氧化石墨烯接枝碳纤维及其树脂涂层在不同载荷下的摩擦学性能
2021-05-08刘高尚刘雅玄卞达赵永武
刘高尚,刘雅玄,卞达,赵永武
氧化石墨烯接枝碳纤维及其树脂涂层在不同载荷下的摩擦学性能
刘高尚,刘雅玄,卞达,赵永武
(江南大学 机械工程学院,江苏 无锡 214122)
提升碳纤维(CF)在水性聚酰胺酰亚胺(PAI)树脂涂层中的界面性能,从而使PAI复合涂层获得优异的摩擦学性能。以硅烷(KH550)为偶联剂,制备氧化石墨烯(GO)化学接枝CF增强体(CF&GO),研究CF接枝前后的热稳定性和添加CF&GO的PAI复合涂层在不同载荷下的摩擦学行为和磨损机理。利用红外光谱仪(FTIR)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)对样品的官能团、成分和表面形貌进行表征;利用热失重仪(TGA)对接枝前后CF的热稳定进行表征;利用SEM、摩擦磨损试验机和白光干涉仪分别对CF&GO在PAI复合涂层中的分布和摩擦学性能进行表征。GO通过与硅烷改性后的CF形成酰胺键成功接枝,接枝后,CF形成多尺度增强体,且表面形貌粗糙。此外,接枝后, CF的热稳定性降低,热稳定性规律为GO 氧化石墨烯;碳纤维;接枝;热稳定性;摩擦因数;磨损率 PAI因其出色的机械强度、良好的耐化学腐蚀和热稳定性[1-2],广泛应用于医疗器械、航空、微电子、汽车等领域。为了扩大其应用环境,将CF引入PAI中,制成了力学性能增强的复合材料[3]。CF增强的PAI复合材料,由于其优异的力学和物理性能,在汽车、航空航天、化工等领域得到了广泛应用。 CF增强聚合物基复合材料具有强度高、耐疲劳、耐腐蚀等特点[4-9]。由于CF的表面光滑特性,导致CF与基体之间的润湿性和吸附性较差,与树脂基体之间的界面结合强度较弱[10]。因此,有必要通过对CF的表面改性来改善CF复合材料的界面性能[11-15]。 由于GO独特的结构和物理性能,如优异的刚度、强度、导电和导热系数等,在复合材料中引入纳米尺度的GO已成为增强复合材料性能(如界面、力学和摩擦学性能)的有效手段[16-18]。GO作为广泛应用的碳纳米增强材料,在改善复合材料的界面条件方面,表现出巨大潜力。GO作为增强复合材料的纳米填充剂时,可以有效地将应力传递到聚合物基体上。然而,由于GO之间的强范德华力,导致其在复合材料中形成严重的聚合[19],从而限制了应力传递[20]。因此,主要的挑战仍然是实现GO在基体中的均匀分散。 将CF和纳米GO组装起来,一方面可以显著提高CF复合材料的界面抗拔出能力;另一方面,GO附着在CF表面,可以在复合材料中均匀分散[21-22]。目前,将GO引入到CF表面的方法有很多,包括物理直接法混合[23]、电泳沉积[21]、化学气相沉积[24]、化学接枝[25]和溶液浸渍[26]等。在以上所有方法中,化学接枝是通过在CF和GO之间形成化学键,比其他方法在CF和GO之间形成的范德华力,作用力更强,CF和GO就更不容易在复合材料中被拔出,界面性能更好。 本工作中,通过化学方法把GO接枝在CF表面,其中硅烷作为桥接,分别与GO和CF形成化学键,如图1所示。CF强酸氧化之后,利用硅烷与其表面的羧基和羟基反应,实现对CF硅烷化功能化处理。GO与硅烷改性后,CF在偶联剂DMF的作用下,发生酰胺反应,形成酰胺键,接枝在CF表面。对这种增强体(CF&GO)的热稳定性和其在PAI树脂中不同载荷下的摩擦学性能进行研究。 图1 纤维接枝流程 将3 g CF与150 mL丙酮超声混合0.5 h后,放入三口烧瓶中,70 ℃下回流24 h,去除CF表面涂浆。去浆后,3 g CF与150 mL混合强酸(浓硝酸∶浓硫酸= 1∶1)在100 ℃下进行酸化反应2 h,在CF表面引入羟基和羧基。将酸化后的CF,用离心机(4000 r/min)离心0.5 h,去除上层清液后,加入去离子水和无水乙醇震荡,重复操作洗涤,直至溶液pH值为中性,之后进行真空干燥。 配制100 mL硅烷偶联剂溶液,配比为72 mL无水乙醇+20 mL KH550+8 mL去离子水。将3 g酸化CF加入到该溶液中,然后溶解在300 mL乙醇溶液中。将混合液磁力搅拌0.5 h后,超声处理0.5 h,得到均匀的悬浮液。将混合液倒入500 mL三口烧瓶中,油浴加热至78 ℃,不间断磁力搅拌回流4 h。反应结束后,迅速离心,去除上层清液,加入去离子水和无水乙醇震荡清洗,离心,反复操作6次,以去除CF表面多余的硅烷偶联剂。最后在80 ℃下真空干燥24 h,得到硅烷化处理的碳纤维CF-APTS。 先将0.1 g的GO加入到150 mL的DMF溶液中,再加入1 g的CF-APTS,超声和磁力搅拌各0.5 h,得到均匀的悬浮液。将悬浮液倒入500 mL三口烧瓶中,油浴加热至105 ℃,不间断磁力搅拌回流6 h。反应结束后,迅速离心,去除上层清液,加入去离子水和乙醇震荡清洗,离心,反复操作6次,洗涤CF表面多余的DMF偶联剂。最后在80 ℃下真空干燥24 h,得到CF&GO多尺度增强体CF&GO。 课题组前期试验发现,PAI(固含量28%)为粘结剂,固体填料CF质量分数为20%时,制备的复合涂层的摩擦学行为表现最佳,摩擦因数为0.258,磨损率为3.36×106μm3/(N·m)。固体填料含量对PAI复合涂层的摩擦学性能影响较大。固体填料含量过低时,材料增强特性较弱;含量过高时,填料在PAI内团聚,粘接效果急剧变差,导致复合涂层摩擦学性能减弱。因此,为保证PAI树脂粘接效果,本文制备CF&GO复合涂层固体填料含量定为20%。 将质量分数为20%的CF&GO加入到PAI树脂中,磁力搅拌3 h,得到CF&GO复合树脂涂料。将涂料刮涂在铝合金基体表面,之后放在鼓风烤箱中加热至190 ℃,最后得到CF&GO复合涂层。经涂镀层测厚仪测得厚度为200 μm,其中PAI固含量为28%,因此固化后涂层填料含量为47.2%。 