APP下载

基于PSD曲线的军用车辆有机涂层防护性能研究

2021-05-08周慧徐安桃封会娟魏骏逸

装备环境工程 2021年4期
关键词:斜率电化学涂层

周慧,徐安桃,封会娟,魏骏逸

基于PSD曲线的军用车辆有机涂层防护性能研究

周慧a,徐安桃a,封会娟a,魏骏逸b

(陆军军事交通学院 a. 军用车辆工程系 b. 学员五大队研究生队,天津 300161)

研究两种军用车辆有机涂层的防腐蚀性能。利用两种军用车辆有机涂层作为样本,以湿热、紫外、中性盐雾、酸性盐雾为4个环境因子,组合成多因子综合腐蚀试验,用电化学噪声频域分析处理试验数据,对比研究两种车辆装备涂层的防腐蚀性能。10个周期之后,两种涂层均完全破坏,其中,灰色有机涂层H的初始状态为9.55×108Ω/cm2,9个周期之后降低了2个数量级,为1.3×106Ω/cm2;金属漆涂层的初始状态为1.8×109Ω/cm2,9个周期之后减小1个数量级,为3.62×108Ω/cm2。曲线斜率i的变化趋势与噪声强度相反,在腐蚀速率快的时候,斜率变小,表现在图像上为直线更陡;与之相反,腐蚀速率慢的时候曲线斜率变大,变得更为平缓。金属漆涂层的防护性能优于灰色有机涂层。

涂层;腐蚀;电化学噪声;PSD

目前,在有机涂层腐蚀研究领域,绝大多数的测量方法都是在工作电极的表面施加某一电压、电流信号,进而测量参比电极和辅助电极上的电流电压信号,通过分析根据这些信号得到的响应函数,来研究电极反应的速率、影响因素和状态机理[1]。在工作电极的表面施加扰动信号以后,或多或少都会影响到腐蚀反应的电位电流信息,因此,腐蚀防护领域一直在寻找一种无损无干扰的直接测量技术。电化学噪声便是这样一种测量方法。电化学噪声(Electrochemical Noise, EN),是指电化学反应进行过程中,反应系统的电化学参量(如电极电位、外测电流等)随时间发生的非平衡态随机波动现象[2]。

为了将电流、电位噪声谱联系起来,Xiao H,Mansfeld F等人定义了谱噪声函数sn()[3],如式(1)所示。

式中:FFT()和FFT()分别为经过快速傅里叶变换得到的电位和电流噪声函数;PSD()和PSD()分别为电位和电流功率谱密度[4]。谱噪声电阻为谱噪声函数的低频极限值[5],即:

1 试验

1.1 试样

试验所用试样取自现役车辆装备两种涂层,分别为灰色有机涂层和金属漆涂层。基板材料为Q/BQB403/ST14冷轧低碳钢板,规格为60 mm× 60 mm×1 mm。

1.2 加速腐蚀试验及测试流程

本加速腐蚀试验共9个循环,每个循环参数设置如图1所示。相关参数设置以我国南部沿海地区的平均气候参数为基准,并参考了美空军F-18飞机涂层加速腐蚀试验标准(CASS)和国军标[9]。

1)耐湿热试验,1个周期为168 h。试验条件:相对湿度为95%~100%,温度为43 ℃。

2)耐紫外线试验,1个辐照周期为47.4 h。试验条件:辐照度为(60±10) W/m2,温度为(50±3) ℃。

3)耐中性盐雾试验,1个耐受周期为92.4 h。试验条件:温度为(35±2) ℃,每小时盐雾沉降速率为1~2 mL/80 cm2,NaCl溶液的质量分数为5%。

4)耐酸性盐雾试验,1个耐受周期为75.6 h。试验条件:温度为(35±2) ℃,每小时盐雾沉降速率为1~2 mL/80 cm2,NaCl溶液的质量分数为5%。

以上为1个周期的试验内容。

图1 涂层多因子综合环境加速腐蚀试验流程

2 结果及分析

2.1 电化学噪声频域分析

图2 灰色有机涂层H谱噪声函数频域谱

图3 两种涂层谱噪声电阻随周期的变化规律

2.2 通过线性拟合PSD图谱评价涂层防护性能

文中利用Hanning窗函数去除直流趋势的电化学噪声信号作快速傅里叶变换(Fast Fourier Transform, FFT),得到电流功率谱密度曲线,如图4所示。Zhang Tao和Li Liu等分别研究了AZ91D镁合金和奥氏体不锈钢的腐蚀行为,利用式(3)对电流噪声进行了研究。

