基于WENO重构保号的四阶熵稳定格式
2022-06-06郑素佩赵青宇封建湖
郑素佩,赵青宇,封建湖
(长安大学理学院,陕西西安 710064)
基于WENO重构保号的四阶熵稳定格式
郑素佩,赵青宇*,封建湖
(长安大学理学院,陕西西安 710064)
为提高一维双曲守恒律方程数值求解格式的分辨率和精度,提出了一种基于加权本质非振荡(weighted essentially non-oscillatory,WENO)重构保号的四阶熵稳定格式。该格式主要包含高阶熵守恒通量和数值耗散项,通过在单元交界面处用拉格朗日多项式对熵变量进行有限差分WENO重构,证明了重构前后跳跃值满足保号性,论证了所构造格式的熵稳定性。在数值算例中,将空间半离散格式与四阶Runge-Kutta格式相结合,并将该格式与熵稳定格式进行了比较,结果表明,该格式具有四阶精度、较高的分辨率和鲁棒性,且不产生非物理振荡。
双曲守恒律方程;WENO重构;保号性;四阶;熵稳定
双曲守恒律方程的数值计算在空气动力学、物理学和海洋学等领域[1-3]有重要应用,可构造既能锐利地捕捉激波又可避免数值解在激波等间断区域出现伪振荡的高精度格式,一直广受关注。TADMOR等[4]定义了一类满足离散熵等式且具有二阶精度的熵守恒格式。该格式在光滑区域保持总熵不变,在间断区域需添加适当的数值黏性项,以避免出现伪振荡,即熵稳定格式。ISMAIL等[5]提出了一种既能捕捉激波又能满足熵不等式的熵稳定格式,但该格式仅具有一阶精度。LEFLOCH等[6]用二阶熵守恒通量通过线性组合的方式构造了高阶熵守恒格式。为得到高精度、高分辨率的熵稳定格式,需构造高阶的数值耗散项。FJORDHOLM等[7]提出了一种将高阶熵守恒通量与基于本质非振荡(essentially non-oscillatory,ENO)[8]重构且满足符号性质的耗散相结合的高阶熵稳定格式,然而ENO重构仅从众多模板中选取一个最优模板,浪费了其他模板的信息。加权本质非振荡(weighted essentially non-oscillatory,WENO)[9]重构解决了ENO重构存在的问题,广受学者关注。冯娟娟等[10]用WENO-Z+重构的熵稳定格式求解交通流模型。郑素佩等[11]提出,在单元交界面对守恒变量进行三阶WENO-Z 重构。这些重构均基于经典的WENO重构,而SHU[12]的有限差分WENO重构更为灵活。基于有限差分WENO重构,FJORDHOLM等[13]提出了一种三阶信号保持加权本质非振荡(sign preserving weighted essentially non-oscillatory,SP-WENO)重构方法,使权重满足保号性。BISWAS等[14]提出了基于三阶WENO和总变异递减(total variation diminishing,TVD)[15]重构的低耗散熵稳定格式。遗憾的是,这些格式的精度和分辨率均较低。
本文基于WENO重构的保号性,在单元交界面处对熵变量进行五阶重构,并结合高阶熵守恒格式,提出求解一维双曲守恒律方程的四阶熵稳定格式。数值结果表明,所构造格式的分辨率有一定提高,且无伪振荡。
1 数值通量
考虑一维双曲守恒律方程
1.1 熵守恒通量
则该格式熵守恒,且具有二阶精度,其数值熵通量为
LEFLOCH等[6]通过线性组合二阶熵守恒格式构造了任意偶数阶熵守恒格式,其中四阶和六阶熵守恒格式分别为
1.2 熵稳定通量
考虑熵守恒通量在光滑区域表现良好、在激波等间断区域存在非物理振荡现象,适当增加耗散项,以获得熵稳定的数值通量。
数值算例中的耗散算子详见文献[5,7]。
1.3 高阶熵稳定通量
则格式(6)熵稳定(详见文献[7])。
因此格式(6)熵稳定。对于标量守恒律方程,在单元交界面处需满足
对于守恒律方程组,在单元交界面处需满足
2 保号WENO重构的四阶熵稳定格式
基于上述数值通量知识,需寻找满足保号性质的重构,以得到高阶熵稳定通量。
2.1 WENO重构的保号性
在单元交界面处,对熵变量进行五阶有限差分WENO重构。考虑单元交界面左侧处的重构包含,,3个模板,用拉格朗日插值构造插值多项式,基于不同模板上插值多项式的凸组合所得的重构值为
则
2.2 四阶熵稳定格式
基于熵守恒通量和高阶熵稳定通量理论,对熵变量进行WENO重构,因重构前后跳跃值满足保号性,证明了所构造格式熵的稳定性,其数值通量为
3 数值算例
3.1 标量方程数值算例
算例1 线性对流方程
算例1的数值结果如表1所示。由表1可知,所构造格式在光滑区域具有四阶精度。事实上,耗散项的熵变量采用的是五阶WENO重构,表1中的结果由熵守恒项和时间方向的离散项取四阶精度得到。
表1 算例1的数值结果Table1 Numerical results of example 1