CF购于中丽新材有限公司,粒径为500目,直径为7 μm。多层GO购于南京先丰纳米材料科技有限公司。硅烷偶联剂(KH550)、N,N-二甲基甲酰胺、硫酸、硝酸、丙酮购于国药集团化学试剂有限公司。PAI购于南通博联化工有限公司,固含量为28%。 1)采用赛默飞Nicolet傅里叶红外光谱仪测试增强体官能团,扫描范围为400~4000 cm–1。 2)采用理学Smartlab9型X射线衍射仪测试增强体成分,扫描速度和范围分别为2 (°)/min和5°~ 80°。 3)采用蔡司EVO18扫描电镜(10 kV),观测涂层磨痕表面形貌。 4)采用Rtec摩擦磨损试验机(MFT-5000型)测试计算涂层摩擦因数。室温下,用直径为9.5 mm的氮化硅陶瓷球对磨涂层表面,实验参数:往复模式,往复距离为10 mm,频率为1 Hz,测试时间为20 min。 5)在Rtec白光干涉轮廓仪20倍镜下分析涂层磨损量。 6)用TGA Q500热重分析仪分析纤维的热稳定性,测量范围为30~800 ℃,氮气(N2)保护,升温速率为10 ℃/min。 CF-APTS、GO、CF&GO的红外光谱见图2。CF-APTS(曲线a)表面特征峰显示,1434 cm–1呈现N—H面内变形峰,1037 cm–1呈现Si—O—Si伸缩振动峰[27],1120 cm–1呈现Si—O—C伸缩振动峰。这证明KH550与CF表面基团发生缩合反应形成化学键,成功接枝在CF表面。GO(曲线b)表面特征峰显示,3390 cm–1处宽吸收峰呈现—OH拉伸振动峰,1733、1620、1223、1053 cm–1处分别呈现C==O、C==C、 C—OH和C—O拉伸振动峰[28]。CF&GO(曲线c)表面特征峰显示,3186 cm–1处宽峰和1607 cm–1处峰分别部分归属于仲酰胺N—H伸缩振动和弯曲振动,1375 cm–1处峰呈现仲酰胺C—N振动。这表明GO通过硅烷成功接枝在CF表面上。 图2 CF表面各处理阶段红外光谱 CF(见图3曲线a)在2=25°呈现代表石墨(002)晶面的衍射峰[29],GO(见图3曲线b)在2=10.73°呈现代表GO(002)晶面的衍射峰[30],CF&GO(见图3曲线c)中呈现代表CF和GO的特征峰。这证明GO已成功接枝到CF上,与红外实验结果一致。图3中,代表CF的特征峰(曲线c)宽化,归因于经浓硫酸和浓硝酸氧化后的CF,较大尺寸的表层微晶腐蚀剥离,较小尺寸的次表层微晶显露[31]。CF表面微晶尺寸减小,结晶边界增多,导致表面的活性碳原子增多,有利于更多的GO接枝在CF上。 图3 CF各处理阶段XRD图谱 CF接枝GO前后的表面形貌如图4所示。CF丙酮去浆后,表面光滑平整、无凹坑,如图4a所示。GO的褶皱形貌如图4b所示。CF经KH-550硅烷偶联剂改性后,表面粗糙,并附着一层硅烷膜(见图4c)。对表面膜进行EDS点扫,测得Si的原子数分数为7.56%,证明CF硅烷改性成功,与FTIR测试结果一致。GO成功接枝在CF表面,与FTIR和XRD测试结果一致,如图4d所示。GO接枝在CF表面形成的多尺度增强体,增加了CF的粗糙度,提升了纤维的界面性能,增强了CF与树脂基体之间的粘接强度[32]。 图4 CF接枝GO前后的表面形貌 CF接枝GO前后的热稳定性曲线如图5所示,其热稳定性依次为GO 图5 CF接枝GO前后TGA曲线 如图6a所示,涂层摩擦因数呈现随载荷增大而减小的趋势。载荷为10 N时,摩擦因数最大,为0.212;载荷为20 N时,摩擦因数最小,为0.168。这可能是因为涂层切向力的大小受实际接触面积的影响。当载荷增加时,接触载荷的上升快于接触面积的上升,也就是接触载荷的上升快于切向力上升,导致高载荷下涂层摩擦因数值反而降低[35]。如图6b所示,涂层磨损率呈现随载荷增大而增大的趋势。载荷为10 N时,涂层磨损率最小,为2.64×106μm3/(N·m);载荷为20 N时,涂层磨损率最大,为3.74×106μm3/(N·m)。这主要归因于树脂涂层硬度较低,随着载荷的增大,碾压作用增强,涂层塑性变形增大,导致涂层耐磨性降低。不同载荷下涂层磨痕的三维形貌如图7所示。10 N载荷下,涂层的磨痕浅且窄;15 N载荷下,涂层的磨痕深度增加;20 N载荷下,涂层的磨痕最深,磨损最为严重,与磨痕截面曲线结果一致。 图6 不同载荷下CF&GO树脂涂层的摩擦因数及磨痕截面 未改性CF树脂涂层的截面SEM形貌如图8a所示,纤维表面未完全被树脂包覆,与树脂界面结合较差。主要原因是,CF表面光滑,与树脂之间的润湿性和吸附性较差。CF&GO树脂涂层截面的SEM形貌如图8b所示,纤维表面被树脂完全包覆,与树脂界面结合较好[36]。CF&GO增强体镶嵌在树脂基体中,纤维折断,仍未脱离基体。CF表面的GO与树脂层片紧密地咬合在一起,显著提升了CF的界面性能。其主要原因是GO表面有含氧官能团,呈现亲水性,因此与水性树脂WPAI结合较好。同时可以发现,相较于CF,CF&GO涂层截面的孔隙减少。主要原因是,GO填充了树脂层片间的细小孔洞,提升了涂层的致密性,进而提升了涂层的摩擦学性能。 如图9所示,不同载荷下,磨痕表面纤维无脱落拔出,改性后,树脂的粘接效果较好。CF&GO参与形成涂层润滑膜,纤维有助于接触应力的传递,增强涂层耐磨性。10、15 N载荷下,涂层磨痕表面犁痕明显,因此其主要磨损形式为磨粒磨损。20 N载荷下,磨痕表面存在犁痕和块状树脂脱落后被碾压在磨痕表面形成的树脂堆叠,因此主要磨损形式为磨粒磨损和粘着磨损。 图9 不同载荷下CF&GO树脂涂层磨痕的SEM图像 涂层磨痕宽度逐渐增加,与磨痕三维图规律一致,归因于载荷增加,碾压作用增强,涂层的塑性变形增大。表面犁痕由浅变深,归因于载荷增加,导致磨粒对涂层表面的刻划加重。润滑膜由光滑变粗糙,表面缺陷(裂纹和树脂剥落坑)增多,归因于载荷增加,局部接触应力增加,界面摩擦剧烈,导致润滑膜破裂剥落。