睫状肌的结构、功能及神经支配
2020-05-25吕小利陶津华缪晚虹
吕小利 陶津华 缪晚虹
[摘要] 睫状肌的结构和功能与许多眼科疾病的发生和发展有关,如睫状肌前旋、肥厚与青光眼相关,睫状肌收缩带动玻璃体向前运动与特发性黄斑前膜、特发性黄斑裂孔等玻璃体视网膜界面疾病相关,睫状肌功能过度和不足可导致视疲劳的发生。同时睫状肌的结构和功能也受局部因素和全身因素的影响,局部的眼外伤可导致睫状体水肿,脑外伤可导致睫状肌痉挛,心理因素也可影响睫状肌的功能状态。这些因素可通过直接作用于外周睫状肌导致其结构和功能异常,也可通过中枢的神经支配影响睫状肌的功能状态。因此,深入理解睫状肌的结构及其神经支配对于临床疾病的诊疗及相关领域的研究有很大意义。本文旨在总结睫状肌结构和功能,着重从睫状肌水平、中脑Edinger-Westphal核水平和核上水平,阐述睫状肌神经支配的概况。
[关键词] 睫状肌;神经环路;调节;中脑;大脑皮层
[中图分类号] R773.3 [文献标识码] A [文章编号] 1673-7210(2020)04(c)-0053-04
Structure, function and innervation of ciliary muscle
LYU Xiaoli1,2 TAO Jinhua1 MIAO Wanhong1
1.Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China; 2.Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Province, Hangzhou 310005, China
[Abstract] The structure and function of ciliary muscle are related to the occurrence and development of many ophthalmic diseases, such as anterior rotation, hypertrophy of ciliary muscle are associated with glaucoma, vitreous body movement driven by ciliary muscle contraction is related to vitreoretinal interface diseases such as idiopathic macular membrane and idiopathic macular hole, the excessive and insufficient function of ciliary muscle can lead to the occurrence of visual fatigue. At the same time, the structure and function of ciliary muscle are also affected by local and systemic factors, such as local eye injury can lead to ciliary body edema, brain injury can lead to ciliary muscle spasm and psychological factors can also affect the function of ciliary muscle. These factors can directly affect the peripheral ciliary muscle to cause structural and functional abnormalities, and can also affect the functional state of the ciliary muscle through the central nerve innervation. Therefore, a deep understanding of the structure and innervation of ciliary muscle is of great significance for the diagnosis and treatment of clinical diseases and research in related fields. This paper aims to summarize ciliary muscle structure and function, focusing on ciliary muscle level, the midbrain Edinger-Westphal nuclear level and the supra nuclear level, describe the general situation of ciliary muscle nerve innervation.
