350 km/h动车组车轮磨耗对动力学影响研究
2020-07-14程道来王恒亮孙效杰
许 磊,程道来,许 聪,王恒亮,孙效杰*
(1. 上海应用技术大学轨道交通学院,上海 201418; 2. 中国铁路上海局集团有限公司科学技术研究所,上海 200071)
车轮的磨耗将改变轮轨接触,轮轨之间的良好接触是车辆安全运行的核心保证。车轮的磨耗受运行线路、车辆结构、运行速度等因素的影响,在车辆的牵引、滑行、制动过程中又不可避免地会出现各种各样的车轮的磨耗。
随着车辆的长期运行,轮轨接触受环境的影响,在车轮踏面处不可避免地会出现凹磨、剥离、扁疤、多边形磨耗、轮径差等问题。Kaklar等[1]指出凹磨问题会导致轮轨横向力增大,增加轮轨垂向力和轮轨横向力的高频成分,进而严重恶化车辆稳定性;Liu等[2]指出踏面出现剥离将导致车辆运行时轮轨冲击加大,严重缩短轮轨的使用寿命;Nagvendra等[3]认为车轮出现扁疤时,车轨垂向力变化较小,但对轴箱端盖垂向振动响应影响很大;吴越等[4]指出车轮多边形磨耗是轨道车辆车轮的常见故障,不仅加剧车辆与轨道的振动,产生噪声污染,影响乘坐舒适性,而且其导致的循环冲击载荷会缩短车辆和轨道零部件的寿命,从而增加运营成本;刘思莹等[5]研究表明轮径差将会导致轮对的左右轮轨力不平衡,致使左右车轮的磨耗存在差异,较严重的轮径差会使得轮对频繁地出现蛇形运动,从而降低车辆运行的舒适性与安全性,且在轮缘根部也经常出现疲劳磨损的问题[6]。由于车轮外形的改变必将改变轮轨接触形态,进而影响车辆的动力学性能。故而需要从轮轨接触的状态分析造成车轮异常磨耗原因,进而研究车轮的磨耗规律并对车轮磨耗进行预测估计[6]。而研究车轮磨耗的目的在于探究不同环境下的车轮磨耗对车辆动力学特性的影响。中外众多专家学者对各类车辆的车轮磨耗问题及其对动力学性能的影响做了大量研究:李霞等[7]研究了地铁车辆的车轮磨耗;丁军君等[8]以转K6转向架的C80型货车为例研究了重载货车的车轮磨耗;李金城等[9]就低地板有轨电车的车轮磨耗及其动力学性能的变化问题进行了研究;Cui等[10]针对300 km/h以下动车组的车轮磨耗问题进行了探讨。
现如今,中国最新一代高速动车组最高运营速度为350 km/h。为了深入研究350 km/h新型高速列车的车轮磨耗规律和特征,探索车轮磨耗与车辆动力学性能之间的关系,有必要开展高速动车组轮轨磨耗及运行状况跟踪测试,以支持制定更加科学合理的车轮镟修方案,或是对现有的踏面外形进行改进。
笔者通过对车轮在一个镟修周期内的踏面外形进行跟踪测量,研究其磨耗规律及磨损主要发生的位置,并将测得的踏面外形作为变量导入车辆动力学模型,借助SIMPACK动力学软件进行仿真模拟,从非线性临界速度、脱轨系数、平稳性指标、磨耗功率方面,探究车辆在350 km/h速度下车轮磨耗对车辆动力学性能的影响。并就该高速列车的磨耗规律提出几点优化建议。
1 踏面磨耗测试
在轨道车辆运行的过程中,影响车辆的运行状态的因素主要有轮轨激励、流固耦合关系与弓网接触。轮对作为车辆的运动核心部件,车轮外形的变化将改变轮轨接触形态,进而影响车辆运行状态,因此对车轮磨耗进行持续跟踪测试具有重要意义。
1.1 实测车轮磨耗
对某350 km/h运行的新型动车组进行踏面磨耗跟踪测试,在一个镟修周期内,自第一次车轮镟修后,每间隔5×104km对该列车车轮踏面进行一次车轮外形测量。测试现场如图1所示。
