。但是与未处理试样不同的是,强化后疲劳源数量减少,从多疲劳源转变为单疲劳源。疲劳源位置也发了转移,从表面转移到距表面234 μm的次表面。裂纹源位置的改变主要是由于强化后残余压应力场的形成。残余应力场的存在改变了从表面到材料内部最大交变应力的位置[35],因此强化后裂纹源总是位于次表面。除此之外,残余压应力场的存在会降低循环加载过程中的平均应力,从而降低裂纹萌生的驱动力[36-37],GH4169高温合金的萌生抗力显著提高。硬化层的形成也会提高裂纹的萌生抗力,这是由于硬化层的形成提高了材料表面的耐磨性,也提高了微裂纹的形成难度,最终导致疲劳源的数量减少和萌生寿命的提高。除此之外,接触前端多疲劳源的形成很容易结合并形成一条主裂纹,进而在厚度方向上均位于接触前端。而强化后只有单疲劳源,裂纹在厚度方向扩展时可能会导致偏移,如图8d所示。

图11为图9、图10中位置A、B处的疲劳条带放大形貌。可以看出,未处理的试样疲劳条带间距为0.5 μm,而强化后试样的疲劳条带间距是1.01 μm,为未处理试样的2倍。疲劳条带的间距表示单次循环裂纹的扩展距离[38]。因此,疲劳条带越宽,扩展速率越快。和图6b中裂纹长度数据一致,疲劳条带间距的变宽也说明了激光冲击强化后裂纹的扩展速率加快。由于激光冲击强化在表层产生了一定厚度的残余压应力场和硬化层,这会显著提高裂纹萌生的难度,提高试样的萌生寿命。但是,由于表层残余应力场的引入,材料内部未强化区域承受着由残余压应力向拉应力的突变,因此裂纹扩展速率显著提高[39]。除此之外,在循环机械载荷作用下,当最大外在应力和残余压应力之和超过表层材料的屈服极限时,试样表层区域进入屈服并引起残余压应力的重新分配,进而导致残余压应力松弛。残余应力松弛也有可能是激光冲击强化后裂纹扩展速率加快的原因[40]。

图9 20 kN峰值载荷下未处理样品的断口形貌

图10 20 kN峰值载荷下激光冲击强化样品的断口形貌

3 结论

1)经激光冲击强化后,GH4169高温合金表面硬度提高了17.3%,硬化层深度达到0.63 mm,残余压应力达到了331.5 MPa;在峰值载荷22 kN作用下,微动疲劳寿命提高了827%;激光冲击强化并没有引起表层晶粒明显细化,表明激光诱导冲击波主要引起GH4169高温合金晶粒中位错的形成而不是位错的运动。

2)激光冲击后GH4169的断裂机制没有发生明显的变化,都是从准解理断裂特征转变为以疲劳条带为主的韧性断裂特征;但是由于激光诱导冲击波作用形成的残余压应力场和硬化层,强化后试样的疲劳源数量减少,从多疲劳源转变为单疲劳源,裂纹源位置也发生转移,从表面转移到距表面234 μm的次表层。

3)激光冲击强化可以显著提升GH4169高温合金的萌生抗力,强化后试样的萌生寿命主要负责全寿命的提升,但是裂纹的扩展速率显著升高,这可能和残余应力的突变、松弛有关。

[1] LI Xin, YANG Jian-wei, LI Mei-hong, et al. An Investi­gation on Fretting Fatigue Mechanism under Complex Cyclic Loading Conditions[J]. International Journal of Fatigue, 2016, 88: 227-235.

[2] BHATTI N A, ABDEL WAHAB M. Fretting Fatigue Crack Nucleation: A Review[J]. Tribology International, 2018, 121: 121-138.

[3] 陶敏, 欧阳雪珍, 王晓娟, 等. 发动机低压Ⅰ级涡轮叶片榫头断裂分析与预防[J]. 失效分析与预防, 2018, 13(6): 393-396.

TAO Min, OUYANG Xue-zhen, WANG Xiao-juan, et al. Analysis and Prevention of Tenon Fracture of Grade Ⅰ Low Pressure Turbine Blade in Engine[J]. Failure Ana­lysis and Prevention, 2018, 13(6): 393-396.

