APP下载

不同粒径悬移质泥沙对邻苯二甲酸二正丁酯的吸附特性

2021-09-06冉艳何强袁若愚代国义李宏

土木与环境工程学报 2021年5期
关键词:孔容砂粒三峡库区

冉艳,何强,袁若愚,代国义,李宏

(重庆大学 三峡库区生态环境教育部重点实验室,重庆 400045)

邻苯二甲酸酯(Phthalates esters, PAEs)是一类由邻苯二甲酸酐与相应醇类在酸催化剂作用下通过酯化反应生成的有机化合物[1],其主要功能是提高各类塑料制品的延展度和柔韧度。由于PAEs仅通过氢键和范德华力结合在塑料分子上,呈游离态,不可避免地从塑料制品迁移到环境中[2]。PAEs作为一类典型的环境激素类污染物,可通过食物链在不同营养级传递并呈现出生物富集的效应[3],且大量研究[3-6]表明,PAEs对水生生物、陆生生物及人类具有肝肾毒性、生殖毒性和“三致”毒性。随着PAEs的广泛应用,中国诸多地区的土壤、水体、沉积物、大气及大气悬浮颗粒等都受到不同程度的污染[7-10],其中Wang等[11]在长江干流武汉段监测发现5种主要PAEs污染物的总浓度为0.034~91.22 μg/L,主要污染物邻苯二甲酸二异辛酯(Di(2-ethylhexyl)phthalate, DEHP)和邻苯二甲酸二正丁酯(Dibutyl phthalate, DBP)的浓度分别高达54.73、35.65 μg/L,远高于中国《地表水环境质量标准》(GB 3838—2002)对地表水中DEHP(≤8.00 μg/L)和DBP(≤3.00 μg/L)浓度的限制要求。

与此同时,在三峡库区水体、沉积物和消落带土壤等介质中都检出了不同水平的PAEs。有研究[12-14]表明,三峡库区的PAEs污染物主要为DEHP和DBP为主。杨婷等[14]通过结合PAEs的日均摄入量,指出在三峡库区消落带区域应重点预防DBP带来的潜在健康风险。PAEs的理化性质会影响其在环境中的迁移转化,随着支链长度的增加,其疏水性、固水分配系数会随之增加,使其水溶性更低,更易吸附在固体介质上[3],从而对水生生物产生不同程度的影响。Chen等[15]通过72 h斑马鱼胚胎毒性试验,发现DBP的LC50为0.63 mg/L,然而DEHP在最高可溶性浓度下,暴露胚胎的死亡率也不会超过50%。

悬移质泥沙(Suspended particulate matter,SPM)颗粒小、相对比表面积大、孔隙度高,能吸附较多的污染物。Chen等[16]监测发现,江苏镇江的三大城市河流(运粮河、古运河和京杭大运河)的SPM中PAEs含量有明显的季节变化规律,且SPM中PAEs含量都普遍高于沉积物中PAEs含量;此外,由于SPM的理化性质使得其易受水动力条件的影响,从而对水质安全产生“三个维度”的影响[17-19]:首先,随着水体的流动,吸附了大量污染物的SPM会被运输到河流下游,从而对下游的水质安全产生潜在的威胁;其次,在水动力较小时SPM会沉降到河床表面,一旦水动力条件改变或受到底栖动物扰动,吸附了大量污染物的SPM会再次悬浮于河流水体中,产生“二次污染”;最后,SPM不仅能吸附大量污染物,而且在外界环境变化时,也会向环境中释放出一定量的污染物,实现从污染物的“汇”到“源”的转变,且总是处于动态变化中。

目前的研究主要集中在土壤、沉积物、生物炭和腐殖质及其各类单体等对PAEs的吸附作用上,关于SPM对PAEs吸附特性研究较少,且河流水体中的SPM具有较大的异质性,不同粒级SPM间的有机质组成、颗粒物矿物组成和其他理化性质差别均很大[20]。因此,笔者选取三峡库区库尾一级支流御临河的SPM,采用物理方法进行粒径分级后,研究了不同粒级SPM对DBP的吸附行为;比较了5种不同粒级SPM对DBP的吸附性能差异并探究了其潜在原因,为揭示DBP污染物的迁移转化及其对人类健康的潜在风险提供理论依据。

1 材料与方法

1.1 供试试剂和悬移质泥沙

邻苯二甲酸二正丁酯标准品(DBP),纯度>98%,购于上海麦克林生化科技有限公司;甲醇(色谱纯);氯化钙(优级纯);叠氮化钠(分析纯);丙酮(分析纯);正己烷(分析纯);水(Milli-Q超纯水)。主要仪器包括马尔文激光粒度分析仪(S3500,美国Microtrac公司);恒温振荡器(THZ-98AB,上海一恒科学仪器有限公司);高效液相色谱(HPLC,Agilent 1260系列,美国);总有机碳分析仪(TOC-L,日本岛津制作所株式会社);元素分析仪(Unicube,德国Elementar);全自动比表面积和孔径分析仪(Quadrasorb 2MP,美国Quantachrome);傅立叶红外光谱仪(Nicolet IS 10,美国Thermofinnigan);X射线衍射仪(Empyrean,荷兰PANalytical B.V.)。

原位SPM采集于三峡库区上游支流御临河河口太洪岗附近(29°39′34″N, 106°52′54″E),样品中PAEs背景浓度可忽略不计。原位SPM均经风干、研磨、过2 mm筛后储存在棕色试剂瓶中,直至后续试验与分析。原位SPM基本理化性状如表1所示。