[Key words] Ciliary muscle; Nerve loop; Accommodation; Midbrain; Cerebral cortex
睫状体为葡萄膜的中间部分,前接虹膜根部,后以锯齿缘为界与脉络膜相互移行。睫状肌为睫状体的主要构成部分,起源于巩膜突及其周围结缔组织[1]。基于核磁共振成像技术[2]及前节光学相干断层扫描(OCT)成像技术[3]的发展,睫状肌的结构、功能及其与眼部疾病之间的关系逐渐被揭开面纱。然而大多数研究聚焦于调节时睫状肌厚度、长度的变化[4],其结构和功能随年龄的变化[5]等,较少有研究关注睫状肌发挥功能的先决条件,即神经冲动的释放。睫状肌属平滑肌,受交感神经和副交感神经双重支配,其功能異常涉及的环节较多,因此,本文在对睫状肌的结构和功能进行梳理的基础上,着重从睫状肌水平、中脑Edinger-Westphal(E-W)核水平和核上水平3个方面对睫状肌的神经支配及功能异常进行阐述。
1 睫状肌的结构和功能
1.1 组织学结构特点
从组织学水平上,根据睫状肌纤维走行方向不同,分为纵行纤维、放射纤维和环行纤维3种。较大的肌束位于睫状体前2/3,有少量的纵行肌纤维向后到达锯齿缘及赤道部脉络膜[6]。睫状肌矢状切面观为直角三角形,斜边平行巩膜,直角朝向睫状突,尖端指向脉络膜。纵行纤维在外侧为前后排列走行,在内侧前端平行于角膜缘走行的是环行纤维,两者之间为斜行的放射纤维[1]。有学者认为睫状肌的纤维排列为格子状,内侧为横行肌纤维,外侧为纵行肌纤维;其结构是一整体,为四头肌肉,按“人”字呈不同角度和交叉走行[6]。同时睫状肌具有前后附着的肌腱,前部附着于巩膜突和小梁网,后部附着于脉络膜及Bruch′s膜向前延伸的部分,前部肌腱、較后部肌腱含有较少的弹性蛋白,且被纤维鞘膜包绕[7]。
1.2 细胞学构成特征
从细胞水平上[8],睫状肌在人体所有副交感神经支配的平滑肌中是独特的,因为它具有许多快速横纹肌的超微结构、组织化学和传出神经特征。与血管或肠壁等其他部位的平滑肌不同,肌细胞呈规则排列的致密带和致密体,类似于横纹肌中的Z带。在超微结构上,人类睫状肌细胞的主要特征是线粒体和内质网的数量比普通平滑肌丰富,尤其在放射和环形纤维部分更加明显。
睫状肌肌束周围有扁平的结缔组织细胞包裹,可见胶原、弹性纤维、有髓神经纤维和无髓神经纤维及毛细血管。这些神经末梢可能与多个睫状肌细胞有关,但仅与一个肌束内的细胞有关。睫状肌的神经末梢在单节段出现的频率比其他平滑肌高得多,在少数情况下,神经纤维与肌细胞膜非常接近,但在大多数情况下,神经纤维与肌细胞膜是由基底膜分隔[9-10]。
1.3 功能特点
结构决定功能,人眼的调节过程是由睫状肌实现的,通过睫状肌3个部分肌纤维的构型变化,产生向前向内的运动,从而影响悬韧带的张力改变晶状体的曲率[1],这个复杂的过程主要依赖于睫状肌本身的结构。位于外侧的纵行肌收缩时可开放巩膜静脉窦[6],促进房水循环;位于内侧的环行及放射纤维,收缩时可改变晶状体悬韧带张力,改变晶状体的曲率,但这些肌肉并不单独收缩,而是一个功能整体。Ruggeri等[11]应用前节OCT成像分析睫状肌随调节的形态变化,表现为收缩性缩短,尤其是前端部分收缩和增厚明显,且颞侧肌肉有较大的收缩反应,产生睫状肌群向前和向心收缩的位移。
2 睫状肌的神经支配及功能异常表现
睫状肌收缩过程复杂,其动态、精确、快速地对任何距离的物体进行视觉聚焦,需精密的神经支配,以实现肌肉运动的精细调整。以下将从“3个神经环路”水平说明睫状肌神经支配及功能异常的具体环节和表现。
2.1 睫状体内部神经环路及功能表现
2.1.1 睫状肌内部神经环路 人眼调节功能的发挥,需要出色的中心视觉分辨率,快速调整焦距,以及强大的图像跟踪和图像稳定能力。即使在固定距离上保持对一个物体的聚焦,也需要不断精细地调整晶状体的形状和位置。因此,与调节机制有关的肌肉本身,应该存在某种感觉传入机制来监测肌肉的收缩和放松状态,从而调整悬韧带的张力。
Flügel-Koch等[10]对睫状体进行显微结构研究发现,睫状体中存在形态和功能不同的本体感受器。在内侧环行肌和睫状突构成的间隙里,存在数量多且复杂的传入结构[8-9],纵行肌纤维和放射肌纤维间的过渡区及附着于脉络膜及Bruch′s膜向前延伸部分的弹性肌腱周围,富含机械受体样结构存在,且发现环行肌含有大量的内在神经细胞可构成局部的神经反射弧以完成肌肉的自我调节。