[4] CHEN J J, LIU L, LI S X, et al. Experimental and Numerical Investigation on Crack Initiation of Fretting Fatigue of Dovetail[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(6): 1426-1436.

[5] MALEKI E, UNAL O, GUAGLIANO M, et al. The Effects of Shot Peening, Laser Shock Peening and Ultra­sonic Nanocrystal Surface Modification on the Fatigue Strength of Inconel 718[J]. Materials Science and Engi­neering: A, 2021, 810: 141029.

[6] LIU Jun, YE Chang, DONG Ya-lin. Recent Development of Thermally Assisted Surface Hardening Techniques: A Review[J]. Advances in Industrial and Manufacturing Engineering, 2021, 2: 100006.

[7] ZHAO Xiao-hui, ZHOU Hong-yang, LIU Yu. Effect of Shot Peening on the Fatigue Properties of Nickel-Based Superalloy GH4169 at High Temperature[J]. Results in Physics, 2018, 11: 452-460.

[8] YANG Jing, LIU Dao-xin, ZHANG Xiao-hua, et al. The Effect of Ultrasonic Surface Rolling Process on the Fret­ting Fatigue Property of GH4169 Superalloy[J]. Interna­tional Journal of Fatigue, 2020, 133: 105373.

[9] 曹宇鹏, 蒋苏州, 施卫东, 等. E690高强钢表面激光冲击微造型的模拟与试验[J]. 中国表面工程, 2019, 32(5): 69-77.

CAO Yu-peng, JIANG Su-zhou, SHI Wei-dong, et al. Nu­merical Simulation and Experiment Micro-Dimple Array on E690 High-Strength Steel Surface Induced by Laser Shock Processing[J]. China Surface Engineering, 2019, 32(5): 69-77.

[10] 李松柏, 张程, 李湘, 等. 激光冲击强化对2524铝合金疲劳寿命的影响[J]. 表面技术, 2020, 49(5): 207-213.

LI Song-bai, ZHANG Cheng, LI Xiang, et al. Effect of Laser Shock Peening on Fatigue Life of 2524 Aluminum Alloy[J]. Surface Technology, 2020, 49(5): 207-213.

[11] YANG Jing, LIU Dao-xin, REN Zhen-cheng, et al. Grain Growth and Fatigue Behaviors of GH4169 Superalloy Subjected to Excessive Ultrasonic Surface Rolling Pro­cess[J]. Materials Science and Engineering: A, 2022, 839: 142875.

[12] CAO Jiang-dong, CAO Xue-yu, JIANG Bo-chen, et al. Microstructural Evolution in the Cross Section of Ni- Based Superalloy Induced by High Power Laser Shock Processing[J]. Optics & Laser Technology, 2021, 141: 107127.

[13] GENG Yong-xiang, DONG Xia, WANG Ke-dian, et al. Evolutions of Microstructure, Phase, Microhardness, and Residual Stress of Multiple Laser Shock Peened Ni-Based Single Crystal Superalloy after Short-Term Thermal Ex­po­sure[J]. Optics & Laser Technology, 2020, 123: 105917.

[14] NING Cheng-yi, ZHANG Guang-yi, YANG Ya-peng, et al. Effect of Laser Shock Peening on Electrochemical Corrosion Resistance of IN718 Superalloy[J]. Applied Optics, 2018, 57(10): 2467-2473.

[15] GENG Yong-xiang, DONG Xia, WANG Ke-dian, et al. Effect of Microstructure Evolution and Phase Precipi­tations on Hot Corrosion Behavior of IN718 Alloy Sub­jec­ted to Multiple Laser Shock Peening[J]. Surface and Coatings Technology, 2019, 370: 244-254.

[16] LU J Z, LUO K Y, ZHANG Y K, et al. Grain Refinement Mechanism of Multiple Laser Shock Processing Impacts on ANSI 304 Stainless Steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

[17] 刘润芳, 王奕霖, 孙彩云, 等. 冷喷涂镍涂层在不锈钢焊点腐蚀防护上的应用研究[J]. 装备环境工程, 2020, 17(12): 76-80.

LIU Run-fang, WANG Yi-lin, SUN Cai-yun, et al. Appli­cation of Cold Sprayed Nickel Coating on Corrosion Prevention of Stainless Steel Solder Joint[J]. Equipment Environmental Engineering, 2020, 17(12): 76-80.

