数形结合思想在小学数学教学中的渗透
2020-01-21张春萍
张春萍
【摘要】对于小学数学教学来说,在教学环节渗透数形结合思想,是数学教学中的基本要求。数与形二者互为因果关系,在教学环节将二者互相转换及有效利用,可以有效解决数学问题,同时也可以最大限度地将抽象化的数学问题简化。
【关键词】数形结合;小学数学;教学;渗透
中图分类号:G623.5文献标识码:A文章编号:0493-2099(2020)33-0012-02
The Infiltration of the Idea of Combining Numbers and Shapes in Primary School Mathematics Teaching
(Youth East Street Primary School, Ganzhou District, Zhangye City, Gansu Province,China) ZHANG Chunping
【Abstract】For elementary school mathematics teaching, it is a basic requirement in mathematics teaching to infiltrate the idea of combining number and shape in the teaching process. Number and shape are mutually causal. Converting and effective‐ly using the two in the teaching process can effectively solve mathematical problems and simplify abstract mathematical prob‐lems to the maximum.
【Keywords】Combination of number and shape; Primary school mathematics; Teaching; Penetration
小学阶段学生的特点是形象思维能力较强,而抽象思维能力较弱。小学生对知识的感知大都依靠听觉和视觉,而数学学科又是一门抽象性和逻辑性都较强的学科。因此,教师应利用数形结合的教学模式,有效将抽象化的数学知识转换为形象化的数学知识,从而降低数学知识的学习难度,便于学生理解知识。
一、形象感知,形成数形结合概念
在小学数学课堂教学环节,教师应将数形结合教学思想运用在课堂教学中,也就是将数学中抽象的“数”与形象的“图”进行有机融合,从而使形的抽象价值得到增强,也使数形成了较强的直观可感知性,使数与形实现了真正意义上的互相促进、互相补充。
具体来说,教师应帮助学生对新知识的产生过程有一个清晰的认知,并在这一过程中使学生通过图形对比与形象感知,感受到数学概念的产生过程。学生对数学概念的形成,主要是学生在学习各类数学例题的过程中对数学知识进行分析、总结、归纳,进而对数量关系以及空间形式的本质属性形成认知。此外,通过对比图形,学生还可以对图形中的共同属性进行认知,从而对知识的概念形成强化性认知。
例如,在学生学习长方形与正方形知识的过程中,首先教师可以对学生进行问题式引导教学,用哪种计算方式,可以使长方形的周长计算方式变得更加简便。学生提出了三种解决问题的方法,分别是长+长+宽+宽、(长×2)+(宽×2)、(长+宽)×2,最终教师公布了正确答案,最后一种计算方法是计算长方形周长最简便的方法,并在这一基础上,以图形教学模式对学生进行知识传授,使学生不仅知其然更知其所以然。通过图形可以将教学内容进行直观性表达,使学生清晰地看到将长方形的长和宽相加,就得到了一个长方形的长与宽的和,在这种情况下乘以2,自然就是整个长方形的边长。这种方式比单纯的文字讲解,会使学生更容易对这一问题进行认知。
二、总结归纳,渗透数形结合思想