算例2 无黏Burgers方程
3.2 浅水波方程组数值算例
算例3 大型溃坝问题
图1 算例2的数值结果Fig. 1 Numerical results of example 2
图2 算例3的数值结果Fig.2 Numerical results of example 3
3.3 欧拉方程组数值算例
算例4 Sod激波管问题
图3 算例4的数值结果Fig.3 Numerical results of example 4
算例5 Lax激波管问题
图4 算例5的数值结果Fig. 4 Numerical results of example 5
算例6 Shu-Osher问题
图5 算例6的数值结果Fig. 5 Numerical results of example 6
算例7 低密度流问题
图6 算例7的数值结果Fig.6 Numerical results of example 7
4 结语
满足保号性的高阶重构是构造高阶熵稳定格式的一种可行选择。提出了一种求解双曲守恒律方程的四阶熵稳定格式,由拉格朗日插值构造的多项式在单元交界面处对熵变量进行有限差分WENO重构,并由重构前后的跳跃值满足保号性证明了所构造格式是严格熵稳定的。数值算例结果表明,所构造格式不仅精度有所提高,而且可锐利捕捉激波、接触间断和稀疏波等间断区域,并有效改善了抹平现象。
[1]张海军.求解浅水波方程的熵稳定格式研究[D].西安:长安大学,2018.
ZHANG H J. The Research of Entropy Stable Schemes for Shallow Water Equations[D]. Xiapos;an:Changapos;an University,2018.
[2]王令,郑素佩. 基于移动网格的熵稳定格式求解浅水波方程[J]. 水动力学研究与进展(A辑),2020,35(2):188-193. DOI:10.16076/j.cnki.cjhd.2020. 02.006
WANG L,ZHENG S P. Solving shallow water wave equation based on moving grid entropy stable scheme[J]. Chinese Journal of Hydrodynamics, 2020,35(2):189-193. DOI:10.16076/j.cnki.cjhd.2020.02.006
[3]贾豆,郑素佩.求解二维Euler方程的旋转通量混合格式[J].应用数学和力学,2021,42(2):170-179.DOI:10.21656/1000-0887.410196
JIA D, ZHENG S P. A hybrid schemes of rotational flux for solving 2D Euler equations [J]. Applied Mathematics and Mechanics, 2021,42(2):170-179. DOI:10.21656/1000-0887.410196
[4]TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987,49(179):91-103. DOI:10.2307/2008251
[5]ISMAIL F, ROE P L. Affordable,entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics,2009,228(15):5410-5436. DOI:10.1016/j.jcp. 2009.04.021
[6]LEFLOCH P G, MERCIER J M,ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis, 2002,40(5): 1968-1992. DOI:10.1137/s003614290240069x
[7]FJORDHOLM U S, MISHRA S,TADMOR E. Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012,50(2):544-573. DOI:10.1137/110836961
[8]HARTEN A, ENGQUIST B,OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes III[C]// Upwind and High-Resolution Schemes. Berlin / Heidelberg: Springer,1987: 218-290.
