喷丸强化DD6单晶合金低周疲劳寿命预测
2022-11-08李明睿王荣桥1b田腾跃毛建兴胡殿印
李明睿,王荣桥,1b,2,田腾跃,毛建兴,胡殿印
专题—面向航空航天部件服役安全的表面处理技术
喷丸强化DD6单晶合金低周疲劳寿命预测
李明睿1a,王荣桥1a,1b,2,田腾跃1a,毛建兴1b,1c,2,胡殿印1b,1c,2
(1.北京航空航天大学 a.能源与动力工程学院 b.航空发动机结构强度北京市重点实验室 c.航空发动机研究院,北京 100191;2.中小型航空发动机联合研究中心,北京 100191)
实现喷丸强化后DD6单晶合金低周疲劳寿命的准确预测。开展了喷丸强化后DD6圆棒件低周疲劳试验,分析了喷丸强化对单晶合金疲劳寿命的影响机理。在此基础上,建立了各向异性材料喷丸强化工艺有限元模型,获取了喷丸强化所致残余应力分布与粗糙度。基于连续介质损伤力学,考虑残余应力与粗糙度对低周疲劳寿命的影响,建立了喷丸强化DD6单晶合金低周疲劳寿命预测模型。喷丸强化后不同载荷下DD6单晶合金的低周疲劳寿命均得到提高,最大可提高108%;高温环境下残余应力松弛导致强化效果与试验温度成反比。喷丸强化工艺有限元模拟得到残余应力分布在试件表面深约130 μm的区域,表层残余应力为–380.16 MPa,应力集中系数为1.193,残余应力影响下的八面体Schmid应力幅值降低了10%左右。DD6低周疲劳试验结果在预测结果的2倍分散带以内。喷丸强化可以有效提高DD6低周疲劳寿命,对低周疲劳寿命的影响机制为残余应力的引入与粗糙度的改变。所建立的喷丸强化单晶合金DD6低周疲劳寿命预测模型具有较好的准确性。
喷丸强化;单晶合金;低周疲劳;寿命预测;残余应力;应力集中
涡轮叶片作为航空发动机的重要部件之一,在工作中承受循环载荷作用,不可避免地产生低周疲劳失效,制约其使用寿命[1]。单晶合金由于消除了高温下易发生破坏的晶界,其高温综合性能得到了明显提升,是先进航空发动机涡轮叶片的首选材料[2]。喷丸强化是一种传统表面处理技术,利用高速弹丸流喷射材料表面,使弹丸与材料表层发生碰撞,改变表面形貌的同时引入一定深度的残余应力,是提高金属材料低周疲劳寿命的有效手段[3]。因此开展喷丸强化后单晶合金低周疲劳寿命预测研究,具有重要的工程意义。
目前,国内外学者对喷丸强化后疲劳问题的研究主要集中在多晶材料[4-6],针对单晶合金的研究相对较少。高玉魁[7]、王欣等[8-10]、吴庆辉等[11]针对单晶合金开展不同温度下的疲劳试验和缺口疲劳试验,并与未喷丸结果进行对比,指出喷丸强化后单晶疲劳寿命得到较大的提高,强化机制主要在于表面形貌优化、形变强化以及表面孔洞优化三方面。Bogachev等[12]、杨清等[13]、杨红超等[14]开展不同喷丸工艺下的单晶合金疲劳试验,研究了弹丸种类、喷丸强度、覆盖率等工艺参数对单晶合金疲劳寿命和表面完整性的影响。总的来说,上述研究有效论证了喷丸强化在单晶合金低周疲劳寿命延寿方面的有效性,但是研究主要集中于试验,针对喷丸强化后单晶合金低周疲劳寿命仍缺乏有效的量化手段。基于此,本文以国产第二代镍基单晶高温合金DD6为研究对象,开展喷丸强化后DD6单晶合金的低周疲劳试验;进一步发展了喷丸强化数值模拟方法,建立了喷丸强化单晶合金低周疲劳寿命预测模型并进行了试验验证。
1 试验
1.1 材料与试验件
本文所研究的材料是国产第二代镍基单晶高温合金DD6,生长方向为[001],该材料的热处理过程为:1 290 ℃× 1 h + 1 300 ℃ × 2 h + 1 315 ℃ × 4 h/空冷+ 1 120 ℃ × 4 h/空冷+ 870 ℃ × 32 h/空冷。[001]取向力学性能如表1所示。试验件为主轴方向与[001]取向偏差在10°以内的圆棒,考核截面直径为6 mm,如图1所示。
表1 镍基单晶高温合金DD6[001]取向的力学性能[15]
Tab.1 [001] oriented mechanical properties of nick-based single crystal superalloy DD6[15]
图1 DD6单晶合金试验件尺寸
1.2 喷丸工艺与检测方法