式中:i为电流噪声强度;i为功率谱密度曲线高频段斜率。i与工作电极的腐蚀速率有关,i与噪声暂态峰寿命有关,能够描述腐蚀过程中金属的钝化及再钝化信息[14]。

图4 两种涂层各个周期的电流功率谱密度(PSD)曲线

为了更好地分析两种涂层的PSD曲线,利用式(3)对每个试验周期之后的电流噪声PSD曲线进行拟合,得到相应的参数i和i[15],见表1。

表1 灰色有机涂层和金属漆涂层谱的PSD曲线拟合结果

噪声强度i的值可以反映出腐蚀强度的大小,i越大,表示涂层腐蚀速率越快[16]。从表1中可以看出,灰色有机涂层的电流噪声度明显高于金属漆涂层,说明金属漆涂层的防护性能优于灰色有机涂层,腐蚀性粒子Cl‒在灰色有机涂层的渗透速度快于金属漆涂层[17]。在第1、2周期之后,两种涂层的i值都呈现减小趋势。由于金属漆涂层可以生成致密的钝化膜[18],在第3、5、6周期,防护性能都有小幅度提升。灰色有机涂层在3、5、7周期的噪声强度变小,可能与其腐蚀产物堵塞离子通道有关[19]。曲线斜率i的变化趋势与噪声强度相反,在腐蚀速率快的时候,斜率变小,表现在图像上为直线更陡;相反地,腐蚀速率慢的时候斜率变大,曲线变得更为平缓[20]。

3 结论

2)通过拟合电流功率谱密度图谱,得到了噪声强度i和高频段斜率i。两种涂层的噪声强度都在第2、3周期的时候达到最大值,金属漆涂层的噪声强度明显小于灰色有机涂层;曲线斜率i的变化趋势与噪声强度相反。

[1] ZHENG Hao, LIANG Jing-zhe, QIN Zhen-bo, et al. Identifying defect size in organic coatings by electrochemical noise, galvanostatic step and potentiostatic step techniques[J]. Journal of electroanalytical chemistry, 2020, 856: 113596.

[2] R·温斯顿·里维. 尤利格手册[M]. 第二版. 北京: 化学工业出版社, 2005. LEVY R W. Editor-in-Chief of R. Winston Review. Ulig handbook [M]. Second Edition. Beijing: Chemical Industry Press, 2005.

[3] 赵茹. 核电用不锈钢应力腐蚀电化学检测研究[D]. 天津: 天津大学, 2009. ZHAO Ru. Research on electrochemical detection of stainless steel stress corrosion for nuclear power[D]. Tianjin: Tianjin University, 2009.

[4] 丛楠, 陈俊达, 任焱晞, 等. 一种指定功率谱密度与峭度值的对称威布尔分布道路谱重构方法[J]. 振动与冲击, 2018, 37(2): 1-5. CONG Nan, CHEN Jun-da, REN Yan-xi, et al. A spectral reconstruction method of symmetric weibull distribution road specified by spectral power density and kurtosis values[J]. Vibration and shock, 2018, 37(2): 1-5.

[5] 何金杯. 基于电化学噪声的铜及铜合金腐蚀监测技术研究[D]. 武汉: 华中科技大学, 2007. HE Jin-bei. Research on copper and copper alloy corrosion monitoring technology based on electrochemical noise[D]. Wuhan: Huazhong University of Science and Technology, 2007.

[6] XIAO H, MANSFLED F. Evaluation of coatings regradation with electrochemical impedance spectroscopy and electrochemical noise analysis[J]. Journal of Electrochemistry Society, 1994, 141(9): 2330-2340.