在小学数学课堂教学环节,数形结合的教学模式可以有效提高学生的学习效率,并在这一过程中,提升学生的逻辑思维能力。同时,数形结合模式的运用,也可以对学生的思维方式进行简化,也就是说一旦学生在遇到图式与数式结合的情况下,则会自主选择最佳的解题模式。但是,通常教师对数学结合知识的讲解,大都在对学生传授新知识的时候进行运用,而在复习阶段,却较少运用这一教学模式,而这种情况会使学生出现知识积累不扎实的问题,也只会使学生掌握数学知识的表层,而对于数学知识的深刻内涵缺乏足够的认知,也就谈不上对数学知识的活学活用。所以,将数学结合模式融入复习环节,可以有助于巩固学生对数学知识的理解,并辅助学生理顺各类数学知识点的内在联系,进而形成完善的数学学习体系。对于小学知识而言,可以说从一年级到六年级的内容,全部都可以運用数形结合的模式对学生进行教学。因此教师可以有针对性地总结和归纳各部分教学内容,并且在这一基础上进一步强化学生利用数学结合模式去解决数学问题。
以正负数的认识为例,本知识点的内容首先是引导学生对正数和负数进行认知,单纯地用数字说明,小学生会较难对负数形成理解,而利用图形模式对本知识点的内容进行阐述,学生就会清晰直观地对正负数的问题产生理解。首先,教师可以在图形上固定0的位置,然后引导学生观察,在0的右侧都是整数,且数字逐渐递增,而在0的左侧则都是负数,且越往左数字越小,从而通过这种数形结合的模式,强化学生对这部分数学内容的认知。
再以《四则运算认识》为例,教师可以利用数轴模式,将抽象化的数学内容转化为形象化的内容,此外还可以在这一基础上将数学运算内容具体化和形象化。对于加法来说,在数轴中表示加法,通常都是逐步从左向右增加,或者将数个单位向右方进行平移;而对于减法来说,其在数轴中则是向左数,或者将数个单位向左进行平移;而乘法又不同,它是从左到右以倍数来数;除法则是在被除数为核心的情况下,从右向左以倍数来数,直到数到0,这代表算式除尽,而且向左数几个数字,就代表其商是多少,如果没有数到0则表示算式没有除尽。因此,数轴在四则运算认识中的运用,可以将较为抽象且复杂的运算方式变得简单化、形象化,使学生一目了然,对加减乘除运算有一个清晰的认知。
三、借助迁移,强化数形结合认知
数形结合的教学模式可以有效揭示数学的本质问题,从而使学生透过数学的抽象性,看到数学问题的实质内涵,进而在这一基础上,提升学生解决问题的准确性以及解题的速度。在小学数学课堂教学环节,对于数形结合的教学模式来说,教师应将教学侧重点放在对学生的数与形两种表征进行转换能力的培养层面,同时也应提升学生以数形结合思想进行解题的能力,最终使学生对数形结合的学习思想有一个体系化的认知。具体来说,在问题解决中,融入数形结合思想,可以通过迁移策略完成,将相关数形结合的理念在问题情境中进行有机融入,从而解决不同的数学问题。
例如,在学生学习位置确定知识的过程中,教师就可以将迁移策略融入,从而使学生对这部分知识有一个更为清晰的认知,在导课环节,教师可以向学生提出问题,比如小明坐在教师的哪一个位置,通过这一问题的提出,进而使学生懂得列的含义。同时,教师也可以为学生提供方格图表,引导学生利用数学概念,对小明所在的位置进行描述。此外,在这一基础上,教师还可以引导学生自行研究并挖掘相关行与列的知识,并将具体内容表述在电子表格以及方格纸中,并且通过这一问题,引导学生对坐标知识体系进行认知。然后,教师还应继续对学生进行教学引导,首先教师可以将电子图以及方格纸中的位置用数字表示,并引导学生找出自身在表格中对应的位置,将图形的位置特征运用数字进行具体化描述,旨在引导学生理解参照点、垂直线段、刻度单位、坐标系优势,并在这一基础上,通过数字对平面中的点进行定位。这种与实际生活具有高度契合点的内容,可以使学生产生学习兴趣,提升知识迁移能力,进而为下一个阶段学习函数图形以及直角坐标奠定坚实基础。
四、结语
在小学数学教学环节中,运用数形结合教学模式对学生进行教学引导,可以将数学逻辑本质作为核心原则,对数学语言、数量关系、数学图形进行详细化的注解,从而使学生对数学知识的理解更加具体,并在这一过程中感受到数学知识的魅力所在。
参考文献:
[1]吴幼山.数形结合思想在小学数学教学中的应用[J].学周刊,2020(13).
[2]潘从光.数形结合思想在小学数学教学中的实践应用[J].学周刊,2020(12).
(责任编辑王小飞)