在常温下,使用气动喷丸机对图1所示试验件的考核段表面进行喷丸处理,工艺参数包括:喷丸机气压为0.3 MPa,Z300陶瓷丸的直径为0.3 mm,喷丸强度利用A型阿门试片采用弧高测量法测得,为0.2~0.25 mmA,表面覆盖率为200%。
同时,使用Taylor型针扫描式粗糙度仪测量喷丸前、后试件的表面粗糙度,如表2所示。可以发现,喷丸强化处理后试件的表面粗糙度增大,喷丸后试样的平均表面粗糙度是未强化前的5.10倍。
采用金相显微镜观测喷丸前、后试样表面的微观组织,如图2所示。从图2a可以看出,喷丸强化处理前DD6单晶合金基体相的原始状态良好,强化相呈现较好的立方结构;然而,经过喷丸强化后由于试件表面剧烈的塑性变形,两相的界限逐渐消失。
1.3 低周疲劳试验
参照标准ASTM–E466–07[16],对喷丸强化后的DD6单晶合金试验件开展760、980 ℃ 2种温度下的低周疲劳试验,应变控制(应变比= –1),每种温度下设置1.2%、1.0%、0.8% 3种应变,频率为1.0 Hz。与未强化处理的DD6单晶合金低周疲劳寿命试验数据对比如表3所示。表中疲劳寿命增益系数(LIP)定义为同样的试验条件下,表面强化试样的疲劳寿命增加幅值与未表面强化试样的疲劳寿命之比[7],如公式(1)所示。可以发现,经过喷丸强化后,不同载荷下DD6单晶合金的低周疲劳寿命均得到提高,最大可提高108%;且寿命增益程度与试验温度成反比,这主要归因于高温环境下喷丸残余应力的松弛行为更显著。
表2 DD6单晶合金喷丸前后表面粗糙度
Tab.2 Surface roughness of DD6 single crystal superalloy before and after shot peening μm
图2 DD6单晶合金表层微观组织
表3 低周疲劳试验结果
Tab.3 Experiment result of low cycle fatigue
式中:LIP为疲劳寿命增益系数,为未强化DD6单晶合金低周疲劳寿命,sp为喷丸后DD6单晶合金低周疲劳寿命。
随后,利用扫描电子显微镜对喷丸强化后的DD6单晶合金试验件断口进行观察。如图3a所示,大部分裂纹萌生于试样的次表面,这是由于喷丸强化后残余应力层和硬化层的影响(一般为试样表面至内部几百微米的区域内),疲劳裂纹源由表面转移到次表层区域。文献[13]对DD5单晶合金喷丸强化的研究也印证了这一点。此外,部分疲劳裂纹萌生于试样表面较深弹坑的位置,如图3b所示。虽然喷丸强化可以将试件表面尖锐的加工刀痕冲击成开口大且圆滑的弹坑,从而降低应力集中程度,提高疲劳寿命[9],但喷丸后的试样表面较深的弹坑位置仍存在一定的应力集中,因此有少量的裂纹源产生于此。
图3 喷丸强化DD6单晶合金的低周疲劳裂纹萌生位置
2 低周疲劳寿命预测
2.1 喷丸强化有限元模拟
为了量化喷丸强化后的残余应力和表面粗糙度,利用Abaqus/Explicit对DD6单晶合金喷丸过程进行有限元仿真模拟。靶材模型为20 mm×20 mm×5 mm的长方体,被划分成为3个区域:过渡区域(Region 1)、影响区域(Region 2)和评估区域(Region 3),如图4所示。区域1采用梯形网格,同时在边界上设置一致的节点编号,以实现六面体网格划分;区域2和区域3网格大小加密,以确保表面完整性参数结果的准确性。弹丸与靶材之间的法向接触属性定义为硬接触,切向接触属性定义为摩擦因数=0.3的罚函数。弹丸被设置成刚体,采用陶瓷材料,密度为3 800 kg/m3,弹性模量为350 GPa。弹丸模型为半球形,同时将弹丸材料的密度提高2倍,从而减少模型总体网格数量,提高计算效率。弹丸数量根据真实喷丸工艺覆盖率确定,具体方法参考文献[19]。喷丸强化工艺三维有限元模型如图5所示。
不同于多晶材料,DD6单晶合金本构行为具有正交各向异性,因此喷丸强化有限元模拟需采用各向异性屈服准则[20]。采用工程上广泛应用的Hill各向异性屈服准则[21]描述单晶材料的各向异性屈服行为,其表达式为:
图4 靶材区域划分
图5 DD6单晶合金喷丸有限元模型(仅显示部分弹丸)
式中:、、、、、为与材料晶体取向相关的参数。单晶合金沿[001]、[011]和[111] 3种取向具有相同的屈服特性,由对称性可知===1、==,于是公式(2)变为:
