APP下载

慢生根瘤菌及其与花生共生机制研究进展

2022-05-16吴月隋新华戴良香郑永美张智猛田云云于天一孙学武孙棋棋马登超吴正锋

中国农业科学 2022年8期
关键词:根瘤菌侵染共生

吴月,隋新华,戴良香,郑永美,张智猛,田云云,于天一,孙学武,孙棋棋,马登超,吴正锋*

慢生根瘤菌及其与花生共生机制研究进展

吴月1,隋新华2,戴良香1,郑永美1,张智猛1,田云云1,于天一1,孙学武1,孙棋棋1,马登超3,吴正锋1*

1山东省花生研究所,山东青岛 266100;2中国农业大学生命科学学院,北京 100193;3济宁市农业科学研究院,山东济宁 272009

氮是植物生长发育所必需的大量元素之一,豆科植物通过与根瘤菌的共生固氮获得氮素。这种共生关系的建立包括结瘤和固氮两个过程,涉及复杂的互作调控机理,并受环境因素的显著影响。花生与慢生根瘤菌的共生对花生生产尤为重要,具有较多特异和未知的共生机制。本文综述了慢生根瘤菌及其与花生共生的相关内容,具体包括:(1)花生的慢生根瘤菌多样性和基因组功能;(2)花生与慢生根瘤菌的共生机制,包括慢生根瘤菌的裂隙侵染及与花生的共生信号交流,花生的结瘤固氮和根瘤数调控机制;(3)田间环境因素(土壤氮素、pH、温度、水分)对花生结瘤固氮及产量的影响。本文从慢生根瘤菌、慢生根瘤菌与花生的共生以及在花生田间的应用三方面指出目前研究中存在的问题主要为:针对花生的慢生根瘤菌基因组功能研究较少、慢生根瘤菌与花生互作调节机理细节未知、慢生根瘤菌菌剂田间应用利用率差等。基于此,未来研究重点应该集中在花生慢生根瘤菌基因组及基因功能分析;慢生根瘤菌与花生的信号交流、根瘤数调节和营养交换机制;与根瘤固氮规律相配合的化学氮肥合理施用技术、通过合成生物学手段获得适用于花生种植的新型根瘤菌剂等方面。本文为深入了解豆科植物与根瘤菌的共生机制、提高豆科作物结瘤固氮效率和产量、减少化学氮肥施用和改善农业生态环境等提供理论基础。

慢生根瘤菌;花生;共生固氮;结瘤固氮机制;多样性;环境因素

0 引言

大气中存在78%的游离氮气,但植物却只能吸收利用化合态氮。在这些化合态氮中,生物固定的氮占据主导地位,约为70%[1]。固氮生物主要是原核生物中细菌和古菌的某些属种,按照与植物的关系这些属种可以分为共生固氮、自生固氮、联合固氮和内生固氮等几种类型[2]。根瘤菌与豆科植物的共生固氮是能力最强的共生体系,为植物提供生长所需60%—65%氮素,在可持续农业生产和生态环境保护中意义重大[3-4]。固氮根瘤菌属于原核生物细菌域()、变形杆菌门()、阿拉法-变形杆菌纲(α-)和贝塔-变形杆菌纲(β-)、根瘤菌目()和伯克霍尔德氏菌目(),至2020年7月已有360多个种[5]。根瘤菌是一类广泛分布于土壤中的革兰氏阴性细菌,具有可运动、无芽孢、好氧等特性[6]。比较常见且占比例最大的根瘤菌主要属于根瘤菌属()、慢生根瘤菌属()、中慢生根瘤菌属()和中华根瘤菌属()等[4]。

花生(L.)是世界上种植最广的豆科作物之一[7]。能够与花生建立共生关系的根瘤菌主要分布在慢生根瘤菌属,研究证明花生-慢生根瘤菌共生体系的固氮量相当于纯氮100—152 kg·hm-2,可满足花生生长需要氮量的30%—80%,并提高后茬作物产量[8]。因此,慢生根瘤菌在减少化学氮肥的前提下,能够解决土壤生态问题,维持土壤环境可持续发展,在花生栽培上有着较高的应用潜力和价值。

1 花生的慢生根瘤菌

1.1 花生的慢生根瘤菌多样性

近几年,关于花生根瘤菌多样性的研究较多,发现这些根瘤菌主要属于慢生根瘤菌属()。国外对花生慢生根瘤菌多样性的研究主要集中在阿根廷和非洲等花生种植国家。阿根廷花生慢生根瘤菌的系统发育地位与.、相近[9]。摩洛哥花生慢生根瘤菌的系统发育地位与、、、相近[10]。同时也发现了少量新种慢生根瘤菌,例如和等[11-12]。我国花生根瘤菌也属于慢生根瘤菌属,优势种群为、和。山东省和河北省花生慢生根瘤菌优势种群为,河南省的优势种群为[6];江苏、广东和广西三省花生慢生根瘤菌优势种群为[13];四川省花生慢生根瘤菌在系统发育上与关系最近[14]。此外,在我国也发现了大量慢生根瘤菌新种,例如、、、和等,这说明我国花生的慢生根瘤菌具有较大遗传多样性,潜在慢生根瘤菌属的新种较多[15-18]。

1.2 花生的慢生根瘤菌基因组功能

目前,关于花生的慢生根瘤菌基因组功能研究较少。李永华[19]根据结瘤基因和固氮基因将花生的慢生根瘤菌分为I型和II型两种类型,共生表型检测结果显示II型慢生根瘤菌接种花生形成的根瘤数为I型根瘤菌接种处理的1.5—2倍。比较基因组学分析发现I型和II型慢生根瘤菌有338个共生相关基因与上述分型结果一致;所有II型慢生根瘤菌具有共生质粒;I型和II型慢生根瘤菌在影响表达的重要区域上游的UAS位点及启动子区域差异较大。推测这些基因组特征可能与两种类型慢生根瘤菌的根瘤数差异相关。此外,笔者通过遗传操作方法发现II型慢生根瘤菌CCBAU 53363T()多个染色体基因正调控花生结瘤,qRT-PCR分析结果表明CCBAU 53363T的这些染色体基因通过延长花生共生信号通路中AhSYMRK蛋白(symbiosis receptor- like kinase)表达的时间、提高花生耐受根瘤数自调控系统AON(autoregulation of nodulation)和乙烯调控系统的反馈调节而诱导花生大量结瘤[20]。

2 慢生根瘤菌与花生的共生机制

2.1 慢生根瘤菌对花生的侵染

植物根部在生长时会向土壤中释放氨基酸、类黄酮等有机分泌物,根瘤菌对这些分泌物做出反应并通过趋化作用运动到植物根系,在根瘤菌多糖(环葡聚糖,类似于凝胶和黏附素)与植物凝集素(根瘤菌多糖特异性受体)匹配性识别之后,植物凝集素帮助根瘤菌定殖在根表及根毛上,为侵染根系做准备[21-23]。对于慢生根瘤菌来说,钙结合黏附素细胞表面蛋白帮助慢生根瘤菌吸附在花生根表[24]。此外,菌体的生长状态也对附着效果存在较大影响,即处于生长对数期末、稳定期初的慢生根瘤菌具有最强的花生根表定殖能力[25]。