表1 原位SPM基本理化性质

1.2 粒径分级

1.3 吸附试验

测试条件:检测柱为ODS-C18色谱柱(250 mm×4.6 mm,Agilent);检测波长226 nm;流动相为甲醇和超纯水,比例为80%∶20%;流速为1 mL/min;柱温为30 ℃;进样体积为20 μL。

试验所用玻璃器皿均在丙酮中浸泡至少30 min,后用正己烷冲洗,并在120 ℃下干燥至少4 h后使用,以避免玻璃器皿上的潜在PAEs污染物影响试验结果。

1.4 分析数据

各粒级SPM对DBP的吸附量为

Qe=(C0-Ce)V×m-1

(1)

式中:Qe为反应达到表观平衡后各粒级SPM对DBP的吸附量,mg/g;C0为DBP初始浓度,mg/L;Ce为各粒级SPM达到表观吸附平衡时溶液中DBP的浓度,mg/L;V为溶液体积,L;m为溶液中各粒级SPM的质量,g。

各粒级SPM批量吸附等温线试验结果用Freundlich模型进行拟合,研究DBP在各粒级SPM的吸附热力学行为。

(2)

式中:Qe和Ce含义与(1)式中相同;n为Freundlich指数;Kf为Freundlich常数。

2 结果与讨论

2.1 悬移质泥沙的粒径分级及其理化性质

图1 对数概率坐标上的SPM级配曲线

部分粒级SPM分级不完全,存在粒径重叠,可能是因为原位SPM粒级分选过程中未投加任何化学分散剂,只采用了物理的分散方法而存在分散不完全的现象;而且某些粒级之间级差较小,难免存在粒径部分重合的现象。

表2 各粒级SPM中总有机碳含量及有机元素分析

图2 各粒级SPM傅立叶变换红外光谱分析

图3 各粒级SPM X射线衍射图谱

表3 各粒级SPM中比表面积、孔容、质地及矿物组成分析

2.2 各粒级SPM吸附等温线试验

图4为DBP在各粒级SPM上的吸附等温线。不同粒级SPM的吸附行为用Freundlich方程拟合,均得到较好的线性结果(R2≥0.986)(表4)。

图4 各粒级SPM拟合Freundlich吸附等温线(25 ℃)

表4 各粒级SPM吸附DBP的Freundlich吸附等温线相关参数(25 ℃)

如表2和表4所示,随着TOC含量的增加,各粒级SPM对DBP吸附能力有增大的趋势。在细粉砂和中粉砂粒级SPM中,细粉砂的TOC含量略低于中粉砂,细粉砂粒级SPM吸附常数Kf却略高于中粉砂粒级SPM吸附常数Kf的1.8倍左右。其中细粉砂粒级和中粉砂粒级的粒级级差较小可能导致两粒级SPM的有机碳含量相近现象。Zhang等[37]研究了3种表层沉积物及其各有机组分对疏水性有机污染物吸附作用机理,发现芳香族基团和孔隙率主导了沉积物有机质对疏水性有机污染物的吸附过程。进一步研究发现,在砂质沉积物的运输过程中,PAEs主要被截留在泥沙孔隙中,而不是吸附在颗粒表面[38]。比较细粉砂和中粉砂两粒级的比表面积和孔容,发现前者的比表面积和孔容都高于后者。因此,当砂质SPM的有机质含量相近时,比表面积和孔容可能是造成其吸附DBP程度有差别的主要原因。

如表3所示,中粉砂粒级和砂粒级的比表面积和孔容相近,且砂粒级SPM中TOC含量远高于中粉砂粒级SPM的TOC含量,但是中粉砂粒级SPM的吸附常数Kf却与砂粒级相差接近17倍(表2和表4)。相关研究表明,土壤/沉积物天然有机质主要由动植物残体及其降解产物、微生物群落和腐殖质组成[39]。动植物残体通过物理化学风化和生物作用转化为更稳定的腐殖质,在此过程中,其芳香碳和脂肪碳的含量会增加,而O-烷基碳的含量降低[40-41]。如表2所示,比较中粉砂粒和砂粒级SPM的芳香性和极性后,发现前者的芳香性和极性明显高于后者。Ding等[42]对三峡库区干支流中表层沉积物的有机质的来源和组成进行分析,发现其天然有机质主要来自维管植物的陆源输入。此外,Guo等[43]比较研究了泥炭土、腐殖酸、胡敏素以及作为腐殖质前体的纤维素和木质素等5种不同吸附材料对疏水性有机污染物萘的吸附行为,发现纤维素作为在地球上植物合成的最丰富有机化合物之一[44],萘关于纤维素的有机碳分配系数(Koc)极低,主要是由于纤维素中含有大量的极性O-烷基碳,并通过氢键为水分子提供了众多的位点,从而降低了疏水性有机物的吸附性能。因此,推断砂粒级SPM中大部分有机质可能是腐殖化程度较低的植物残体,致使在比表面积和孔容相近的情况下,虽然砂粒级SPM高于中粉砂粒级SPM的TOC,但前者的吸附指数Kf显著低于后者的吸附指数Kf。

3 结论

猜你喜欢

孔容砂粒三峡库区
一种微球状流化床催化剂及其制备方法和应用
下降管蓄热器中沙漠砂流动性数值分析
主动出击
三峡库区万家坝滑坡变形区稳定性复核研究
勘 误
用于粒子分离器的砂粒反弹特性实验研究
带旋转孔容腔瞬态演化与建模方法研究
桃园井田煤的孔隙结构特征研究
三峡库区产业培育及结构调整的思考
MARKET WATCH