随着载荷的增加,涂层磨痕的表面质量逐渐降低。 1)通过在CF上接枝GO,制成了一种多尺度增强体CF&GO。CF和GO通过与硅烷形成化学键紧密结合,提高了CF表面粗糙度和界面性能。 2)测试CF、GO、CF&GO的热稳定性得出:GO 3)随着载荷的增加,GO&CF树脂复合涂层的摩擦因数降低,磨损率增大。 [1] LI Zhuo, SONG Hai-wang, HE Min-hui, et al. Atomic oxygen-resistant and transparent polyimide coatings from [3,5-bis(3-aminophenoxy) phenyl] diphenylphosphine oxide and aromatic dianhydrides: Preparation and characterization[J]. Progress in organic coatings, 2012, 75(1-2): 49-58. [2] MEHDIPOUR A, SHAHRAM S, YAGHOUB H M. Novel thermally stable polyimides based on flexible diamine: Synthesis, characterization and properties[J]. European polymer journal, 2004, 40(9): 2009-2015. [3] YUAN Xue-yu, JIANG Jing, WEI Hua-wei, et al. PAI/ MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites science and technology, 2020, 201: 108496. [4] GI Chae-han, SATISH K. Materials science: Making strong fibers[J]. Science, 2008, 319(5865): 908. [5] BAJPAI A, SAXENA P, KUNZE K. Tribo-mechanical characterization of carbon fiber-reinforced cyanate ester resins modified with fillers[J]. Polymers, 2020, 12(8): 1725. [6] GONCALVES G, MARQUES P A A P, BARROS- TIMMONS A, et al. Graphene oxide modified with PMMA via ATRP as a reinforcement filler[J]. Journal of materials chemistry, 2010, 20(44): 9927-9934. [7] GONG L, KINLOCH I A, YOUNG R J, et al. Interfacial stress transfer in a graphene monolayer nanocomposite[J]. Advanced materials, 2010, 22(24): 2694-2697. [8] ZOU Zhen-yue, QIN Yan, FU Hua-dong, et al. ZrO2f- coated Cfhybrid fibrous reinforcements and properties of their reinforced ceramicizable phenolic resin matrix composites[J]. Journal of the European Ceramic Society, 2020, 41(3): 1810-1816. [9] HE Wei-dong, WANG Xin, DING Li-ning, et al. Experimental study on bond behavior of interface between fiber- reinforced polymer grids and concrete substrate[J]. Composite structures, 2020, 257: 113164. [10] HE Xiao-dong, WANG Chao, TONG Li-yong, et al. Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber[J]. Carbon, 2012, 50(10): 3782-3788. [11] YAO Ting-ting, LIU Yu-ting, ZHU Hong, et al. Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers[J]. Composite science and technology, 2019, 182: 107761-107763. [12] SUN Tong, LI Mu-xuan, ZHOU Sheng-tai, et al. Multi- scale structure construction of carbon fiber surface by electrophoretic deposition and electropolymerization to enhance the interfacial strength of epoxy resin composites[J]. Applied surface science, 2020, 499: 143929. [13] ZHANG