比较常见的根瘤菌对豆科植物的侵染方式为根毛侵染,根毛侵染是指根瘤菌经由豆科植物根毛进入根部并形成根瘤的过程。这种侵染模式主要发生在含羞草亚科和蝶形花亚科的植物上,如豌豆()、大豆()、截型苜蓿()和日本百脉根()等[25]。在侵染过程中,根瘤菌首先诱导植物根毛发生卷曲,并通过释放植物细胞壁降解酶侵入到根毛细胞中[26];随后,根瘤菌以侵染线(infection thread,IT)的形式经由根毛细胞和皮层细胞,进入根瘤原基细胞[27-29]。另一种侵染方式为裂隙侵染,裂隙侵染是指根瘤菌通过植物根部表皮裂开的伤口或侧根与主根之间的裂隙进入到植物根部并形成根瘤的过程。该侵染类型主要属于亚热带豆科植物,包括花生属()、田菁属()和合萌属()等。目前研究较多的是合萌共生体系,在该体系中光合慢生根瘤菌通过合萌腋生根毛与主根之间的裂隙进入根表皮细胞间隙并大量繁殖形成侵染袋,侵染袋中的光合慢生根瘤菌通过皮层细胞间隙进入位于皮层的根瘤原基细胞中[30]。慢生根瘤菌与花生的共生也属于裂隙侵染类型,但关于该共生体系的侵染路径研究较少,仅了解到慢生根瘤菌经由花生侧根与主根之间的裂隙进入到花生根部细胞间隙,并通过细胞间隙向根瘤原基运动[31]。

2.2 慢生根瘤菌与花生的信号交流

对于根毛侵染体系来说,豆科植物首先向土壤中释放类黄酮,类黄酮与根瘤菌的NodD蛋白识别并结合,诱导根瘤菌结瘤基因()表达合成结瘤因子(nod factors,NF)[32-33]。结瘤因子与植物根表的结瘤因子受体蛋白(nod factor receptor,NFR)正确识别后激活植物共生信号通路,在该信号通路中SymRK(leucine-rich repeat receptor kinase)信号转导蛋白首先被诱导表达,进而将信号传入根毛的细胞核中并经由Ca2+振荡激活Ca2+依赖蛋白激酶CCaMK(Calcium calmodulin-dependent protein kinase)[34]。CCaMK一方面通过调节与肌动蛋白重排相关的Nap1蛋白及转录调节因子NSP1、NSP2和NIN(nodule inception)的表达而调控侵染线在根毛中的形成及延伸,另一方面通过细胞分裂素等信号分子调节转录调节因子NSP1、NSP2和NIN的表达而调控根部皮层细胞分裂促进根瘤原基形成,为根瘤菌侵入根瘤原基细胞做准备[35]。此外,根瘤菌胞外多糖EPS(exopolysaccharides)作为侵染线基质的重要组成成分参与到了侵染线的延伸过程中,同时作为植物防御体系抑制剂提高了根瘤菌在侵染线和根瘤细胞中的存活率和共生效率[36-37]。

对于慢生根瘤菌与花生的裂隙侵染体系来说,研究发现结瘤因子缺陷型慢生根瘤菌sp.SEMIA 6144 V2突变体和野生型菌株sp.BTAI 1在与花生共生时分别表现出了不结瘤和结瘤的性质,说明花生的裂隙侵染过程是否需要结瘤因子还未完全确定[38-39];此外,也有研究发现结瘤因子受体蛋白AhLYR3和AhEPR3(EPS receptor 3)广泛存在于花生植株中并在共生时显著表达,推测该蛋白在慢生根瘤菌-花生共生时发挥着重要作用[40-41];对于花生共生信号通路来说,磷酸化的AhSYMRK蛋白能够帮助慢生根瘤菌侵染花生根部和根瘤原基细胞[42];AhCCaMK蛋白通过调控转录调节因子AhCYCLOPS的磷酸化而控制下游蛋白AhHK1(Histidine Kinase1)、AhNIN及AhENOD40表达,最终调节根瘤的形成和固氮以及类菌体的分布和分化[43-45];、、等基因也参与到了花生与慢生根瘤菌共生关系的建立中[46]。此外,有研究证明慢生根瘤菌EPS缺陷型突变体接种花生的根瘤数、地上干重、组织中氮含量及根瘤细胞中类菌体密度均显著低于野生型菌株处理,说明EPS也影响了慢生根瘤菌与花生的共生效率[47-48]。

2.3 花生根瘤的形成

对于根毛侵染体系来说,当侵染线延伸至根瘤原基处时会将根瘤菌释放入根瘤原基细胞中,随后,根瘤菌随着根瘤原基细胞的不断分裂而大量繁殖,最终充满整个根瘤细胞。在此过程中,根瘤菌脱去细胞壁并被源于植物的共生体膜包裹,分化为具有固氮能力的共生体[49]。对于裂隙侵染体系的花生-慢生根瘤菌共生来说,慢生根瘤菌经由花生细胞间隙运动到位于皮层的根瘤原基处,通过改变花生细胞壁结构进入到根瘤原基细胞中[31,50]。慢生根瘤菌原有的细胞壁被花生分泌的细胞壁降解酶水解,随着水解小孔的逐步变大,根瘤菌原生质体被源于花生的共生体膜包裹,最终膨胀、发育为球状成熟共生体。当所有根瘤菌发育为共生体后,根瘤完全成熟,固氮能力达到顶峰[50]。

根据形态结构可将成熟根瘤分为无限型根瘤(不定型根瘤)和有限型根瘤(定型根瘤)。无限型根瘤存在明显的结构分层,包括具有持续分裂分化能力的顶端分生区(I)、被根瘤菌侵染的侵染区(II)、同时含有未分化和分化类菌体的过渡区(Ⅱ—Ⅲ)、充满成熟类菌体且具有高效固氮能力的固氮区(Ⅲ)以及类菌体大量解体并丧失固氮能力的衰老区(Ⅳ)[51]。有限型根瘤为球形,无明显结构差异,主要由表皮层、分生组织、输导组织和含菌组织(中央固氮区,III)构成。其中,皮层起到储存养分、保护根瘤的作用;分生组织仅存在于根瘤形成早期,随后分化为其他组织;疏导组织负责在植物和根瘤间传输水分和养分;中央固氮区包括少量不含类菌体的根瘤细胞和大量充满类菌体的根瘤细胞[52-53]。花生根瘤为典型的有限型根瘤,直径1—5 mm,中央固氮区细胞较大、含有细胞核、充满膨胀的球状共生体[20,54-55]。此外,花生根瘤细胞中含有与类菌体膜紧密接触的脂质体,这些脂质体通过β-过氧化和乙醛酸降解途径为类菌体供给碳源[56-57]。