借助图1中的WA+型铁道车轮外形测量仪对车轮外形进行测试,该设备通过一个五连杆机构加上两个角度编码器,通过推动测量仪上的滚子,沿着车轮外形滑动一次即可准确地测量出轨道车辆的车轮外形,具体的踏面外形测量方法参见文献[11]。
图1 测试现场Fig.1 Test on site
在一个镟修周期内对该列车进行5次车轮外形测量,跟踪车轮磨耗状况。整理数据得到图2所示的车轮踏面外形的变化图,记车轮内侧为零点位置,从图中可以看出,车轮的磨耗主要发生在距车轮内侧70 mm的滚动圆踏面附近,随着行驶里程的增加,该处的凹型磨耗愈加明显;此外在车轮的轮缘根部也出现轻微的磨耗,磨耗程度较踏面的凹型磨耗小。
图2 实测某新型动车组车轮踏面Fig.2 Wheel treads measured from a new EMU
记录该车的某一轮对的5次车轮磨耗测试的测量结果如表1所示。其中,踏面磨耗定义为所测得轮对内侧70 mm处的名义滚动圆半径与标准名义滚动圆半径之差,轮缘磨耗定义为所测轮缘厚度与标准轮缘厚度之差,踏面等效斜度定义为名义滚动圆处左右两侧3 mm的半径差。
表1 实测轮对踏面磨耗与轮缘磨耗Table 1 Tread and flange wear of wheelset from test
1.2 车轮磨耗规律
对车轮磨耗进行统计学分析,其规律如图3所示,磨耗曲线为后4次外形测试与第1次外形测试的差值。可以发现,车轮磨耗主要发生在踏面滚动圆附近与轮缘根部,同时,该车轮出现一定的偏磨现象,随着运行公里数的增加,车轮的偏磨问题愈加严重,当轮对的踏面磨耗最大值接近镟修规定的2 mm时,滚动圆处的半径差也接近国家规定的1 mm。
除磨耗数据体现车轮的磨耗程度外,车轮踏面表面状态也可以体现出车轮磨耗程度。通过对该车进行持续的车轮磨耗跟踪测试,如图4(a)~图4(d)所示,发现踏面表面从明显的光滑表面到微弱的磨波纹的出现,之后发展到细小的疲劳裂纹,直至发展到镟修前滚动圆附近出现了大量的疲劳剥离伤。
图4 车轮表面状态变化Fig.4 Changes in wheel surface
2 轮轨接触关系
经上述实测发现,被测车辆的车轮踏面出现凹型磨耗,轮缘根部出现了较大的磨损。对此需就轮轨的接触变化进行分析。
2.1 接触点分布
为了更直观地反映轮轨接触的变化,将所测得踏面外形与C60钢轨匹配,得到图5所示的轮轨接触点分布变化。
图5 轮轨接触点分布变化Fig.5 Change of contact point of wheel and rail
图5(a)为镟修后的踏面外形与钢轨匹配时的轮轨接触点分布,踏面处的接触点分布较为均匀,左右对称分布,当轮对发生横移后,在轮缘根部将首先形成两点接触。随着行驶里程的增加,如图5(b)~图5(e)所示,左右轮轨接触点分布不再对称,在踏面处的接触点分布逐渐由均匀分布变化为向凹磨区域两侧扩展,间隔的宽度不断增大。在车辆高速运行的过程中,由于轨道不平顺的影响,轮对会出现一定幅值的横移运动,此时,轮轨接触点将在凹磨两侧区域不断跳动,轮轨接触将出现较大冲击,此问题被称为假轮缘效应[12]。
2.2 轮对等效锥度变化
在前文中提到,该轮对的轮径差在不断扩大,故此对该轮对等效锥度的变化进行分析,结果如图6所示。
图6 轮对的车轮等效锥度Fig.6 The equivalent of the wheel pair