[7] 刘继慧. 利用电化学噪声与交流阻抗测试方法研究防腐涂层的性能[D]. 哈尔滨: 哈尔滨工程大学, 2008. LIU Ji-hui. Using electrochemical noise and AC impedance test methods to study the performance of anticorrosive coatings [D]. Harbin: Harbin Engineering University, 2008.

[8] 张睿. 车辆有机涂层在盐雾与紫外环境中的腐蚀行为研究[D]. 天津: 军事交通学院, 2017. ZHANG Rui. Research on corrosion behavior of vehicle organic coatings in salt spray and ultraviolet environment[D]. Tianjin: Military Transportation Institute, 2017.

[9] 徐安桃, 周慧, 李锡栋, 等. 车辆装备有机涂层加速腐蚀试验方案设计[J]. 军事交通学院学报, 2018, 20(12): 36-40. XU An-tao, ZHOU Hui, LI Xi-dong, et al. Design of accelerated corrosion test plan for vehicle equipment organic coating[J]. Journal of Military Communications Institute, 2018, 20(12): 36-40.

[10] 高志明, 宋诗哲. 小波噪声电阻与EIS结合评价涂覆层性能[J]. 中国腐蚀与防护学报, 2008(4): 3-6. GAO Zhi-ming, SONG Shi-zhe. The combination of wavelet noise resistance and EIS to evaluate the performance of coating[J]. Journal of Chinese Society for Corrosion and Protection, 2008(4): 3-6.

[11] 刘继慧, 邵亚薇, 孟国哲, 等. 利用电化学阻抗谱和电化学噪声分析薄有机涂层的腐蚀过程[J]. 涂料工业, 2008(6): 66-70. LIU Ji-hui, SHAO Ya-wei, MENG Guo-zhe, et al. Analysis of the corrosion process of thin organic coatings using electrochemical impedance spectroscopy and electrochemical noise[J]. Coatings industry, 2008(6): 66-70.

[12] 杨英硕. NaAlO2封孔对2024铝合金阳极氧化膜耐腐蚀性的影响[D]. 南京: 南京邮电大学, 2020. YANG Ying-shuo. The effect of NaAlO2sealing on the corrosion resistance of 2024 aluminum alloy anodized film[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.

[13] 雷欣, 林乃明, 邹娇娟, 等. 铝合金微弧氧化的研究进展[J]. 表面技术, 2019, 48(12): 10-22. LEI Xin, LIN Nai-ming, ZOU Jiao-juan, et al. Research progress of aluminum alloy micro-arc oxidation[J]. Surface technology, 2019, 48(12): 10-22.

[14] ZHANG T, SHAO Y, MENG G, et al. Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution [J]. Electrochemical acta, 2007, 53(2): 560-570.

[15] 王楠. AlSi/BN封严涂层在海洋环境下的腐蚀行为研究[D]. 沈阳: 沈阳理工大学, 2017. WANG Nan. Corrosion behavior of AlSi/BN sealing coating in marine environment[D]. Shenyang: Shenyang University of Science and Technology, 2017.

[16] 蒋新瑜. 常用金属电化学噪声规律、机理与应用[D]. 大连: 辽宁师范大学, 2016. JIANG Xin-yu. Electrochemical noise law, mechanism and application of common metals[D]. Dalian: Liaoning Normal University, 2016.

[17] 雷军, 陈毓彬. 低频电阻电流噪声测试技术的发展和应用[J]. 电子产品可靠性与环境试验, 2018, 36(4): 25-28. LEI Jun, CHEN Yu-bin. Development and application of low-frequency resistance current noise test technology[J]. Electronic product reliability and environmental testing, 2018, 36(4): 25-28.

[18] 张振楠, 张大鹏, 王轩, 等. 涂层酸性盐雾环境下失效过程的电化学阻抗谱分析[J]. 包装工程, 2017, 38(23): 45-49. ZHANG Zhen-nan, ZHANG Da-peng, WANG Xuan, et al. Electrochemical impedance spectroscopy analysis of coating failure process in acidic salt spray environment[J]. Packaging Engineering, 2017, 38(23): 45-49.