2.4 花生根瘤固氮机理

成熟根瘤的共生体中含有固氮酶,固氮酶能够在微氧环境中将N2转化为NH3[58-59]。固氮酶由钼铁蛋白和铁蛋白两部分构成,铁蛋白是由2个相同亚基构成的同源二聚体;钼铁蛋白由4个亚基构成,并含有2个钼原子和不同数量的Fe-S簇。在固氮过程中,铁氧还蛋白将电子传递给固氮酶的铁蛋白组分,铁蛋白在水解ATP的同时将固氮酶的钼铁蛋白还原,钼铁蛋白将电子传递至分子态氮并将其还原为NH3[60]。NH3与共生体膜内的H+结合形成NH4+,随后NH4+与植物细胞中的谷氨酸结合形成谷氨酰胺为植物提供氮源,或者谷氨酰胺将氨基传递给天冬氨酸以天冬酰胺的形式供给氮源[61]。根瘤菌的固氮基因(和)直接参与上述固氮过程,这些基因呈簇状排列,一般为,其中和参与合成钼铁固氮酶的Fe-S聚簇,基因调控固氮酶成熟,操纵子调节固氮基因的表达[62]。由于固氮酶固定1分子N2需要消耗16分子ATP,因此类菌体的固氮反应需要宿主植物持续提供碳源[63]。植物光合作用固定的碳以四碳二羧酸的形式提供给类菌体,如苹果酸在苹果酸酶和丙酮酸脱氢酶催化下生成乙酰辅酶A,用于类菌体三羧酸循环(tricarboxylic acid cycle,TCA)形成ATP[64]。此外,植物细胞也为类菌体提供大量的铁、硫、钼、磷、镁、锰、锌等多种矿质元素以及各种糖类、氨基酸和精胺等物质[65-68]。

目前,关于花生根瘤固氮机理的研究较少,研究发现花生根瘤鲜重、豆血红蛋白含量和固氮酶活性均与根瘤固氮积累量和供氮比例以及荚果产量正相关[69]。花生基因也具有影响根瘤固氮酶活性的能力[43]。此外,不同花生慢生根瘤菌对花生根瘤固氮酶活性及动态变化影响显著[20]。

2.5 花生对根瘤数的调控

虽然根瘤菌为豆科植物提供大量氮素,但由于根瘤固氮消耗过高的能源成本,因此植物进化出了多种机制严格控制根瘤数量。其中,最为重要的是植物根瘤数自调控系统AON,在AON调控系统中共生信号通路的下游蛋白NIN调节植物合成结瘤抑制蛋白CLE (CLAVATA3/endosperm-surrounding region-related),该蛋白将信号传递到植株地上部位并激活叶片中的NARK受体激酶(nodule autoregulation receptor kinase),NARK诱导KAPP蛋白(kinase-associated protein phosphatase)合成结瘤抑制因子SDI(shoot-derived inhibitor)或细胞分裂素等信号分子,这些信号分子再次将信号传递回根部并通过抑制NIN等共生信号通路中下游蛋白的表达而阻断结瘤[70-72]。第二种根瘤数调节系统是植物激素信号调节网络,在该调控网络中细胞分裂素及局部积累的生长素具有促进根瘤发育的能力;乙烯、茉莉酸、脱落酸和赤霉素抑制根毛侵染体系中侵染线的形成和根瘤发育[73]。此外,植物激素间也存在相互调节作用,例如过量分泌的细胞分裂素和生长素促进乙烯大量合成,进而通过乙烯信号调节通路激活植物免疫反应而反馈抑制根瘤形成和发育[74]。

对于花生根瘤数调控系统来说,在结瘤前期,AON调控系统中的AhCLE13、AhSUNN、AhKLAVIER蛋白表达量上调,说明AON系统在花生中发挥了调控作用[20, 41]。在植物激素信号网络中,细胞分裂素通过调节花生细胞分裂素受体AhHK1的表达参与根瘤原基形成[44];此外,与乙烯相关的乙烯响应因子AhERF(ethylene response factor)、乙烯信号调节因子AhEIN2(ethylene signaling protein)等蛋白在花生结瘤时大量表达,参与调控根瘤原基细胞分裂、分化及根瘤发育[20, 45]。

3 影响慢生根瘤菌与花生结瘤固氮的环境因素

3.1 氮

化学氮肥的施用对豆科作物产量的提升尤为重要,然而过量施氮却影响作物产量和品质的提高,引起土壤酸化板结和地下水污染[75],并抑制作物结瘤和根瘤固氮。研究表明,土壤中高浓度的氮(尤其是硝态氮)通过抑制根瘤菌侵染、根瘤原基形成和生长而降低植物结瘤数量,通过降低豆血红蛋白的合成而降低根瘤固氮酶活性并加速根瘤衰老和崩解[76-78]。进一步研究证明这种抑制过程涉及植物氮反馈调控系统,该系统能够保证植株在土壤氮素充足的情况下免于浪费能量供给根瘤菌进行结瘤和固氮。在氮反馈调控系统中,过量的氮素首先诱导植物根部大量表达CLE蛋白,该蛋白通过AON调控系统中的HAR1、NARK和SUNN蛋白促进细胞分裂素或生长素等信号激素的合成,最终反馈抑制根部NIN蛋白表达以及根瘤形成[77, 79-83]。

研究证明2.5 mmol/棵KNO3能够显著降低花生根瘤数量;5 mmol/棵KNO3几乎完全抑制了花生结瘤,仅有的几个根瘤缺少豆血红蛋白、无固氮能力[20]。这说明由硝酸盐诱导的氮反馈调节机制在花生-慢生根瘤菌共生体系中依旧发挥着降低根瘤数和根瘤固氮酶活性的作用,但具体调节机制还需进行深入研究。此外,也有研究发现,结荚期花生根瘤的固氮速率及根瘤供氮量达到最高,此时过高的氮肥供应会通过氮反馈调控系统抑制根瘤固氮,促进根瘤早衰[84-85]。因此,根据花生氮反馈调节机制和根瘤固氮动态,在花生的不同生育时期合理施用氮肥是一项符合花生生产实际的举措。

3.2 pH

土壤酸化是农业种植中面临的一个尤为严重的问题,而连作的豆科作物更能加速这种酸化进程,因此土壤pH对豆科作物与根瘤菌共生固氮的影响值得关注。研究表明,当pH低于4.5时,根瘤菌的生长和存活量相对较少[86-87];当pH为5.0时,根瘤菌与豆科植物的共生效率受到显著抑制[88];此外,酸化土壤通过降低植物类黄酮等物质诱导根瘤菌结瘤因子合成的效率而阻断二者共生关系建立[89]。耐酸根瘤菌是一类可以在酸化土壤中与花生正常结瘤和固氮的慢生根瘤菌,这类根瘤菌通过增强质子排斥及细胞质缓冲能力、合成酸休克蛋白、提高膜渗透能力、调控钙离子代谢及谷氨酰胺合成酶/谷氨酸合成酶途径等方式将细胞质的pH维持在中性水平(pH 7.2—7.5),进而维持根瘤菌正常定殖和共生能力[87, 90-96]。因此,耐酸慢生根瘤菌可以作为潜在根瘤菌剂菌种应用于酸化土壤的花生种植中,为提高酸化土壤中豆科作物固氮效率、减少氮肥施用、延缓土壤酸化提供可能。