Meng-jie, LIU Liu, JIN Lin, et al. Catechol- based co-deposited carbon fiber surfaces for enhancement of fiber/epoxy composites[J]. Polymer composites, 2020, 41(9): 3817-3829. [14] STANFIELD M, EYCKENS D, MÉDARD J, et al. Using redox active molecules to build multilayered architecture on carbon fibers and the effect on adhesion in epoxy composites[J]. Composites science and technology, 2020, 202: 108564. [15] KOSTOPOULOS V A, KOTROTSOS A, GEITONA A, et al. Low velocity impact response and post impact assessment of carbon fiber/epoxy composites modified with Diels-Alder based healing agent. A novel approach[J]. Composites part A: Applied science and manufacturing, 2020, 140: 106151. [16] JIANG Hao, LI Zhao, GAN Jian-tuo, et al. Improved thermal and mechanical properties of bismaleimide nanocomposites via incorporation of a new allylated siloxane graphene oxide[J]. RSC advances, 2020, 10(60): 36853- 36861. [17] BOUIBED A, DOUFNOUNE R. Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings[J]. Journal of adhesion science & technology, 2019, 27(1): 834-840. [18] ZENG Xiao-ling, TANG Bo-lin, SHEN Xiao-jun, et al. Effect of graphene oxide size on interlaminar shear strength of glass fabric/epoxy composites[J]. Materials research express, 2019, 6(10): 105306. [19] MCALLISTER M J, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of materials, 2007, 19(18): 4396-4404. [20] VERDEJO R, BERNAL M M, ROMASANTA L J, et al. Graphene filled polymer nanocomposites[J]. Journal of materials chemistry, 2011, 21(10): 3301-3310. [21] LI Yi-bin, PENG Qing-yu, HE Xiao-dong, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers [J]. Journal of materials chemistry, 2012, 22(36): 18748- 18752. [22] RAFIEE M A, RAFIEE J, SRIVASTAVA I, et al. Fracture and fatigue in graphene nanocomposites[J]. Small, 2010, 6(2): 179-183. [23] LI Fei, LIU Yu, QU Cheng-bing, et al. Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating[J]. Polymer, 2015, 59: 155-165. [24] KUANG Tai-rong, MI Hao-yang, FU Da-jiong, et al. Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide[J]. Industrial & engineering chemistry research, 2015, 54(2): 758-768. [25] WANG Chao, LI Yi-bin, TONG Li-yong, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon, 2014, 69: 239-246. [26] 刘秀影, 宋英, 李存梅, 等. 氧化石墨烯接枝碳纤维新型增强体的制备与表征[J]. 