在调节过程中睫状体前部肌纤维向前、向内运动[9],位于睫状体前端肌腱周围的感受器可测量肌肉形成的剪切力;调节过程中睫状体后部肌纤维向前运动,拉伸后部弹性肌腱,同时在放松调节过程中,放松的肌肉被肌腱的弹力向后拉[12]位于睫状体后端的感受器可以测量后部肌腱的伸展。这些神经终末结构及其存在的位置显示,其可以记录组织间隙中结缔组织纤维的运动以及肌肉纤维本身的增厚对肌肉收缩和拉伸状态起到监控作用[9]。
总之,在睫状肌的内侧部分存在着一个复杂的内在神经系统。这些神经细胞具有特殊的超微结构特征,有直接的机械感受功能,其通过树突与肌肉细胞的直接接触,感受环行肌纤维及放射肌纤维的形状变化,间接测量收缩状态[13]。此外,这些结构也存在于睫状突皱褶的基底部,感受悬韧带的张力变化。因此Flügel-Koch等[10]认为睫状肌内部存在神经环路,调控睫状肌精细而快速实现细微的收缩和放松。
2.1.2 功能表现 导致睫状肌功能异常有多种因素,如外伤[14]、药物[15-17]、久视[4],此外,声能射线也可能穿过眼睑,导致睫状肌功能障碍。有文献报道[18],眼部皮肤美容等超声仪器,可造成睫状肌痉挛,引起假性近视。局部睫状肌的电刺激也可影响其功能,Gualdi等[19]使用聚碳酸酯的巩膜隐形眼镜对睫状肌部位(角膜缘区域外3.5 mm处的4个点配备有4个微电极)进行脉冲电刺激,用来治疗早期老视患者,发现电刺激后这些患者具有较好的近距离视觉表现。
2.2 调节反射环路及功能表现
2.2.1 调节反射的神经环路 调节反射是人眼聚焦于近处物体的视觉反应,通常与双眼集合、瞳孔缩小联动,因此也被称为调节-集合反射或近反射[20]。从中脑和间脑到睫状肌的传出通路为:副交感神经通路,起源于E-W核,节前神经纤维到达睫状神经节后换元,神经节后副交感神经通过释放乙酰胆碱,支配睫状肌收缩;睫状肌的交感神经支配通路起源于间脑,沿脊髓下行至颈下段和胸上段,到达脊髓中外侧束后换元,换元后二级神经元由第七颈椎和第一胸椎腹根离开脊髓,这些神经节前纤维沿着颈交感链向上延伸至颈神经节后换元;第三级神经节后纤维沿交感颈动脉丛上行进入眼眶,或独立、或与三叉神经的第一分支一起进入眼眶,与睫状长或短神经汇合后支配睫状肌[21]。
引起调节反射的bottom-up通路为:模糊的视觉信号→视皮层→额叶眼→脑桥旁正中网状结构→中脑网状结构动眼神经核→E-W核→睫状神经节→睫状肌[22-24]。然而模糊的视觉信号并不是调节反射的唯一条件,三叉神经节输入的本体感受信号,也可经过神经环路的信号反馈,最终通过动眼神经影响到睫状神经节的传出反应[10]。而且,光线本身的聚散度也可引起调节反馈[25]。
2.2.2 睫状肌自主神经支配特点及功能异常表现 睫状肌主要由密集的胆碱能副交感神经末梢支配[26],也有证据支持受交感神经支配[27]。副交感神经支配的增加(在1 s内)可迅速产生多达20 D的调节反应(看近),而交感神经支配要慢得多,一般在10~40 s內产生至多1.5 D的调节反应(看远)[26-27]。有研究显示[28],交感神经系统对调节的动力学影响很小,对其静息水平或振幅影响不大。Del águila-Carrasco等[29]也认为使用盐酸苯肾上腺素(拟交感药物)可调节变化是由药物散瞳造成的光学像差引起,而非药物本身作用。
中脑的病灶可影响调节功能,有文献曾报道[30-31],头部外伤后可导致调节功能障碍,表现为持续性的调节痉挛或者调节不足等。
2.3 大脑皮层top-down神经调控网络
目前,对灵长类动物睫状肌的核上神经支配研究较少,大脑如何计算和调控来自眼睛的感觉信号,这些大脑信号又如何进入E-W核,并调控位于E-W核内的节前神经元,并最终转变为支配睫状肌的运动信号,还知之甚少。
由于大脑皮层神经元丰富,对支配睫状肌的神经元标记研究比较困难,而一项对恒河猴睫状肌的逆行神经的标记研究,也只追踪到中脑[32]。近年来,随着功能核磁共振、近红外脑功能等技术应用于眼球功能的研究得知许多大脑区域参与控制近反射,如枕叶、小脑半球、蚓部以及颞叶等[33-35]。
3 总结与展望
关于睫状肌的精细神经调控,还有许多内容未被认识。目前的研究只是部分描述了眼调节运动控制的神经通路,但对于眼调节的视觉输入通路和感觉运动转换却知之甚少。将来还需要进一步研究E-W核上神经相关通路,以及影响调节输出的功能脑区,包括心理和注意力相关脑区的皮层调控。
[参考文献]
[1] 葛坚,王宁利.眼科学[M].3版.北京:人民卫生出版社,2015:66-68.