参考文献[22]确定不同晶体取向的屈服应力求解参数。第一种方法利用[001]取向屈服应力[001]和[011]取向屈服应力[011],则表示为:
第二种方法用[001]和[111]方向的屈服应力确定参数,则:
经查阅材料手册[15]可知,DD6单晶合金常温下[001]取向屈服应力[001]为930 MPa,[010]取向屈服应力[010]为865 MPa,[111]取向屈服应力[111]为1 180 MPa。本文根据DD6单晶3种取向的屈服应力求解得到材料参数1和2,对其取平均值作为屈服准则中参数、、的输入,如表4所示。
表4 DD6单晶合金Hill各向异性屈服准则相关参数
Tab.4 Parameters of Hill anisotropic yield criterion for DD6 single crystal superalloy
DD6单晶合金喷丸后残余应力模拟结果如图6所示。喷丸强化产生的残余压应力位于受喷靶材的表面及亚表面,由于受喷表面不均匀的弹塑性变形,局部区域产生残余拉应力。残余应力层的定义为从试件表面到残余应力减小为0的区域,由沿试件深度方向的残余应力(如图6b所示)分布可知,残余应力层达130 μm,表层残余应力为–380.16 MPa,最大残余压应力位于深度41.9 μm处,达–780.46 MPa。
喷丸强化后的表面形貌如图7所示。弹丸撞击靶材表面会留下凹凸不平的弹坑,从而容易产生应力集中,加速疲劳裂纹萌生。目前,通常将其等效成表面半圆形缺口,进而确定缺口产生的局部应力集中系数t[23]:
参式中:Rm是表面峰谷值的平均值,Sm为凹凸的平均间隔。根据靶材表层Z向位移分布,得到Rm= 0.004 3 mm,Sm=0.046 9 mm,Kt=1.193。
图7 DD6单晶合金喷丸后表面形貌模拟结果
2.2 基于损伤演化的低周疲劳寿命预测模型
研究表明:镍基单晶高温合金循环相关损伤与晶体滑移密切相关[24],因此为描述疲劳寿命的晶体取向相关性,选择滑移面参量(如最大Schmid应力幅值等)表征镍基单晶高温合金循环相关损伤。在建立镍基单晶高温合金的本构模型和寿命预测模型时,通常考虑12个八面体主滑移系<110>{111}和6个六面体滑移系<110>{100}[25]。根据晶体塑性力学理论,当载荷沿[001]取向施加时,只有八面体滑移面被激活,且由于八面体次滑移系开动受到一些条件的限制,通常只考虑八面体主滑移系[26]。鉴于此,本文选取八面体滑移面最大Schmid应力幅值作为表征滑移面循环相关损伤的参量。此外,温度和当前损伤也是表征滑移面循环相关损伤的重要参量。此时,八面体滑移面上的循环相关损伤可以表示为:
式中:oct、oct、oct为八面体滑移面上温度相关的材料常数。
通常,随着损伤的不断累积,材料的有效承载面积不断减小,实际载荷不断增加;当累积的损伤达到临界值时,材料会发生断裂。本文假设使材料所承受的真实应力达到极限拉伸强度的损伤为临界损伤。此时,临界损伤cri与宏观应力的关系如下:
式中:b为极限拉伸强度。基于公式(10),临界损伤cri可以表示为:
以0和cri作为d的积分上下限对公式(9)进行积分,便可获得[001]取向镍基单晶高温合金低周疲劳寿命的表达式:
文献[15,17-18]中给出了[001]取向镍基单晶高温合金DD6在760 ℃和980 ℃下的应变控制低周疲劳试验寿命和循环应力响应。通过拟合应变控制低周疲劳试验寿命,可以确定760 ℃和980 ℃时描述应变控制下循环相关损伤的材料常数。DD6单晶合金[001]取向的疲劳损伤参数如表5所示,预测结果(图8)与试验数据相比,在2倍分散带内。
表5 不同温度下DD6单晶合金低周疲劳损伤参数
Tab.5 Low cycle fatigue damage parameters for DD6 single crystal superalloy under different temperatures
2.3 考虑喷丸强化的低周疲劳寿命预测