无机化学学报, 2011, 27(11): 2128-2132. LIU Xiu-ying, SONG Ying, LI Cun-mei, et al. Synthesis and characterization of carbon fibers reinforcement with grafted graphene oxide[J]. Chinese journal of inorganic chemistry, 2011, 27(11): 2128-2132. [27] ZIELKE U, HÜTTINGER K J, HOFFMAN W P. Surface-oxidized carbon fibers: I. Surface structure and chemistry[J]. Carbon, 1996, 34(8): 983-998. [28] ZHANG Xiao-qing, FAN Xin-yu, LI Hong-zhou, et al. Facile preparation route for graphene oxide reinforced polyamide 6 composites via in situ anionic ring-opening polymerization[J]. Journal of materials chemistry, 2012, 22(45): 24081-24091. [29] 刘钟铃, 李国明, 童元建, 等. 国产碳纤维微晶结构与缺陷结构研究[J]. 玻璃钢/复合材料, 2014(11): 58-62. LIU Zhong-ling, LI Guo-ming, TONG Yuan-jian, et al. Research on the micro-crystallization structure and defect structure of domestic carbon fiber[J]. Fiber reinforced plastics/composites, 2014(11): 58-62. [30] JEONG Hae-kyung, LEE Yun-pyo, LAHAYE R J W E, et al. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society, 2008, 130(4): 1362-1366. [31] 杨君, 张立先, 周莉, 等. 复合材料用碳纤维的表面硝酸液相处理[J]. 当代化工, 2015(10): 2289-2293. YANG Jun, ZHANG Li-xian, ZHOU Li, et al. Surface treatment of carbon fiber with nitric acid[J]. Contemporary chemical industry, 2015(10): 2289-2293. [32] CHEN Lei, DU Yun-zhe, HUANG Yu-dong, et al. Hierarchical poly(p-phenylene benzobisoxazole)/graphene oxide reinforcement with multifunctional and biomimic middle layer[J]. Composites part A applied ence & manufacturing, 2016, 88: 123-130. [33] WAN Yan-jun, TANG Long-cheng, YAN Dong, et al. Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process[J]. Composites science & technology, 2013, 82: 60-68. [34] FAN Xiao-bin, PENG Wen-chao, LI Yang, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation[j]. Advanced materials, 2008, 20(23): 4490-4493. [35] 范娜, 王云霞, 王秋凤, 等. 载荷对304不锈钢微动磨损性能的影响[J]. 摩擦学学报, 2016, 36(5): 555-561. FAN Na, WANG Yun-xia, WANG Qiu-feng, et al. Effects of load on fretting wear behaviors of 304 stainless steels [J]. Tribology, 2016, 36(5): 555-561. [36] WAN Yan-jun, GONG Li -xiu, TANG Long-cheng, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide[J]. Composites part A, 2014, 64: 79-89. Tribological Properties of Graphene Oxide Grafted Carbon Fiber and Its Resin Coating under Different Loads ,,, (School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China) To improve the interfacial properties of carbon fiber (CF) in the water-based polyamideimide (PAI) resin coating to obtain the PAI composite coating with excellent tribological properties. Silane (KH550) was used as the coupling agent to prepare graphene oxide (GO) chemically grafted