从表1可看出车轮在名义滚动圆处出现了轮径差。此时,可以通过图6发现:随着车轮磨耗的增加,车轮横移3 mm后的等效锥度呈现为非线性上升趋势,增长速度逐渐降低。Klingel公式[13]表明车轮的等效锥度与车辆非线性临界速度(后文简称临界速度)成反比,轮对等效锥度越小,车辆的临界速度越高。
3 动力学性能变化
为了验证临界速度与车轮磨耗的关系,并研究凹型磨耗给车辆动力学性能带来的影响,通过SIMPACK软件构建整车系统动力学模型,整车系统由1个车体、2个构架、4组轮对构成,轮对与构架之间由一系悬挂连接,构架与车体之间由二系悬挂和抗蛇形减振连接,通过一系列的模拟仿真计算,得到车轮磨耗与车辆临界速度、脱轨系数、Sperling指标、磨耗功率之间的相互关系。
3.1 临界速度
仿真中,车辆运行在一段平直轨道上,给车辆施加初始横向激扰,后撤去作用在车辆上的横向激扰,通过轮对横向位移的发散与收敛情况判断车辆是否达到临界速度。仿真结果如表2所示,随着车轮磨耗的加深以及轮径差的扩大,车辆的临界速度呈现出较明显的下降趋势,这与前文的论述一致。从表2中数据可知,车轮的不断磨耗导致临界速度从最大值450 km/h降至403 km/h,下降率达到了10.44%,当车轮磨耗达到W5工况时,车辆的非线性临界速度仍大于实际运营最高速度。即在一个镟修周期内,车轮磨耗对车辆的临界速度影响较小。
表2 不同工况下的临界速度Table 2 Critical speeds under different conditions
在对W5工况进行仿真时发现,当车轮出现严重凹型磨耗后,轮对的横移量将难以收敛为某一具体值,而是在一定范围内波动。如图7所示,当车辆达到临界速度时,轮对横移量从区间[1.19,4.02]瞬间增大至[-4.94,8.17],这与前文提到的假轮缘效应相对应。轮对发生横移后,钢轨将首先和凹型磨耗的两侧接触形成两点接触,若横移量继续增大,才会出现钢轨和轮缘的两点接触,此时记为W5工况下的车辆临界速度。
图7 W5工况下的车辆在临界速度时的轮对横移量Fig.7 Wheel set displacement at critical speed of vehicle under W5 condition
3.2 脱轨系数
在众多车辆系统安全性的评定指标中,除了临界速度外,脱轨系数也是作为评定车辆曲线通过能力的重要指标之一,脱轨系数定义为某一时刻下,轮轨间的横向力Q与垂向力P的比值,其计算公式为
(1)
式(1)中:α为车轮轮缘角;μ为轮轨间摩擦系数。
仿真中车辆模型通过的曲线参数:直线段100 m,缓和曲线长100 m,圆曲线半径800 m,轨底坡为1/40,外轨超高70 mm,线路长度共计500 m,全程使用德国高速低干扰轨道谱作为激励。在不同工况下,车辆以100 km/h的速度通过曲线线路时的脱轨系数如表3所示。
由表3可以看出,随着车轮磨耗程度的加重,脱轨系数由0.214 2增长至0.243 1,车辆的曲线通过性能变化较小,车辆的脱轨系数一直在0.21~0.25,远低于国家对车辆脱轨系数的规定限值。即在一个镟修周期内,车轮磨耗对车辆的脱轨系数影响较为微小。
表3 不同工况下的脱轨系数Table 3 Derail coefficient under different conditions
3.3 Sperling指标