3.3 温度

土壤温度对根瘤菌的存活、结瘤和固氮能力存在较大影响,大部分根瘤菌最适生长温度为28—31℃[87]。同时温度也影响了根瘤菌对植物根毛的侵染、类菌体分化、根瘤结构和功能[97-98]。花生-慢生根瘤菌的共生对根温较其他豆科植物更为敏感。研究发现,37℃时花生慢生根瘤菌sp.ATCC 10317、SEMIA 6144和TAL 1371生物量轻微下降,细胞内低分子量的低聚糖含量显著增加,中性葡聚糖的合成被完全抑制。40℃处理4 h时,根瘤菌细胞会合成两个分子质量分别为17 kD和18 kD的热休克蛋白[99]。对于花生来说,当根温为40℃时花生结瘤和固氮能力被完全抑制[100]。因此,施加根瘤菌剂时需要考虑田间温度,以保证根瘤菌在土壤中的存活率以及与花生的共生效率。

3.4 水分

干旱胁迫是限制作物生长发育和生产的重要环境因素之一,同时也显著降低豆科作物的结瘤和固氮效率[101]。研究证明干旱胁迫通过韧皮部水体积流量影响豆科作物体内的碳代谢、根瘤透氧性和氮反馈体系等3个方面,进而限制根瘤的固氮能力[102]。对于花生来说,干旱胁迫影响花生生长,降低植株地上干重、根瘤数和含氮量;诱导植株大量合成H2O2,损害脂质和蛋白质;抑制根瘤的发育程度和固氮能力[101, 103]。因此,在花生结瘤和固氮过程中应保证充足的水分供应,为花生结荚准备足够的营养物质。

4 存在问题及展望

慢生根瘤菌与花生共生机制的研究及田间生产存在如下问题:(1)花生慢生根瘤菌基因组遗传进化及功能方面,随着基因组测序技术及分析手段的发展,目前初步了解了花生慢生根瘤菌基因组功能及进化机制[19],但缺乏试验验证和系统的深入研究;(2)共生信号交流方面,部分研究证明花生与慢生根瘤菌的共生需要结瘤因子,但另一部分研究却表明不分泌结瘤因子的根瘤菌也能与花生结瘤共生[38-39],因此结瘤因子是否发挥功能还需进一步证明。此外,虽然在花生共生信号通路中发现了一些调控结瘤的蛋白,但这些蛋白具体调控机制依旧未知;(3)侵染路径方面,对于裂隙侵染来说,研究中关注更多的是光合慢生根瘤菌在合萌上的侵染路径,发现根瘤菌的荧光标记配合植物组织的激光共聚焦显微观察是最简便的检测方法[30]。但由于荧光基因及其他标记基因在慢生根瘤菌中遗传稳定性差,难以标记成功。因此,为了了解慢生根瘤菌在花生上的侵染路径,首先需要克服慢生根瘤菌遗传标记这一问题;(4)根瘤数量调节方面,几乎所有研究均认为只有豆科植物调控了根瘤数,笔者发现花生慢生根瘤菌具有影响花生根瘤数的能力[20],说明慢生根瘤菌-花生共生体系可能存在特殊的共生机制,但具体机制未知;(5)养分交流方面,根瘤菌与豆科植物养分交流的研究主要集中在根毛侵染体系上,完全忽略了裂隙侵染体系。而早期研究发现花生根瘤细胞中含有一种特异的参与碳源供应的脂质体[56],说明花生-慢生根瘤菌的共生可能存在某种较为特殊的碳-氮源交换路径,值得进行深入研究。(6)根瘤菌菌剂方面,市面上已经出现了一些用于花生栽培的慢生根瘤菌菌剂,但这些菌剂存在普适性低、花生品种匹配性差、结瘤固氮效率低等问题;(7)化学肥料施用方面,化学氮肥的大量施用,导致慢生根瘤菌与花生的共生固氮作用被显著抑制,造成了资源浪费和生态环境污染;(8)遗传育种方面,目前几乎所有育种研究均集中在花生的高产、高油、高油酸、抗病及抗逆等方面,完全忽略了花生的高效结瘤和固氮等特性以及慢生根瘤菌与花生品种的匹配性。

基于上述问题,未来的研究重点及方向应该集中在以下几个方面:(1)花生的慢生根瘤菌基因功能,找到适合编辑慢生根瘤菌基因组的遗传操作手段,检测这些基因与花生共生表型的关系,通过测定突变体的转录组来分析被突变基因的功能及可能存在的调控网络;(2)慢生根瘤菌对花生的侵染,筛选能够稳定标记慢生根瘤菌的质粒,结合激光共聚焦显微镜观察技术检测慢生根瘤菌在花生根部的侵染路径。此外,根据已知豆科植物共生信号通路蛋白的编码基因在花生基因组中筛选出相应的同源基因,通过基因编辑方法敲除花生植株中的这些基因并验证功能,找到共生过程所涉及的花生共生信号通路;(3)花生根瘤数调节,为了深入了解慢生根瘤菌调控花生根瘤数的机制,首先需要分析慢生根瘤菌结瘤和固氮基因与花生根瘤数的表型关系,随后通过转录组测定方法确定这些基因或蛋白与花生根瘤数调控蛋白的互作机制,找到慢生根瘤菌与花生根瘤数间的调节通路;(4)合成根际微生物菌剂代替单一根瘤菌菌剂,由于单一种属的根瘤菌在施入土壤后可能被土著微生物同化或抑制,造成菌剂的田间效果不佳。因此,通过合成微生物群落的方法,将根瘤菌及花生根际主要促生微生物按照一定比例混合制成菌剂,能够提高有益微生物在土壤中的存活率及根际定殖率,达到促进花生结瘤固氮和生长的目的;(5)了解田间花生根瘤的固氮动态,合理配施化学氮肥,在充分利用生物固氮的基础上减少化学氮肥施用量;(6)基于花生基因组学信息,利用遗传育种方法,对花生的结瘤相关基因进行遗传操作,提高主流花生品种的结瘤固氮能力。

5 结语

花生是重要的油料、蛋白质和经济来源。深入了解花生的慢生根瘤菌结瘤和固氮基因功能以及慢生根瘤菌和花生共生机制是改善二者间结瘤和固氮效率、提高花生产量和品质的关键步骤,关系到化学氮肥充分利用、农业生态可持续发展和食品安全,为诱导非豆科植物结瘤固氮提供可能。此外,由于慢生根瘤菌在进化上的特异性以及与花生在共生模式上的特殊性,通过探索二者间的共生机制可以扩展我们在豆科植物生物学和根际生物学领域的知识。

[1] 张秋磊, 林敏, 平淑珍.生物固氮及在可持续农业中的应用.生物技术通报, 2008, 2: 1-4.