CF reinforcement (CF&GO). The thermal stability before and after CF grafting and the tribological behavior and wear mechanism of PAI composite coating with CF&GO under different loads were studied. The infrared spectrometer (FTIR), X-ray diffractometer (XRD) and scanning electron microscope (SEM) was used to characterize the functional groups, composition and surface morphology of the sample; thermal weight loss instrument (TGA) was used to characterize the thermal stability of CF before and after grafting SEM, friction and wear tester and white light interferometer were used to characterize the distribution and tribological properties of CF&GO in the PAI composite coating. GO was successfully grafted by forming an amide bond with the silane-modified CF. After the grafting, the CF formed a multi-scale reinforcement and the surface morphology was rough; in addition, the thermal stability of the grafted CF was reduced, and the thermal stability law was GO graphene oxide; carbon fiber; grafting; thermal stability; friction factor; wear rate 2020-10-12; 2021-03-05 LIU Gao-shang (1995—), Male, Master, Research focus: mechanical tribology and surface technology. E-mail: 1043059121@qq.com 卞达(1990—),男,博士,讲师, 主要研究方向为机械摩擦学与表面技术。邮箱: biand@jiangnan.edu.cn Corresponding author:BIAN Da (1990—), Male, Doctor, Lecturer, Research focus: mechanical tribology and surface technology. E-mail: biand@jiangnan.edu.cn 通讯作者:赵永武(1962—),男,博士,教授,主要研究方向为机械摩擦学与表面技术。邮箱: zhaoyw@jiangnan.edu.cn Corresponding author:ZHAO Yong-wu (1962—), Male, Doctor, Professor, Research focus: mechanical tribology and surface technology. E-mail: zhaoyw@jiangnan.edu.cn 刘高尚, 刘雅玄, 卞达, 等. 氧化石墨烯接枝碳纤维及其树脂涂层在不同载荷下的摩擦学性能[J]. 表面技术, 2021, 50(4): 62-69. TQ326.9;TB332 A 1001-3660(2021)04-0062-08 10.16490/j.cnki.issn.1001-3660.2021.04.005 2020-10-12; 2021-03-05 江苏省自然科学基金(BK20190611);中国博士后科学基金(2020M681482);江苏省博士后科学基金(2020Z196) Fund:Natural Science Foundation of Jiangsu Province (BK20190611); China Postdoctoral Science Foundation (2020M681482); Postdoctoral Science Foundation of Jiangsu Province (2020Z196) 刘高尚(1995—),男,硕士,主要研究方向为机械摩擦学与表面技术。邮箱:1043059121@qq.com LIU Gao-shang, LIU Ya-xuan, BIAN Da, et al. Tribological properties of graphene oxide grafted carbon fiber and its resin coating under different loads[J]. Surface technology, 2021, 50(4): 62-69.1 实验
1.1 材料制备
1.2 测试与表征
2 结果与讨论
2.1 FTIR分析
2.2 XRD分析
2.3 SEM和EDS元素分析
2.4 CF接枝GO前后热稳定性分析
2.5 不同载荷下CF&GO树脂涂层的摩擦学性能分析
2.6 涂层截面SEM
2.7 不同载荷下CF&GO树脂涂层磨痕表面分析
3 结论