对车辆系统安全性的变化分析后,有必要再对车辆系统平稳性的变化进行研究。选用国际通用的Sperling指标对车辆的平稳性进行评定。Sperling指标W由下式表示:
(2)
式(2)中:a为振动加速度,cm/s2;f为振动频率,Hz。
在加入轨道激励后,令车辆在直线上的运行速度为350 km/h,仿真计算后得到不同工况下的车辆平稳性指标,结果如表4所示。
表4 不同工况下的Sperling指标Table 4 ride quality under different conditions
由表4可以发现,随着车轮磨耗的增加,车辆平稳性略微有所增加,横向平稳性和垂向平稳性变化均较小。即在一个镟轮周期内,车轮磨耗对车辆的运行品质的影响微小。
3.4 磨耗功率
文献[14]指出横向蠕滑力和蠕滑速度的乘积与纵向蠕滑力和蠕滑速度的乘积之和,可近似为轮轨接触斑内的摩擦功率P,即
P=FxVx+FyVy=(Fxξx+Fyξy)V
(3)
式(3)中:Fx、Fy分别为轮轨接触的纵向蠕滑力矩和轮轨接触的横向蠕滑力矩;Vx、Vy分别为轮轨接触的纵向蠕滑速度和轮轨接触的横向蠕滑速度;V为轮轨接触点处的车轮滚动速度;ξi为轮轨接触的纵向蠕滑率。
图8所示为轮对磨耗功率随时间历程变化曲线。随着车轮磨耗的增加、凹型磨耗问题的加重,对应的磨耗功率的平均值出现较明显的增长,从899.179 6 W增长至1 095.593 6 W,磨耗功率增长了约18%。即在一个镟修周期内,车轮磨耗对车辆的磨耗功率的影响较小。
图8 车辆轮对磨耗功率Fig.8 The wear power of wheelset
由图8可知,当车辆以350 km/h的速度运行时,踏面凹磨情况越严重,车轮的平均磨耗功率越大。由式(3)可知,当车辆速度不变时,磨耗功率的增大意味着轮轨接触过程中的蠕滑力与蠕滑系数的之积在增大,此时,轮对与走行部更易出现较为剧烈的蛇行运动。
4 结论与建议
通过对350 km/h高速列车的车轮进行磨耗测试,并以车轮外形磨耗为自变量进行车辆系统动力学仿真,得到以下结论。
(1)在一个镟修周期内,车轮踏面处由镟轮后的表面光滑发展到15×104km时滚动圆附近出现疲劳裂纹,再到镟轮前的凹磨区域两侧出现较多的疲劳剥离。
(2)被测列车的车轮磨耗多发生在踏面滚动圆附近以及轮缘根部。
(3)在一个镟修周期内,随着车轮磨耗的增加,整车动力学性能未见明显降低。可见该镟轮计划可有效地保障车辆的高速安全运营。
参考了新一代动车组的车轮磨耗规律,以及不同工况下的高速车辆动力学性能变化情况,就降低轮对磨耗、提高车辆动力学性能、延长车轮的使用寿命方面提出以下几点建议。
(1)在车轮踏面处进行局部优化。在踏面凹磨区域借助物理气相沉积技术(physical vapor deposition,PVD)镀上耐磨涂层。其优点在于不影响轮对外形的前提下,可以有效地提高车轮踏面的耐磨性能,以延长车轮的镟轮周期,进而延长车轮寿命。
(2)研究踏面修形器技术。优化现有车辆上的研磨子使用效率,减缓滚动圆处出现凹磨的速度,削弱假轮缘效应,此举可以降低假轮缘效应带来的踏面疲劳剥离加剧问题和转向架的微量蛇形运动。
(3)进一步优化车轮外形。在参考轨道-车辆耦合系统的动力学特性后,需要根据高速轨道和车轮踏面的耦合接触关系优化踏面外形的设计,避免在车轮踏面处出现集中磨耗导致踏面凹型磨耗,延长镟轮后在滚动圆附近疲劳裂纹及疲劳剥离的出现时间。