[2] Khan A,Pope JM,Verkicharla PK,et al. Change in human lens dimensions,lens refractive index distribution and ciliary body ring diameter with accommodation [J]. Biomed Opt Express,2018,9(3):1272-1282.
[3] Chang YC,Liu K,Cabot F,et al. Variability of manual ciliary muscle segmentation in optical coherence tomography images [J]. Biomed Opt Express,2018,9(2):791-800.
[4] Wagner S,Schaeffel F,Zrenner E,et al. Prolonged nearwork affects the ciliary muscle morphology [J]. Exp Eye Res,2019,186:107741.
[5] Domínguez-Vicent A,Monsálvez-Romín D,Esteve-Taboada JJ,et al. Effect of age in the ciliary muscle during accommodation:Sectorial analysis [J]. J Optom,2019,12(1):14-21.
[6] Mao Y,Bai HX,Li B,et al. Dimensions of the ciliary muscles of Brücke,Müller and Iwanoff and their associations with axial length and glaucoma [J]. Graefes Arch Clin Exp Ophthalmol,2018,256(11):2165-2171.
[7] Park CY,Lee JK,Kahook MY,et al. Revisiting ciliary muscle tendons and their connections with the trabecular meshwork by two photon excitation microscopic imaging [J]. Invest Ophthalmol Vis Sci,2016,57(3):1096-1105.
[8] May C. Morphologic characteristics of the human ciliary muscle [J]. New Front Ophthalmol,2017:3.
[9] Flügel-Koch CM,Croft MA,Kaufman PL,et al. Anteriorly located zonular fibres as a tool for fine regulation in accommodation [J]. Ophthalmic Physiol Opt,2016,36(1):13-20.
[10] Flügel-Koch C,Neuhuber WL,Kaufman PL,et al. Morphologic indication for proprioception in the human ciliary muscle [J]. Invest Ophthalmol Vis Sci,2009,50(12):5529-5536.
[11] Ruggeri M,de Freitas C,Williams S,et al. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging [J]. Biomed Opt Express,2016,7(4):1351-1364.
[12] Croft MA,Lütjen-Drecoll E,Kaufman PL. Age-related posterior ciliary muscle restriction–A link between trabecular meshwork and optic nerve head pathophysiology [J]. Exp Eye Res,2017,158:187-189.
[13] Neuhuber W,Schr?觟dl F. Autonomic control of the eye and the iris [J]. Auton Neurosci,2011,165(1):67-79.
[14] Ikeda N,Ikeda T,Kohno T. Traumatic myopia secondary to ciliary spasm after blunt eye trauma and reconsideration of its pathogenesis [J]. Graefes Arch Clin Exp Ophthalmol,2016,254(7):1411-1417.
[15] Esteve-Taboada JJ,?譧guila-Carrasco D,Antonio J,et al. Effect of phenylephrine on the accommodative system [J]. J Ophthalmol,2016,2016:1-13.