ZHANG Q L, LIN M, PING S Z.Biological nitrogen fixation and its application in sustainable agriculture.Biotechnology Bulletin, 2008, 2: 1-4.(in Chinese)

[2] 陈文新, 汪恩涛, 陈文峰.根瘤菌-豆科植物共生多样性与地理环境的关系.中国农业科学, 2004, 37(1): 81-86.

CHEN W X, WANG E T, CHEN W F.The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments.Scientia Agricultura Sinica, 2004, 37(1): 81-86.(in Chinese)

[3] 常月立.中国南方地区花生、扁豆根瘤菌的多相分类[D].北京: 中国农业大学, 2010.

CHANG Y L.Polyphasic systematics of rhizobia isolated fromandgrown in southern China[D].Beijing: China Agricultural University, 2010.(in Chinese)

[4] 陈文新, 汪恩涛.中国根瘤菌.北京: 科学出版社, 2011.

CHEN W X, WANG E T.Rhizobia in China.Beijing: Science Press, 2011.(in Chinese)

[5] de Lajudie P, Mousavi S A, Young J P W.International committee on systematics of prokaryotes subcommittee on the taxonomy of rhizobia and agrobacteria minutes of the closed meeting by videoconference, 6 July 2020.International Journal of Systematic and Evolutionary Microbiology, 2021, 71: 4784.

[6] 张丹.中国北方花生主产区花生根瘤菌多样性及其与土壤生态因子之间关系的研究[D].北京: 中国农业大学, 2010.

ZHANG D.Diversity of rhizobia isolated from peanut nodules in main peanut producing region of northern China and relationship between the diversity and soil factors[D]. Beijing: China Agricultural University, 2010.(in Chinese)

[7] CHEN J Y, GU J, WANG E T, MA X X, KANG S T, HUANG L Z, CAO X P, LI L B, WU Y L.Wild peanutare nodulated by diverse and novelspecies in acid soils.Systematic and Applied Microbiology, 2014, 37: 525-532.

[8] 刘保平.根瘤菌菌剂研究[D].武汉: 华中农业大学, 2005.

LIU B P.Study on rhizobium inoculants[D].Wuhan: Huazhong Agricultural University, 2005.(in Chinese)

[9] BOGINO P, BANCHIO E, GIORDANO W.Molecular diversity of peanut-nodulating rhizobia in soils of Argentina.Journal of Basic Microbiology, 2010, 50: 274-279.

[10] El-AKHAL M R, RINCON A, El-MOURABIT N, PUEYO J J, BARRIJAL S.Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (L.) grown in Moroccan soils.Journal of Basic Microbiology, 2009, 49: 415-425.

[11] GRONEMEYER J L, CHIMWAMUROMBE P, REINHOLD-HUREKB.sp nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts.International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 3241-3247.

[12] GRONEMEYER J L, HUREK T, BUNGER W, REINHOLD-HUREK B.sp.nov., a nitrogen-fixing symbiont isolated from effective nodules ofand.International Journal of Systematic and Evolutionary Microbiology, 2016, 66: 62-69.

[13] 王蕊.中国南方花生根瘤菌多样性及其与土壤因子相关性研究[D].北京: 中国农业大学, 2013.

WANG R.Biodiversity of peanut rhizobia collected from southern China and its correlation with soil factors[D].Beijing: China Agricultural University, 2013.(in Chinese)

[14] 张小平.四川花生根瘤菌的遗传多样性和系统发育研究[D].武汉: 华中农业大学, 2001.

ZHANG X P.Diversity and phylogeny ofstrains isolated from the root nodules of peanut () in Sichuan[D].Wuhan: Huazhong Agricultural University.(in Chinese)

[15] Chang Y L, Wang J Y, Wang E T, Liu H C, Sui X H, Chen W X.sp.nov., isolated from effective nodules ofandgrown.International Journal of Systematic and Evolutionary Microbiology, 2011, 61: 2496-2502.

[16] WANG R, CHANG Y L, ZHRNG W T, ZHANG D, ZHANG X X, SUI X H, WANG E T, HU J Q, ZHANG L Y, CHEN W X.sp.nov., isolated from effective nodules ofgrown in China.Systematic and Applied Microbiology, 2013, 36: 101-105.

[17] LI Y H, WANG R, ZHANG X X, YOUNG J P W, WANG E T, SUI X H, CHEN W X.sp.nov.andsp.nov., isolated from effective nodules of peanut.International Journal of Systematic and Evolutionary Microbiology, 2015, 65: 4655-4661.

[18] LI Y H, WANG R, SUI X H, WANG E T, ZHAGN X X, TIAN C F, CHEN W F, CHEN W X.sp.nov.,sp.nov.andsp.nov., isolated from effective nodules of peanut in southeast China.Systematic and Applied Microbiology, 2019, 42: 126002.

[19] 李永华.比较基因组学阐释根瘤菌在花生和绿豆上的共生差异及慢生根瘤菌的进化[D].北京: 中国农业大学, 2019.

LI Y H.Comparative genomic analysis of peanut bradyrhizobia reveals the genetic differences underlying two symbiotic phenotypes in peanut and mung bean and the evolution ofspp[D].Beijing: China Agricultural University, 2019.(in Chinese)

[20] 吴月.不同花生慢生根瘤菌共生差异的表型和遗传比较[D].北京: 中国农业大学, 2020.

WU Y.Comparison of symbiotic difference in phenotype and genotype of peanut bradyrhizobia[D].Beijing: China Agricultural University, 2020.(in Chinese)

[21] D‘Haeze W, Gao M S, Rycke R D, Montagu M v, Engler G, Holsters M.Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively.Molecular Plant-Microbe Interactions, 1998, 11(10): 999-1008.

[22] HIRSCH A M.Role of lectins (and rhizobial exopolysaccharides) in legume nodulation.Current Opinion in Plant Biology, 1999, 2: 320-326.

[23] VAN RHIJN P, FUJISHIGE N A, LIM P O, Hirsch A M.Sugar- binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants bybiovar.Plant Physiology, 2001, 126: 133-144.

[24] DARDANELLI M, ANGELINI J, FABRA A.A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots.Canadian Journal of Microbiology, 2003, 49: 399-405.

[25] FABRA A, CASTRO S, TAURIAN T, ANGELINI J, IBANEZ F, DARDANELLI M, TONELLI M, BIANUCCI E, VALETTI L.Interaction amongL.(peanut) and beneficial soil microorganisms: How much is it known? Critical Reviews in Microbiology, 2010, 36(3): 179-194.