[9]LIU X D, OSHER S,CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1): 200-212. DOI:10.1006/jcph.1994.1187
[10]冯娟娟. 高分辨率数值格式在交通流方程的应用[D]. 西安:长安大学,2019.
FENG J J. High-Resolution Scheme in Application of Traffic Flow Equations[D]. Xiapos;an:Changapos;an University,2019.
[11]郑素佩,王苗苗,王令.基于WENO-Z重构的Osher-Solomon格式求解浅水波方程[J].水动力学研究与进展(A辑),2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
ZHENG S P,WANG M M,WANG L. Reconstructing Osher-Solomon scheme based on WENO-Z for shallow water equation[J]. Chinese Journal of Hydrodynamics,2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
[12]SHU C W. High order weighted essentially non-oscillatory schemes for convection dominated problems[J]. SIAM Review,2009, 51(1):82-126. DOI:10.1137/070679065
[13]FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing, 2016,68(1): 42-63.
[14]BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018,44(4): 1153-1181. DOI:10. 1007/s10444-017-9576-2
[15]HARTEN A. On a class of high resolution total-variation-stable finite-difference schemes[J]. SIAM Journal on Numerical Analysis, 1984,21(1): 1-23. DOI:10.2307/2157043
[16]LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 2005,7(1):198-232. DOI:10.1007/0-387-28148-7_16
[17]LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [C]//11th of SIAM Regional Conferences Lectures in Applied Mathematics. Philadelphia:Society for Industrial and Applied Mathematics,1973:1-48.
[18]DAFERMOS C M. Hyperbolic systems of conservation laws[C]// Systems of Nonlinear Partial Differential Equations. Berlin/Dordrecht:Springer, 1983: 25-70. DOI:10.1007/978-94-009-7189-9_2
[19]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996,126(1): 202-228. DOI:10.1006/jcph.1996.0130
[20]李彬彬. 基于移动网格的高分辨率算法[D].西安:长安大学,2019.
LI B B. High-Resolution Algorithms Based on Adaptive Moving Mesh[D]. Xiapos;an: Changapos;an University,2019.
The fourth order entropy stable scheme based on sign-preserving WENO reconstruction
ZHENG Supei, ZHAO Qingyu, FENG Jianhu
(School of Science,Changapos;an University,Xiapos;an710064,China)
In order to effectively improve the resolution and accuracy of the numerical scheme for solving one dimensional hyperbolic conservation laws, a fourth order entropy stable scheme based on sign-preserving WENO reconstruction is proposed. The scheme mainly contains high order entropy conservation flux and numerical dissipation term, where the dissipation operator is reconstructed by finite difference WENO using Lagrange polynomials on the entropy variable at the cell interface, which proves that the jump on the reconstructed values and the original values satisfy sign-preserving property at the discontinuous position, and the newly constructed scheme is entropy stable. Finally, in several numerical experiments, we combined the spatial semi-discrete scheme with the fourth-order Runge-Kutta method to advance in the time direction, and compared the constructed scheme with the entropy stable scheme, the results demonstrate that the scheme has fourth order accuracy, high resolution and the robust numerical performance, and there is no physical oscillation.
hyperbolic conservation laws; WENO reconstruction; sign-preserving; fourth order; entropy stable
O 241.82;O 354
A
1008⁃9497(2022)03⁃329⁃07
10.3785/j.issn.1008-9497.2022.03.010
2021⁃06⁃21.
国家自然科学基金资助项目(11971075);陕西省自然科学基金青年项目(2020JQ-338,2020JQ-342).
郑素佩(1978—),ORCID:https//orcid.org/0000-0003-2502-6998,女,博士,副教授,主要从事科学与工程中的高性能计算技术研究,E-mail:zsp2008@chd.edu.cn.
通信作者,ORCID:https//orcid.org/0000-0001-7574-6917,E-mail:1214742342@qq.com.