[16] Zhang J,Ni Y,Li P,et al. Anterior Segment Biometry with Phenylephrine and Tropicamide during Accommodation Imaged with Ultralong Scan Depth Optical Coherence Tomography [J]. J Ophthalmol,2019:6827215.
[17] Randhawa P. Pharmacological and physiological manipulation of ocular accommodation [D]. Birmingham:Aston University,2017.
[18] Chen Y,Shi Z,Shen Y. Eye damage due to cosmetic ultrasound treatment:a case report [J]. BMC Ophthalmol,2018,18(1):214.
[19] Gualdi L,Gualdi F,Rusciano D,et al. Ciliary muscle electrostimulation to restore accommodation in patients with early presbyopia:Preliminary results [J]. J Refract Surg,2017,33(9):578-583.
[20] Heermann S. Neuroanatomy of the Oculomotor System [J]. Klin Monbl Augenheilkd,2017,234(11):1327-1343.
[21] Richter HO,Lee JT,Pardo JV. Neuroanatomical correlates of the near response:Voluntary modulation of accommodation/vergence in the human visual system [J]. Eur J Neurosci,2000,12(1):311-321.
[22] Agarwal M,Ulmer JL,Chandra T,et al. Imaging correlates of neural control of ocular movements [J]. Eur Radiol,2016,26(7):2193-2205.
[23] May PJ,Billig I,Gamlin P,et al. Central mesencephalic reticular formation control of the near response:lens accommodation circuits [J]. J Neurophysiol,2019,121(5):1692-1703.
[24] May PJ,Warren S,Bohlen MO,et al. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei [J]. Brain Struct Funct,2016,221(8):4073-4089.
[25] Marin-Franch I,Del Aguila-Carrasco AJ,Bernal-Molina P,et al. There is more to accommodation of the eye than simply minimizing retinal blur [J]. Biomed Opt Express,2017,8(10):4717-4728.
[26] May PJ,Reiner A,Gamlin PD. Autonomic Regulation of the Eye [M]. Oxford Research Encyclopedia of Neuroscience,2019.
[27] Sander BP. The influence of the autonomic nervous system on the human choroid [D]. Brisbane:Queensland University of Technology,2017:48.
[28] Ostrin LA,Glasser A. Autonomic drugs and the accommodative system in rhesus monkeys [J]. Exp Eye Res,2010,90(1):104-112.
[29] Del águila-Carrasco AJ,Lara F,Bernal-Molina P,et al. Effect of phenylephrine on static and dynamic accommodation [J]. J Optom,2019,12(1):30-37.
[30] Hughes FE,Treacy MP,Duignan ES,et al. Persistent pseudomyopia following a whiplash injury in a previously emmetropic woman [J]. Am J Ophthalmol Case Rep,2017, 8:28-30.
[31] Padula WV,Capo-Aponte JE,Padula WV,et al. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI) [J]. Brain Inj,2017, 31(5):589-600.
[32] May PJ,Warren S,Gamlin PDR,et al. An Anatomic Characterization of the Midbrain Near Response Neurons in the Macaque Monkey [J]. Invest Ophthalmol Vis Sci,2018,59(3):1486-1502.
[33] Cléry J,Guipponi O,Odouard S,et al. Cortical networks for encoding near and far space in the non-human primate [J]. Neuroimage,2018,176:164-178.
[34] Krauzlis RJ,Goffart L,Hafed ZM. Neuronal control of fixation and fixational eye movements [J]. Philos Trans R Soc Lond B Biol Sci,2017,372(1718). pii:20160205.
[35] Richter HO,Forsman M,Elcadi GH,et al. Corrigendum:Prefrontal Cortex Oxygenation Evoked by Convergence Load Under Conflicting Stimulus-to-Accommodation and Stimulus-to-Vergence Eye-Movements Measured by NIRS [J]. Front Hum Neurosci,2018,12:298.
(收稿日期:2019-11-19 本文編辑:刘明玉)