由1.3节可知,喷丸强化对DD6单晶合金疲劳寿命的影响机理主要体现在两方面:(1)产生残余压应力抵消拉伸正应力;(2)形成弹坑导致应力集中。因此基于2.2节建立的基于损伤演化的镍基单晶高温合金低周疲劳寿命预测模型,修正应力项并引入应力集中系数,建立考虑喷丸强化的镍基单晶高温合金寿命预测模型,可以进一步表示为:
图8 DD6单晶合金低周疲劳寿命预测结果
图9 本征应变法引入的残余应力场
图10 残余应力影响下的八面体Schmid应力幅值分布(760 ℃,Δε=1.2%)
图11 喷丸强化DD6单晶合金低周疲劳寿命预测结果
3 结论
1)开展了应变控制喷丸强化DD6单晶合金低周疲劳试验,不同载荷下DD6单晶合金的低周疲劳寿命均得到提高,最大可提高108%;喷丸对疲劳寿命的影响机理在于:靶材表层和次表层产生的残余应力可以阻碍裂纹在表层的萌生和扩展,提高疲劳寿命;弹丸冲击靶材产生的弹坑会导致一定程度的应力集中,降低疲劳寿命。
2)基于DD6单晶合金的喷丸工艺,建立了各向异性单晶材料喷丸有限元模型,对喷丸强化过程进行了数值模拟,可以较好地模拟残余应力分布和表面应力集中系数。
3)基于Lemaitre循环损伤演化模型,考虑残余应力和表面粗糙度的影响,建立了喷丸强化DD6单晶合金低周疲劳寿命模型,预测结果与试验数据相比在2倍分散带以内,说明模型具有较高的精度。
[1] 史振学, 胡颖涛, 刘世忠. 不同温度下镍基单晶高温合金的低周疲劳性能[J]. 机械工程材料, 2021, 45(3): 16-20, 28.
SHI Zhen-xue, HU Ying-tao, LIU Shi-zhong. Low Cycle Fatigue Properties of Nickel Base Single Crystal Superalloy at Different Temperatures[J]. Materials for Mechanical Engineering, 2021, 45(3): 16-20, 28.
[2] MISRA A K, GREENBAUER-SENG L A. Aerospace Propulsion and Power Materials and Structures Research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering, 2013, 26(2): 459-490.
[3] TOSHA K. History and Future of Shot Peening[J]. Bulletin of the Japan Institute of Metals, 2008, 47: 134-139.
[4] EHRL J, POLANETZKI H, HESSERT R, et al. Influence of Mechanical Surface Strengthening on Nickel-base Superalloy DA718[C]//Proceedings of the 11th International Conference on Shot Peening. 2011: 213-218.
[5] KHADHRAOUI M, CAO W, CASTEX L, et al. Experimental Investigations and Modelling of Relaxation Behaviour of Shot Peening Residual Stresses at High Temperature for Nickel Base Superalloys[J]. Materials Science and Technology, 1997, 13(4): 360-367.
[6] GIBSON G J, PERKINS K M, GRAY S, et al. Influence of Shot Peening on High-Temperature Corrosion and Corrosion-Fatigue of Nickel Based Superalloy 720Li[J]. Materials at High Temperatures, 2016, 33(3): 225-233.