[26] BREWIN N J.Plant cell wall remodeling in the rhizobium-legume symbiosis.Critical Reviews in Plant Sciences, 2004, 23: 293-316.

[27] ROTH L E, STACEY G.Bacterium release into host-cells of nitrogen-fixing soybean nodules-the symbiosome membrane comes from 3 sources.European Journal of Cell Biology, 1989, 49(1): 13-23.

[28] Murray J D.Invasion by invitation: Rhizobial infection in legumes.Molecular Plant-Microbe Interactions, 2011, 24(6): 631-639.

[29] GAGE D J.Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes.Microbiology and Molecular Biology Reviews, 2004, 68(2): 280-300.

[30] BONALDI K, GARGANI D, PRIN Y, FARDOUX J, GULLY D, NOUWEN N, GOORMACHTIG S, GIRAUD E.Nodulation ofandby photosyntheticsp.strain ORS285: The Nod-dependent versus the Nod-independent symbiotic interaction.Molecular Plant-Microbe Interactions, 2011, 24(11): 1359-1371.

[31] Boogerd F C, van Rossum D.Nodulation of groundnut by: A simple infection process by crack infection.FEMS Microbiology Reviews, 1997, 21(1): 5-27.

[32] FOURNIER J, TIMMERS A C J, SIEBERER B J, JAUNEAU A, CHABAUD M, BARKER VAN RHIJN P, VANDERLEYDEN J.The-plant symbiosis.Microbiological Reviews, 1995, 59(1): 124-142.

[33] SPAINK H P.Root nodulation and infection factors produced by rhizobial bacteria.Annual Review of Microbiology, 2000, 54: 257-288.

[34] EHRHARDT D W, WAIS R, LONG S R.Calcium spiking in plant root hairs responding to rhizobium nodulation signals.Cell, 1996, 85: 673-681.

[35] MADSEN L H, TIRICHINE L, JURKIEWICZ A, SULLIVAN J T, HECKMANN A B, BEK A S, RONSON C W, JAMES E K, STOUGAARD J.The molecular network governing nodule organogenesis and infection in the model legume.Nature Communications, 2010, 1: 1-10.

[36] STACEY G, SO J S, ROTH L E, LAKSHMI B S K, CARLSON R W.A lipopolysaccharide mutant ofthat uncouples plant from bacterial differentiation.Molecular Plant-Microbe Interactions, 1991, 4(4): 332-340.

[37] LEIGH J A, COPLIN D L.Exopolysaccharides in plant-bacteria interactions.Annual Review Microbiology, 1992, 46: 307-346.

[38] IBANEZ F, FABRA A.Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume.Plant Biology, 2011: 13: 794-800.

[39] GUHA S, SARKAR M, GANGULY P, UDDIN M R, MANDAL S, DASGUPTA M.Segregation of nod-containing and nod-deficient bradyrhizobia as endosymbionts ofand as endophytes ofin intercropped fields of Bengal Basin, India.Environmental Microbiology, 2016, 18(8): 2575-2590.

[40] IBANEZ F, ANGELINI J, FIGUEREDO M S, MUNOZ V, TONELLI M L, FABRA A.Sequence and expression analysis of putative(peanut) Nod factor perception proteins.Journal of Plant Research, 2015, 128: 709-718.

[41] Karmakar K, Kundu A, Rizvi A Z, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M.Transcriptomic analysis with the progress of symbiosis in ‘Crack-Entry’ legumehighlights its contrast with ‘Infection Thread’ adapted legumes.Molecular Plant-Microbe Interactions,2019, 32(3): 271-285.

[42] SAHA S, PAUL A, HERRING L, DUTTA A, BHATTACHARYA A, SAMADDAR S, GOSHE M B, DASGUPTA M.Gatekeeper tyrosine phosphorylation of SYMRK is essential for synchronizing the epidermal and cortical responses in root nodule symbiosis.Plant Physiology, 2016, 171: 71-81.

[43] Sinharoy S, Dasgupta M.RNA interference highlights the role of CCaMK in dissemination of endosymbionts in the aeschynomeneae legume.Molecular Plant-Microbe Interactions, 2009, 22(11): 1466-1475.

[44] Kundu A, DasGupta M.Silencing of putative cytokinin receptor histidine kinase1 inhibits both inception and differentiation of root nodules in.Molecular Plant-Microbe Interactions, 2018, 31(2): 187-199.

[45] SHARMA V, BHATTACHARYYA S, KUMAR R, KUMAR A, IBANEZ F, WANG J, GUO B, SUDINI H K, GOPALAKRISHNAN S, DASGUPTA M, VARSHNEY R K, PANDEY M K.Molecular basis of root nodule symbiosis betweenand 'crack-entry' legume Groundnut (L.).Plants, 2020, 9: 276.

[46] Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J.Transcriptome profiles reveal gene regulation of peanut (L.) nodulation.Scientific Reports, 2017, 7: 40066.

[47] MORGANTE C, ANGELINI J, CASTRO S, FABRA A.Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut.Soil Biology and Biochemistry, 2005, 37: 1436-1444.

[48] MORGANTE C, CASTRO S, FABRA A.Role of rhizobial EPS in the evasion of peanut defense response during the crack-entry infection process.Soil Biology and Biochemistry, 2007, 39: 1222-1225.

[49] Jones, K M, Kobayashi H, Davies B W, Taga M E, Walker G C.How rhizobial symbionts invade plants: The-model.Nature Reviews, 2007, 5: 619-633.

[50] Bal A K, Sen D, Weaver R W.Cell wall (outer membrane) of bacteroids in nitrogen-fixing peanut nodules.Current Microbiology, 1985, 12: 353-356.

[51] Wang Q, Liu J, Zhu H.Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions.Frontiers in Plant Science, 2018, 9: 313.

[52] SEN D, WEAVER R W, BAL A K.Structure and organization of effective peanut and cowpea root nodules induced by rhizobial strain 32H1.Journal of Experimental Botany, 1986, 37(176): 356-363.

[53] Fernandez-Luqueno F, Dendooven L, Munive A, Corlay-Chee L, Serrano-Covarrubias L M, Espinosa- Victoria D.Micro-morphology of common bean (L.) nodules undergoing senescence.Acta Physiologiae Plantarum, 2008, 30: 545-552.

[54] CORBY H D L.Types of rhizobial nodules and their distribution among leguminosae.Kirkia, 1988, 13(1): 53-124.

[55] Fabre S, Gully D, Poitout A, Patrel D, Arrighi J F, Giraud E, Czernic P, Cartieaux F.Nod factor-independent nodulation inrequired the common plant- microbe symbiotic toolkit.Plant Physiology, 2015, 169: 2654-2664.

[56] BAL A K, HAMEED S, JAYARAM S.Ultrastructural characteristics of the host-symbiont interface in nitrogen-fixing peanut nodules.Protoplasma, 1989, 150: 19-26.

[57] SIDDIQUE A M, BAL A K.Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies.Plant Physiology, 1991, 95: 896-899.