[18] WU Dao-xia, YAO Chang-feng, ZHANG Ding-hua. Sur­face Characterization and Fatigue Evaluation in GH4169 Superalloy: Comparing Results after Finish Turning; Shot Peening and Surface Polishing Treatments[J]. Internatio­nal Journal of Fatigue, 2018, 113: 222-235.

[19] 陈正阁, 武永丽, 薛全喜, 等. 激光冲击强化对片层TC11钛合金组织和性能的影响[J]. 表面技术, 2022, 51(7): 343-352.

CHEN Zheng-ge, WU Yong-li, XUE Quan-xi, et al. Effect of Laser Shock Peening on Microstructure and Properties of TC11 Titanium Alloy with Lamellar Microstructure[J]. Surface Technology, 2022, 51(7): 343-352.

[20] YANG C, LIU Y G, SHI Y H, et al. Microstructure Cha­rac­terization and Tensile Properties of Processed TC17 via High Energy Shot Peening[J]. Materials Science and Engineering: A, 2020, 784: 139298.

[21] 田甜, 张景泉, 黄婷, 等. 吸收层对铜箔飞秒激光冲击强化的影响[J]. 表面技术, 2021, 50(12): 174-180.

TIAN Tian, ZHANG Jing-quan, HUANG Ting, et al. Effect of Absorption Layer on Femtosecond Laser Shock Peening of Copper Foil[J]. Surface Technology, 2021, 50(12): 174-180.

[22] PRAVEENKUMAR K, SWAROOP S, MANIVASAGAM G. Effect of Multiple Laser Peening on Microstructural, Fatigue and Fretting-Wear Behaviour of Austenitic Stain­less Steel[J]. Surface and Coatings Technology, 2022, 443: 128611.

[23] GILL A, TELANG A, MANNAVA S R, et al. Comparison of Mechanisms of Advanced Mechanical Surface Treat­ments in Nickel-Based Superalloy[J]. Materials Science and Engineering: A, 2013, 576: 346-355.

[24] 杜吉强, 张宏建, 于子强, 等. GH4169高温合金激光冲击强化后残余应力场分析[J]. 推进技术, 2022(1): 1-12.

DU Ji-qiang, ZHANG Hong-jian, YU Zi-qiang, et al. Analysis of Residual Stress Field Induced by Laser Shock Peening on GH4169 Superalloy[J]. Journal of Propulsion Technology, 2022(1): 1-12.

[25] WU Jia-jun, LIU Xue-jun, QIAO Hong-chao, et al. Using an Artificial Neural Network to Predict the Residual Stress Induced by Laser Shock Processing[J]. Applied Optics, 2021, 60(11): 3114-3121.

[26] WU Jia-jun, ZHAO Ji-bin, QIAO Hong-chao, et al. Re­sea­rch on the Technical Principle and Typical Applica­tions of Laser Shock Processing[J]. Materials Today: Pro­ceedings, 2021, 44: 722-731.

[27] 倪敏雄, 周建忠, 杨超君, 等. 激光冲击强化诱导的残余应力场分析[J]. 激光杂志, 2006, 27(5): 79-80, 83.

NI Min-xiong, ZHOU Jian-zhong, YANG Chao-jun, et al. Analysis on Residual Stress Field by Laser Shock Pee­ning[J]. Laser Journal, 2006, 27(5): 79-80, 83.

[28] SUNDE S L, BERTO F, HAUGEN B. Predicting Fretting Fatigue in Engineering Design[J]. International Journal of Fatigue, 2018, 117: 314-326.

[29] SUN Shou-yi, LI Lei, YUE Zhu-feng, et al. Fretting Fatigue Failure Behavior of Nickel-Based Single Crystal Superalloy Dovetail Specimen in Contact with Powder Metallurgy Pads at High Temperature[J]. Tribology Inter­national, 2020, 142: 105986.

[30] 邢泽宇, 张宏建, 于子强, 等. ZSGH4169榫连接结构微动疲劳试验[J]. 航空动力学报, 2021, 36(11): 2410- 2417.

XING Ze-yu, ZHANG Hong-jian, YU Zi-qiang, et al. Fretting Fatigue Test of ZSGH4169 Dovetail Structure[J]. Journal of Aerospace Power, 2021, 36(11): 2410-2417.