[7] 高玉魁. 喷丸强化对DD6单晶高温合金高温旋转弯曲疲劳性能的影响[J]. 金属热处理, 2009, 34(8): 60-61.
GAO Yu-kui. Influence of Shot Peening on High Temperature Rotating Bending Fatigue Property of DD6 Single Crystal Superalloy[J]. Heat Treatment of Metals, 2009, 34(8): 60-61.
[8] 王欣, 尤宏德, 赵金乾, 等. 喷丸对DD6单晶合金高温疲劳性能的影响[J]. 中国表面工程, 2013, 26(3): 21-24.
WANG Xin, YOU Hong-de, ZHAO Jin-qian, et al. Influence of Shot-Peening on the High-Temperature Fatigue Property of DD6 Single Crystal Superalloy[J]. China Surface Engineering, 2013, 26(3): 21-24.
[9] 王欣, 许春玲, 刘晨光, 等. 喷丸对单晶合金中温疲劳性能的强化机制[J]. 航空制造技术, 2020, 63(12): 46-52.
WANG Xin, XU Chun-ling, LIU Chen-guang, et al. Strengthening Mechanism of Shot-Peening on Medium- Temperature Fatigue Property of Single-Crystal Superalloy[J]. Aeronautical Manufacturing Technology, 2020, 63(12): 46-52.
[10] WANG Xin, ZHANG Tao, HUANG Zhao-hui, et al. Effect of Shot Peening on the Surface Integrity and Notched Fatigue Properties of a Single-Crystal Superalloy at Elevated Temperature[J]. Rare Metal Materials and Engineering, 2018, 47(6): 1668-1676.
[11] 吴庆辉, 王欣, 方向, 等. 喷丸处理对DD6合金表面状态和中温疲劳性能的影响[J]. 热加工工艺, 2017, 46(12): 158-161.
WU Qing-hui, WANG Xin, FANG Xiang, et al. Influence of Shot Peening Treatment on Surface State and Middle-Temperature Fatigue Property of DD6 Alloy[J]. Hot Working Technology, 2017, 46(12): 158-161.
[12] BOGACHEV I, KNOWLES K M, GIBSON G J. Electron Backscattered Diffraction Analysis of Cold Work in a Shot Peened Single Crystal Nickel Superalloy[J]. Materialia, 2020, 14: 100860.
[13] 杨清, 何杉, 孟震威. 喷丸强化对DD5单晶材料疲劳性能的影响[J]. 金属加工(热加工), 2014(23): 89-91.
YANG Qing, HE Shan, MENG Zhen-wei. Effect of Shot Peening on Fatigue Properties of DD5 Single Crystal Materials[J]. MW Metal Forming, 2014(23): 89-91.
[14] 杨红超, 于洋, 刘德林, 等. 喷丸对DD6单晶合金表层状态及低周疲劳性能的影响[J]. 失效分析与预防, 2021, 16(3): 155-160, 172.
YANG Hong-chao, YU Yang, LIU De-lin, et al. Influence of Shot Peening on Surface State and Low-Cycle Fatigue Performance of DD6 Single Crystal Superalloy[J]. Failure Analysis and Prevention, 2021, 16(3): 155-160, 172.
[15] 中国金属学会高温材料分会. 中国高温合金手册(下卷)[M]. 北京: 中国标准出版社, 2012.
High Temperature Materials Branch of Chinese Society of Metals. China Superalloys Handbook[M]. Beijing: China Standard Press, 2012.
[16] ASTM-e466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials[s].
[17] SHI Duo-qi, HUANG Jia, YANG Xiao-guang, et al. Effects of Crystallographic Orientations and Dwell Types on Low Cycle Fatigue and Life Modeling of a SC Superalloy[J]. International Journal of Fatigue, 2013, 49: 31-39.
[18] ZHANG Zhi-hua, YU Hui-chen, DONG Cheng-li. LCF Behavior and Life Prediction Method of a Single Crystal Nickel-Based Superalloy at High Temperature[J]. Frontiers of Mechanical Engineering, 2015, 10(4): 418-423.