[58] Hunt S, Layzell D B.Gas exchange of legume nodules and the regulation of nitrogenase activity.Annual Review of Plant Physiology, 1993, 44: 483-511.

[59] Fischer H M.Genetic regulation of nitrogen fixation in rhizobia.Microbiology Review, 1994, 58(3): 352-386.

[60] 武维华.植物生理学.第二版.北京: 科学出版社, 2008: 121-122.

WU W H.Plant Physiology.2nd edition.Beijing: Science Press, 2008: 121-122.(in Chinese)

[61] Udvardi M, Poole P S.Transport and metabolism in legume- rhizobia symbioses.Annual Review of Plant Biology, 2013, 64: 781-805.

[62] Rubio L M, Ludden P W.Biosynthesis of the iron-molybdenum cofactor of nitrogenase.Annual Review of Microbiology, 2008, 62: 93-111.

[63] Hoffman B M, Lukoyanov D, Yang Z, Dean D R, Seefeldt L C.Mechanism of nitrogen fixation by nitrogenase: The next stage.Chemical Reviews, 2014, 114: 4041-4062.

[64] Poole P, Allaway D.Carbon and nitrogen metabolism in.Advances in Microbial Physiology, 2000, 43: 117-163.

[65] MAUNOURY N, REDONDO-NIETO M, BOURCY M, DE VELDE W V, ALUNNI B, LAPORTE P, DURAND P, AGIER N, MARISA M, VAUBERT D, DELACROIX H, DUC G, RATET P, AGGERBECK L, KONDOROSI E, MERGAERT P.Differentiation of symbiotic cells and endosymbionts innodulation are coupled to two transcriptome-switches.PLoS ONE, 2010, 5(3): e9519.

[66] Li Y, tian c f, chen w f, wang L, sui x h, chen w x.High-resolution transcriptomic analyses ofsp.NGR234 bacteroids in determinate nodules ofand indeterminate nodules of.PLoS ONE, 2013, 8(8): e70531.

[67] Jiao J, Wu L J, Zhang B, Hu Y, Li Y, Zhang X X, Guo H J, Liu L X, Chen W X, Zhang Z, Tian C FMucR is required for transcriptional activation of conserved ion transporters to support nitrogen fixation ofin soybean nodules.Molecular Plant-Microbe Interactions, 2016, 29(5): 352-361.

[68] Hood G, Ramachandran V, East A K, Downie J A, Poole P S.Manganese transport is essential for N2‐fixation bybacteroids from galegoid but not phaseoloid nodules.Environmental Microbiology, 2017, 19: 2715-2726.

[69] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌.不同花生品种根瘤固氮特点及其与产量的关系.应用生态学报, 2019, 30(3): 961-968.

ZHENG Y M, DU L T, WANG C X, WU Z F, SUN X W, YU T Y, SHEN P, WAGN C B.Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield.Chinese Journal of Applied Ecology, 2019, 30(3): 961-968.(in Chinese)

[70] Kosslak R M, Bohlool B B.Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side.Plant Physiology, 1984, 75: 125-130.

[71] Reid D E, Ferguson B J, Gresshoff P M.Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation.Molecular Plant-Microbe Interactions, 2011, 24(5): 606-618.

[72] Ferguson B J, Mens C, Hastwell A H, Zhang M B, Su H, Jones C H, Chu X T, Gresshoff P M.Legume nodulation: The host controls the party.Plant Cell and Environment, 2019, 42: 41-51.

[73] Liu H, Zhang C, Yang J, Yu N, Wang E.Hormone modulation of legume-rhizobial symbiosis.Journal of Integrative Plant Biology, 2018, 60(8): 632-648.

[74] Guinel F C.Ethylene, a hormone at the center-stage of nodulation.Frontiers in Plant Science, 2015, 6: 1121.

[75] 崔贤, 王洪丹, 邱洪湘, 张国英, 谢金玉, 魏梅花.花生配方施肥技术肥料效应试验研究.花生学报, 2008, 37(3): 33-36.

CUI X, WANG H D, QIU H X, ZHANG G Y, XIE J Y, WEI M H.Effects of compounding application of fertilizer on peanut.Journal of Peanut Science, 2008, 37(3): 33-36.(in Chinese)

[76] OHYAMA T, FUJIKAKE H, YASHIMA H, TANABATA S, ISHIKAWA S, SATO T, NISHIWAKI T, OHTAKE N, SUEYOSHI K, ISHII S.Effect of nitrate on nodulation and nitrogen fixation of soybean//EL-SHEMY H A.In Soybean Physiology and Biochemistry.Croatia, Rijeka: InTech, 2011: 333-364.

[77] Nishida H, Suzaki T.Nitrate-mediated control of root nodule symbiosis.Current Opinion in Plant Biology, 2018, 44: 129-136.

[78] Du M, Gao Z, Li X, Liao H.Excess nitrate induces nodule greening and reduces transcript and protein expression levels of soybean leghaemoglobins.Annals of Botany, 2020, 126: 61-72.

[79] Carroll B J, McNeil D L, Gresshoff P M.A supernodulation and nitrate-tolerant symbiotic () soybean mutant.Plant Physiology, 1985, 78: 34-40.

[80] Nishimura R, Hayashi M, Wu G, Kouchi H, Imaizumi- Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, HARADA K, KAWAGUCHI M.HAR1 mediates systemic regulation of symbiotic organ development.Nature, 2002, 420: 426-429.

[81] Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe- Ormaetxe I, Carroll, B J, Gresshoff P M.Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase.Science, 2003, 299: 109-112.

[82] Jin J, Watt M, Mathesius U.The autoregulation genemediates changes in root organ formation in response to nitrogen through alteration of shoot-to-root auxin transport.Plant Physiology, 2012, 159: 489-500.

[83] Okamoto S, Kawaguchi M.Shoot HAR1 mediates nitrate inhibition of nodulation in.Plant Signaling and Behavior, 2015, 10: 5.

[84] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一.花生不同氮源供氮特性及氮肥利用率研究.中国油料作物学报, 2016, 38(2): 207-213.

WU Z F, CHEN D X, ZHENG Y M, WANG C B, SUN X W, LI X D, WANG X X, SHI C R, FENG H, YU T Y.Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut.Chinese Journal of Oil Crop Sciences, 2016, 38(2): 207-213.(in Chinese)

[85] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍.氮肥对花生根系生长和结瘤能力的调控效应.核农学报, 2017, 31(12): 2418-2425.

ZHENG Y M, WANG C X, LIU Q M, WU Z F, WANG C B, SUN X S, ZHENG Y P.Regulatory effects of nitrogen fertilizer on peanut root growth and nodulation.Journal of Nuclear Agricultural Sciences, 2017, 31(12): 2418-2425.(in Chinese)

[86] Vargas A A T, Graham P H.cultivar andstrain variation in acid-pH tolerance and nodulation under acid conditions.Field Crops Research, 1988, 19(2): 91-101.

