二阶差分方程周期边值问题正解存在的最优条件
2020-04-10王晶晶路艳琼
王晶晶 路艳琼
摘要:运用锥上的不动点指数理论,获得了格林函数非负时二阶离散周期边值问题
关键词:周期边值问题:正解:非负格林函数:不动点指数
中图分类号:0175.8
文献标志码:A
DOI: 10.3969/j.issn.1000-5641.201811039
0 引 言
众所周知,我们所处的这个世界上普遍存在着大量的周期现象,诸如天体力学中球体的运动,生物工程中果蝇种群的繁殖,血红细胞的生成等.而这些周期现象都可以用周期边值问题来刻画,因此微分方程周期邊值问题的研究深受许多学者的关注.离散周期边值问题不仅可以为连续周期边值问题提供数值计算格式,而且在人口动力系统、非线性扩散、生物生态学等许多问题中具有重要的应用.因此对离散周期边值问题正解存在性和多解性的研究近年来十分活跃.特别地,在格林函数定号的情形下,文献[1-6]获得了二阶离散周期边值问题正解存在的重要结果.相应连续的情形可见参考文献[7-10].1999年,Atici与Guseinov[1]利用锥上的不动点理论研究了二阶离散周期边值问题
[参考文献]
[1]
ATICI F M,GUSEINOV G S Positive periodic solutions for nonlinear difference equations with periodic coefficients [J] Journal of Mathematical Analysis and Applications. 1999, 232(1): 166-182. DOI: 10.1006/jmaa.1998.6257
[2]
ATICI F M.CABADA A. Existence and uniqueness results for discrete second-order periodic boundary value problems [J] Computersand Mathematics with Applications, 2003, 45(6/7/8/9): 1417-1427. DOI: 10.1016/S0898-1221(03)00097-X
[3] 王丽颖,张丽颖,李晓月二阶离散周期边值问题的正解[J]东北师大学报(自然科学版),2007(2): 11-15 DOI: 10.3321/j.issn:1000-1832 2007 02 003
[4] 李晓月,王丽颖二阶离散周期边值问题的单个和多个正解[J]数学物理学报,2009. 29(5):1187-1195
[5]MA R Y. LU Y Q, CHEN T Existence of one-signed solutions of discrete second-order periodic boundary value problems [J] Abstractand Applied Analysis. 2012(2): 160-176
[6] 蒋玲芳.二阶奇异离散周期边值问题正解的存在性和多解性[J]内蒙古大学学报(自然科学版),2013. 44(4): 345-351
[7] 姚庆六.变系数非线性二阶周期边值问题的正解[J]应用数学学报,2008(3): 564-573. DOI: 10.3321/j.issn:0254-3079.2008.03.018
[8] 陈彬.格林函数变号的三阶周期边值问题[J]山东大学学报(理学版),2016, 51(8): 79-83
[9]GAO C H, ZHANG F, MA R Y. Existence of positive solutions of second-order periodic boundary value problems with sign-changing Green'sfiinction [J]用数学学报(英文版),2017,33(2): 263-268
[10]CABADA A, ENGUICA R. LOPEZ-SOMOZA L Positive solutions for second-order boundary value problems with sign changing Green'sfiinctions [J]. Electronic Journal of Differential Equations, 2017, 2017(245): 1-17
[11]ZHANG G W,SUN J X. Positive solutions of m_point boundary value problems [J]. Journal of Mathematical Analysis andApplications, 2004, 291(2): 406-418. DOI: 10.1016/jjmaa.2003.11.034.
[12]CUI Y J,ZOU Y M Nontrivial solutions of singular superlinear m-point boundary value problems [J] Applied Mathematics andComputation, 2007, 187(2): 1256-1264. DOI: 10.1016/j.amc.2006.09036
[13] WANG F.ZHANG F Positive solutions for a periodic boundarv value problem without assumptions of monotonicity andconvexity [J]. Bulletin of Mathematical Analysis and Applications, 2011(2): 261-268
[14]GUO D J,LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]New York: Academic Press. 1988
(责任编辑:林磊)