[19] HU Dian-yin, TIAN Teng-yue, WANG Xin, et al. Surface Hardening Analysis for Shot Peened GH4720Li Superalloy Using a DEM-FEM Coupling RV Simulation Method[J]. International Journal of Mechanical Sciences, 2021, 209: 106689.
[20] 须庆, 姜传海, 陈艳华. DD3镍基单晶高温合金喷丸强化后残余应力的有限元模拟[J]. 机械工程材料, 2012, 36(4): 80-83.
XU Qing, JIANG Chuan-hai, CHEN Yan-hua. Finite Element Simulation of Residual Stress for DD3 Nickel- Based Single Crystal High Temperature Alloy after Shot Peening Strengthening[J]. Materials for Mechanical Engineering, 2012, 36(4): 80-83.
[21] HILL R. The mathematical theory of plasticity[M]. Oxford: Clarendon Press, 1998
[22] 赵萍, 何清华, 李维, 等. DD3单晶的Hill屈服准则应用研究[J]. 航空材料学报, 2010, 30(3): 70-73.
ZHAO Ping, HE Qing-hua, LI Wei, et al. Study of Hill's Yield Criterion Application for DD3 Single Crystal[J]. Journal of Aeronautical Materials, 2010, 30(3): 70-73.
[23] XIANG Y, LIU Y. Mechanism Modelling of Shot Peening Effect on Fatigue Life Prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(2): 116-125.
[24] LEIDERMARK D, MOVERARE J, SIMONSSON K, et al. A Combined Critical Plane and Critical Distance Approach for Predicting Fatigue Crack Initiation in Notched Single-Crystal Superalloy Components[J]. International Journal of Fatigue, 2011, 33(10): 1351-1359.
[25] FINDLEY W N. A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending[J]. Journal of Engineering for Industry, 1959, 81(4): 301-305.
[26] LEVKOVITCH V, SIEVERT R, SVENDSEN B. Simulation of Deformation and Lifetime Behavior of a Fcc Single Crystal Superalloy at High Temperature under Low-Cycle Fatigue Loading[J]. International Journal of Fatigue, 2006, 28(12): 1791-1802.
[27] LEMAÎTRE J, CHABOCHE J L. Mechanics of solid materials[M]. Cambridge: Cambridge University Press, 1990
[28] KORSUNSKY A M, REGINO G M, NOWELL D. Variational Eigenstrain Analysis of Residual Stresses in a Welded Plate[J]. International Journal of Solids and Structures, 2007, 44(13): 4574-4591.
[29] CHAISE T, LI Jun, NÉLIAS D, et al. Modelling of Multiple Impacts for the Prediction of Distortions and Residual Stresses Induced by Ultrasonic Shot Peening (USP)[J]. Journal of Materials Processing Technology, 2012, 212(10): 2080-2090.
[30] MUSINSKI W D, MCDOWELL D L. On the Eigenstrain Application of Shot-Peened Residual Stresses within a Crystal Plasticity Framework: Application to Ni-Base Superalloy Specimens[J]. International Journal of Mechanical Sciences, 2015, 100: 195-208.
[31] 李影, 苏彬. 760 ℃下DD6单晶高温合金的循环形变[J]. 材料工程, 2002, 30(5): 7-10.
LI Ying, SU Bin. Cyclic Deformation of Single Crystal Nickel Base Superalloy DD6 at 760 ℃[J]. Journal of Materials Engineering, 2002, 30(5): 7-10.
[32] 李影, 吴学仁, 于慧臣, 等. 不同取向镍基单晶高温合金在980 ℃下的低周循环变形行为[J]. 机械工程材料, 2014, 38(2): 15-18, 23.
LI Ying, WU Xue-ren, YU Hui-chen, et al. Low Cyclic Deformation Behaviour of Single Crystal Nickel Base Superalloys with Different Orientations at 980 ℃[J]. Materials for Mechanical Engineering, 2014, 38(2): 15-18, 23.
[33] HUANG Y. A User-material Subroutine Incroporating Single Crystal Plasticity in the ABAQUS Finite Element Program[M]. Cambridge: Harvard Univ., 1991.