[19] 邢珊珊, 戚浩宇, 郑传波. 固溶处理对2205双相不锈钢组织及钝化膜特性的影响[J]. 金属热处理, 2020, 45(3): 146-150. XING Shan-shan, QI Hao-yu, ZHENG Chuan-bo. Effect of solution treatment on the structure of 2205 duplex stainless steel and the characteristics of passivation film[J]. Heat treatment of metals, 2020, 45(3): 146-150.

[20] 李治, 吕建, 牛智民, 等. X80管线钢在新洲土壤中腐蚀的电化学噪声[J]. 腐蚀与防护, 2017, 38(8): 608-614. LI Zhi, LU Jian, NIU Zhi-min, et al. Electrochemical noise of X80 pipeline steel corrosion in Xinzhou soil[J]. Corrosion and protection, 2017, 38(8): 608-614.

Research on Protective Performance of Organic Coatings for Military Vehicles Based on PSD Curve

ZHOU Huia, XU An-taoa, FENG Hui-juana, WEI Jun-yib

(a. Military Vehicle Engineering Department, b. Postgraduate Training Brigade, Fifth Team of Cadets, Army Military Transportation University, Tianjin 300161, China)

In order to study the anti-corrosion performance of organic coatings on two military vehicles, this paper takes two kinds of military vehicle's organic coatings as samples to carry out multi-factor comprehensive corrosion test with four environmental factors of damp heat, ultraviolet, neutral salt spray and acid salt spray. The experimental data are processed by electrochemical noise frequency domain analysis, and the anti-corrosion performance of the two coatings are compared and analyzed. After 10 cycles, both coatings are completely destroyed. Among them, the initial state of gray organic coating H is in 9.55×108Ω/cm2, and after 9 cycles, it is reduced by two orders of magnitude to 1.3×106Ω/cm2; the initial state of the metallic paint coating is 1.8×109Ω/cm2, and after 9 cycles, it is reduced by 1 order of magnitude to 3.62×108Ω/cm2. The change trend of curve slopeiis opposite to the noise intensity. When the corrosion rate is fast, the slope becomes smaller and the line is steeper on the image. Conversely, when the corrosion rate is slow, the slope becomes larger and the curve becomes more gentle. Therefore, the protective performance of metallic coating is better than that of gray organic coating.

coating; corrosion; electrochemical noise; PSD

2020-10-28;

2020-12-05

ZHOU Hui (1994—), Male, Master, Assistant, Research focus: vehicle equipment corrosion and protection.

徐安桃(1964—),男,博士,教授,主要研究方向为车辆装备腐蚀与防护。

Corresponding author:XU An-tao (1964—), Male, Ph.D., Professor, Research focus: vehicle equipment corrosion and protection.

周慧, 徐安桃, 封会娟,等.基于PSD曲线的军用车辆有机涂层防护性能研究[J]. 装备环境工程, 2021, 18(4): 128-132.

TG174.4

A

1672-9242(2021)04-0128-05

10.7643/ issn.1672-9242.2021.04.019

2020-10-28;

2020-12-05

周慧(1994—),男,硕士,助教,主要研究方向为车辆装备腐蚀与防护。

ZHOU Hui, XU An-tao, FENG Hui-juan, et al. Research on protective performance of organic coatings for military vehicles based on PSD curve [J]. Equipment environmental engineering, 2021, 18(4): 128-132.

猜你喜欢

斜率电化学涂层
Co/Pt 改性铝化物涂层热腐蚀行为探究及比较
新型“刮刮乐”涂层在牙膏盒上的应用研究
电化学中的防护墙——离子交换膜
电化学基础测试题
巧甩直线斜率公式解数学题
关于量子电化学
2018年高考中的电化学试题大扫描
求斜率型分式的取值范围
导数几何意义的深层次应用
Federal—Mogul公司开发的DuroGlide活塞环涂层