[31] SUN Shou-yi, LI Lei, HE Kun, et al. Fretting Fatigue Damage Mechanism of Nickel-Based Single Crystal Superalloys at High Temperature[J]. International Journal of Mechanical Sciences, 2020, 186: 105894.

[32] HU Chen, WEI Da-sheng, WANG Yan-rong, et al. Experimental and Numerical Study of Fretting Fatigue in Dovetail Assembly Using a Total Life Prediction Mo­del[J]. Engineering Fracture Mechanics, 2019, 205: 301- 318.

[33] NORAPHAIPHIPAKSA N, MANONUKUL A, KANC­HA­NO­MAI C, et al. Fretting-Contact-Induced Crack Opening/Closure Behaviour in Fretting Fatigue[J]. Inter­na­tional Journal of Fatigue, 2016, 88: 185-196.

[34] CHEN G, ZHANG Y, XU D K, et al. Low Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy GH4169 at Elevated Temperature of 650 ℃[J]. Materials Science and Engineering: A, 2016, 655: 175- 182.

[35] LIU Dan, LIU Dao-xin, ZHANG Xiao-hua, et al. Plain Fatigue and Fretting Fatigue Behaviors of 17-4PH Steel Subjected to Ultrasonic Surface Rolling Process: A Comparative Study[J]. Surface and Coatings Technology, 2020, 399: 126196.

[36] LIU Dan, LIU Dao-xin, GUAGLIANO M, et al. Contri­bution of Ultrasonic Surface Rolling Process to the Fa­tigue Properties of TB8 Alloy with Body-Centered Cubic Structure[J]. Journal of Materials Science & Technology, 2021, 61: 63-74.

[37] 张永芳, 康思凡, 董丽虹, 等. 金属表层梯度微结构对力学性能和裂纹扩展的影响[J]. 表面技术, 2021, 50(6): 116-127.

ZHANG Yong-fang, KANG Si-fan, DONG Li-hong, et al. Effect of Surface Gradient Microstructure on Mechanical Properties and Crack Propagation[J]. Surface Technology, 2021, 50(6): 116-127.

[38] WANG Jing-chen, GAO Yu-kui, WEI Xian-shun. Investi­ga­tions of the Effects of Combination Treatments on the Fretting Fatigue Resistance of GH4169 Superalloy at an Elevated Temperature[J]. Surface and Coatings Techno­logy, 2021, 426: 127758.

[39] 李媛, 何卫锋, 聂祥樊, 等. 激光冲击TC17钛合金疲劳裂纹扩展试验[J]. 中国表面工程, 2017, 30(3): 40-47.

LI Yuan, HE Wei-feng, NIE Xiang-fan, et al. Fatigue Crack Growth Behavior of TC17 Titanium Alloy with Laser Shock Peening[J]. China Surface Engineering, 2017, 30(3): 40-47.

[40] 于泽, 江荣, 章敬鹏, 等. 激光冲击强化对FGH4098合金疲劳裂纹萌生和扩展影响研究[J]. 推进技术, 2022(4): 56-62.

YU Ze, JIANG Rong, ZHANG Jing-peng, et al. Effects of Laser Shock Peening on Mechanisms of Fatigue Crack Initiation and Propagation of FGH4098 Alloy[J]. Journal of Propulsion Technology, 术, 2022(4): 56-62.

Microstructure and Fretting Fatigue Behaviour of GH4169 Superalloy after Laser Shock Peening

1,2,1,1,1,1

(1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China; 2. Science and Technology on Plasma Dynamic Laboratory, Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, China)