Low Cycle Fatigue Life Prediction of DD6 Single Crystal Superalloy by Shot Peening
1a,1a,1b,2,1a,1b,1c,2,1b,1c,2
(1. a. School of Energy and Power Engineering, b. Beijing Key Laboratory of Aero-Engine Structure and Strength, c. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China; 2. United Research Center of Mid-Small Aero-Engine, Beijing 100191, China)
In order to achieve accurate prediction of low cycle fatigue life of nickel-based single crystal superalloy DD6 after shot peening, low cycle fatigue experiments on DD6 round bar parts after shot peening were carried out, and the mechanism of the effect of shot peening on fatigue life of single crystal superalloy was analyzed. On this basis, a finite element model of the shot peening process for anisotropic materials was established to obtain the residual stress distribution and roughness due to shot peening. Based on the damage mechanics of continuous media, the low cycle fatigue life prediction model of shot peening nickel-based single crystal superalloy DD6 was established considering the influence of residual stress and roughness on the low cycle fatigue life, which was used to predict the low cycle fatigue experiment results. The surface roughness of the specimens increased after shot peening, and the average surface roughness after shot peening was 5.10 times of that before shot peening. The original matrix phase of DD6 single crystal alloy before shot peening was good, and the strengthened phase showed a good cubic structure; however, the boundary of the two phases gradually disappeared after shot peening due to the violent plastic deformation of the specimen surface. The low cycle fatigue life of DD6 single crystal alloy under different loads was improved after shot peening, and the maximum increase was 108%. The residual stress relaxation in the high-temperature environment caused the peening effect to be inversely proportional to the experiment temperature. Due to the effect of residual stress, most of the fatigue cracks initiated on the subsurface of the specimens, while a few initiated at the location of deeper craters on the surface. Considering that the single crystal alloys are anisotropic materials, Hill anisotropic yielding criterion was used to simulate the process of the single crystal superalloy shot peening. The finite element simulation of the shot peening process yielded residual stress distribution in a region 130 μm deep on the surface of the specimen. The surface residual stress was ‒380.16 MPa, and the maximum residual compressive stress was located at the depth of 41.9 μm, reaching ‒780.46 MPa. The stress concentration factor was calculated as 1.193 by equating the uneven craters to semicircular notches. The residual stress introduced by the eigenstrain method in the finite element model was generally the same as the simulation result. The residual stress mainly affected the stress conditions in the surface layer of the specimens, resulting in an about 10% decrease of the surface octahedral Schmid stress amplitude. The DD6 low-cycle fatigue experiment results were within twice of the predicted life. Conclusions indicate that the shot peening can effectively improve the low cycle fatigue life of DD6, and the mechanism of influence on the low cycle fatigue life is the introduction of residual stress and the change of roughness. The finite element model can accurately simulate the single crystal alloy shot peening process. The developed model for predicting the low-cycle fatigue life of shot peening nickel-based single crystal superalloy DD6 has good accuracy.
shot peening; single crystal superalloy; low cycle fatigue; life prediction; residual stress; stress distribution
TG668
A
1001-3660(2022)10-0001-09
10.16490/j.cnki.issn.1001-3660.2022.10.001
2022–07–12;
2022–09–21
2022-07-12;
2022-09-21
国家自然科学基金(51875020、52022007);国家科技重大专项(J2019–IV–0016–0084)
National Natural Science Foundation of China (51875020, 52022007); the National Science and Technology Major Special Project (J2019-IV-0016-0084)
李明睿(1999—),男,博士研究生,主要研究方向为镍基单晶高温合金强度性能。
LI Ming-rui (1999-), Male, Doctoral student, Research focus: strength properties of nickel-based single crystal superalloys.
胡殿印(1980—),女,博士,教授,主要研究方向为航空发动机结构强度与可靠性。
HU Dian-yin (1980-), Female, Ph. D., Professor, Research focus: structural strength and reliability of aero-engine.
李明睿, 王荣桥, 田腾跃, 等.喷丸强化DD6单晶合金低周疲劳寿命预测[J]. 表面技术, 2022, 51(10): 1-9.
LI Ming-rui, WANG Rong-qiao, TIAN Teng-yue, et al. Low Cycle Fatigue Life Prediction of DD6 Single Crystal Superalloy by Shot Peening[J]. Surface Technology, 2022, 51(10): 1-9.
责任编辑:万长清