[87] Graham P H.Stress tolerance inand, and nodulation under adverse soil conditions.Canadian Journal of Microbiology, 1992, 38: 475-484.

[88] Macció D, Fabra A, Castro S.Acidity and calcium interaction affect the growth ofsp.and the attachment to peanut roots.Soil Biology and Biochemistry, 2002, 34: 201-208.

[89] Angelini J, Castro S, Fabra A.Alterations in root colonization andgene induction in the peanut-rhizobia interaction under acidic conditions.Plant Physiology and Biochemistry, 2003, 41: 289-294.

[90] Krulwich T A, Agus R, Schneir M, Guffanti A A.Buffering capacity of bacilli that grow at different pH ranges.Journal of Bacteriology, 1985, 162(2): 768-772.

[91] Bhagwat A A, Apte S K.Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen- fixing cyanobacteriumsp.Strain L-31.Journal of Bacteriology, 1989, 171(9): 5187-5189.

[92] Graham P H.Stress tolerance inand, and nodulation under adverse soil conditions.Canadian Journal of Microbiology, 1992, 38: 475-484.

[93] Howieson J G, Robson A D, Abbott L K.Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive.Australian Journal of Agricultural Research, 1992, 43(3): 765-772.

[94] Chen H, Richardson A E, Rolfe B G.Studies of the physiological and genetic basis of acid tolerance inbiovar.Applied and Environmental Microbiology, 1993, 59: 1798-1804.

[95] Angelini J, Taurian T, Morgante C, Ibanez F, Castro S, Fabra A.Peanut nodulation kinetics in response to low pH.Plant Physiology and Biochemistry, 2005, 43: 754-759.

[96] Natera V, Sobrevals L, Fabra A, Castro S.Glutamate is involved in acid stress response insp.SEMIA 6144 (L.) microsymbiont.Current Microbiology, 2006, 53: 479-482.

[97] Roughley R J.The influence of root temperature,strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of.Annals of Botany, 1970, 34: 631-646.

[98] Roughley R J, Dart P J.Root temperature and root–hair infection ofL.cv.Cranmore.Plant Soil, 1970, 32: 518-520.

[99] Dardanelli M S, Woelke M R, González P S, Bueno M A, Ghittoni N E.The effects of nonionic hyperosmolarity and of high temperature on cell-associated low molecular weight saccharides from two rhizobia strains.Symbiosis, 1997, 23(1): 73-84.

[100] Michiels J, Verreth C, Vanderleyden J.Effects of temperature stress on bean-nodulatingstrains.Applied and Environmental Microbiology, 1994, 60(4): 1206-1212.

[101] PIMRATCH S, JOGLOY S, VORASOOT N, TOOMSAN B, PATANOTHAI A, HOLBROOK C C.Relationship between biomass production and nitrogen fixation under drought-stress conditions in peanut genotypes with different levels of drought resistance.Journal of Agronomy and Crop Science, 2008, 194: 15-25.

[102] SERRAJ R, SINCLAIR T R, PURCELL L C.Symbiotic N-2 fixation response to drought.Journal of Experimental Botany, 1999, 50(331): 143-155.

[103] FURLAN A, LLANES A, LUNA V, CASTRO S.Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-sp..International Scholarly Research Network ISRN Agronomy, 2012, 2012: 1-8.

Research advances of bradyrhizobia and its symbiotic mechanisms with peanut

WU Yue1, SUI Xinhua2, DAI Liangxiang1, ZHENG Yongmei1, ZHANG Zhimeng1, TIAN Yunyun1, YU Tianyi1, SUN Xuewu1, SUN Qiqi1, MA Dengchao3, WU Zhengfeng1*

1Shandong Peanut Research Institute, Qingdao 266100, Shandong;2College of Biological Sciences, China Agricultural University, Beijing 100193;3Jining Academy of Agricultural Sciences, Jining 272009, Shandong

Nitrogen is one of the essential elements for plant growth, which is obtained by legumes through symbiotic nitrogen fixation with rhizobia.The establishment of symbiotic relationship includes nodulation and nitrogen fixation, involving complex regulatory mechanisms, which is also significantly affected by environmental factors.Symbiosis between peanut and bradyrhizobia is essential for peanut growth and production, but contains many specific and unknown symbiotic mechanisms.In this review, symbiosis between peanut bradyrhizobia and peanut was reviewed, including: (1) Diversity and genomic functions of peanut bradyrhizobia; (2) Symbiotic mechanisms between peanut and bradyrhizobia: rhizobial crack infection and symbiotic signal exchange with peanut, peanut nodulation, nitrogen fixation, and nodule number regulation mechanisms; (3) Effects of environmental factors (soil nitrogen, pH, temperature and water content) on peanut nodulation, nitrogen fixation and yield.This review pointed out current problems in peanut bradyrhizobia, symbiosis between peanut and bradyrhizobia, and peanut field application, including few studies on genome functions of peanut bradyrhizobia, unknown interaction mechanisms between bradyrhizobia and peanut in details, as well as, poor utilization rate of peanut bradyrhizobia in the field, etc.Based on this analysis, the future researches should focus on genome omics analysis and gene functional analysis of peanut bradyrhizobia; signal communication pathways, nodule number regulation mechanisms, nutrient exchange systems between bradyrhizobia and peanut; rational application systems of nitrogen fertilizer that match with nodule nitrogen fixation rules, and obtain new peanut bradyrhizobia agents for peanut planting through synthetic biology.This article provided the theoretical basis for further understanding the symbiotic mechanisms of legumes and rhizobia, improving nodulation and nitrogen fixation efficiency of legume crops, reducing chemical nitrogen application, and improving agricultural ecological environment.

bradyrhizobia; peanut; symbiotic nitrogen fixation; mechanism of nodulation and nitrogen fixation; diversity; environmental factor

2021-07-14;

2021-10-09

国家重点研发计划(2018YFD1000906)、山东省农业科学院农业科技创新工程(CXGC2021B33)、山东省农业科学院农业科技创新工程(CXGC2021A05)、现代农业产业技术体系建设专项(CARS-13)、山东省重大科技创新工程(2019JZZY010702)、山东省花生产业技术体系济宁综合试验站(SDAIT-04-12)

吴月,E-mail:wuyuesw@163.com。通信作者吴正锋,E-mail:wzf326@126.com

(责任编辑 杨鑫浩)

猜你喜欢

根瘤菌侵染共生
川西高海拔地区饲用黄芪根瘤菌的遗传多样性
根瘤菌接种方式对复播大豆生长及结瘤的影响
揭示水霉菌繁殖和侵染过程
枯萎镰刀病菌侵染西瓜幼苗的过程特征
优生共生圈培养模式探索
优生共生圈培养模式探索
在体验中走向共生
日照大豆、菜豆根瘤菌的16SrDNA多样性分析
引种滨梅菌根侵染特性研究
不同丛枝菌根真菌对小麦幼苗侵染及生物产量的影响