To improve the fretting fatigue lifetime of GH4169 Ni-based superalloy, in this paper, laser shock peening (LSP) was performed on the surface of GH4169 dovetail structure. The laser energy of 5 J, the pulse duration of 20 ns, the spot diameter of 2.2 mm, the overlap rate of 50%, the repetition of 1 Hz, and the scan number of 1 cycle were adopted in this study. The laser scanning confocal microscope (LSCM) was used to obtain the 3D surface morphology and 2D profile after LSP. The X-ray diffractometer (XRD) was evaluated to analyze the phase composition change before and after LSP. The micro-hardness and residual stress were measured by the vickers hardness tester and X-ray stress analyzer, respectively. The fretting fatigue performance of GH4169 superalloy was performed on the high-frequency fatigue testing machine with a maximum load of 20 kN and stress ratio of 0.1. The fretting fatigue lifetime and crack propagation were collected to analyze the difference before and after LSP. The optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the fracture morphology. The results indicate that the surface hardness of LSPed sample is increased by 17.3% compared to the untreated sample. The hardened layer is about 0.63 mm. The surface compressive residual stress is 331.5 MPa. The surface roughness (a) is increased from 1.62 μm to 13.89 μm after LSP. The grain size of LSPed sample in the deformed layer has no obvious refinement, which indicates the formation of dislocation rather than the motion of dislocation in the surface layer of GH4169 superalloy under the action of the laser shock wave. Similar to the untreated sample, the fracture mechanism changes from the quasi-cleavage fracture to the ductile fracture with a fatigue stripe along with the crack propagation. However, after LSP, the number of crack sources decreases from multiple fatigue sources to single fatigue sources. Besides, the crack initial site is also changed from the surface to the sub-surface, which is 234 μm from the surface. The overall fatigue lifetime of LSPed sample is increased by 827% compared to the untreated sample under the maximum load of 22 kN, which is primarily provided by the enhancement of crack initiation lifetime. The formed hardened layer can improve the surface wear resistance and reduce the micro-crack initiation probability. The formed compressive residual stress field can reduce the average stress. Therefore, LSP can significantly increase the initial resistance of GH4169 superalloy. However, the propagation lifetime of the untreated sample accounts for about 54.4% of the overall lifetime, while that of LSPed sample accounts for about 0.3% of the overall lifetime. The spacing of fatigue stripe is also increased from 0.50 μm to 1.01 μm after LSP. The spacing of fatigue stripe represents the distance of a single cycle, indicating that a shorter spacing leads to a faster propagation rate. The faster propagation rate after LSP may be ascribed to the sudden change and relaxation of residual stress below the compressive residual stress field. The fretting fatigue performance of GH4169 superalloy dovetail structure is significantly improved under the combined action of hardened layer and compressive residual stress field induced by LSP.

GH4169 superalloy; laser shock peening; microstructure; fretting fatigue; fracture morphology; crack propagation

扫码查看文章讲解

V261.8

A

1001-3660(2022)10-0038-11

10.16490/j.cnki.issn.1001-3660.2022.10.005

2022–07–11;

2022–09–30

2022-07-11;

2022-09-30

国家科技重大专项(2017-VII-0003-0096-1、J2019-IV-0014-0082);国家自然科学基金(51875574、U2067221);四川省科技项目(22JCQN0111)

National Science and Technology Major Project of China (2017-VII-0003-0096-1, J2019-IV-0014-0082); National Natural Science Foundation of China (51875574, U2067221); Sichuan Science and Technology Project (22JCQN0111)

俞延庆(1996—),男,博士研究生,主要研究方向为表面工程。

YU Yan-qing (1996-), Male, Doctor student, Research focus: surface engineering.

蔡振兵(1981—),男,博士,研究员,主要研究方向为机械装备服役安全性及可靠性。

CAI Zhen-bing (1981-), Male, Doctor, Researcher, Research focus: service safety and reliability of mechanical equipment.

俞延庆, 周留成, 宫健恩, 等. GH4169高温合金激光冲击强化层微观结构和微动疲劳行为研究[J]. 表面技术, 2022, 51(10): 38-48.

YU Yan-qing, ZHOU Liu-cheng, GONG Jian-en, et al. Microstructure and Fretting Fatigue Behaviour of GH4169 Superalloy after Laser Shock Peening[J]. Surface Technology, 2022, 51(10): 38-48.

责任编辑:万长清

猜你喜欢

微动形貌寿命
人类寿命极限应在120~150岁之间
仓鼠的寿命知多少
马烈光养生之悟 自静其心延寿命
基于RID序列的微动目标高分辨三维成像方法
基于稀疏时频分解的空中目标微动特征分析
人类正常寿命为175岁
草酸钴制备中的形貌继承性初探
微动桥桥足距离对微动裂纹萌生特性的影响
集成成像同名像点三维形貌获取方法
SAPO-56分子筛的形貌和粒径控制