数学思想在数学课堂中培养策略分析
2019-10-21张明星
张明星
摘要:在数学活动中,学生最关心的是解决问题的方法,即数学方法,它是指在数学思维的指导下,解决数学问题的具体过程与操作程序,数学思想方法是数学创造活动的基本方法,只有站在数学思想方法的高度来认识数学问题,才能把握思维活动的全貌。本文着重介绍一些数学思想方法及如何渗透这些思想方法。
关键词:初中数学;思想方法;教学策略;
长期以来,传统的数学教学中,只注重知识的传授,却忽视知识形成过程听数学思想方法的现象非常普遍,它严重影响了学生的思维发展和能力培养。随着教育改革的不断深入,越来越多的教育工作者、特别是一线的教师们充分认识到:中学数学教学,一方面要传授数学知识,使学生掌握必备数学基础知识;另一方面,更要通过数学知识这个载体,挖掘其中蕴涵的数学思想方法,更好地理解数学,掌握数学,形成正确的数学观和一定的数学意识。
一、教学过程中穿插思想方法
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深入理解和把握。例如:分類讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类。
二、注重化归意识的培养
化归意识是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的基本解题模式,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。如有理数的减法运算是利用了相反数的概念转化为加法;学习方程和方程组时,通过逐步“消元”或“降次”的方法使“多元”转化为“一元”、“高次”转化为“低次”方程进行求解;将多边形的内角和转化为三角形的内角和进行研究等问题都是化归思想的运用,它们均采用将“未知”转化为“已知”、将“陌生”转化“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有等解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题。数学思想和方法不仅是上述几种,这里不可能全面阐述。数学思想和方法是数学知识的有机组成部分,是数学知识的精髓,是知识转化为能力的桥梁。因此在平时的教学过程中教师应根据学生的认知水平和能力结构,充分利用教材内容对数学思想和方法反复渗透,从而帮助学生顺利实现两个迁移:一是要抓住概念、法则、公式、定理等共性进行类比,实现知识上的迁移;二是要不断研究运用知识、方法的共性,不断引导学生举一反三,触类旁通,实现能力上的迁移。最终培养和锻炼学生思维的广阔性、灵活性、敏捷性和创造性。
三、分类讨论思想的培养
分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类。分类是数学发现的重要手段。在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。例如,实数的绝对值定义也是采用分类法给出的,在这个定义中选择a=0作为分类的标准。在每一类中,其结果都不包含绝对值符号。因此定义也给出了脱去绝对值符号的一种方法。再如,在同一个圆中,一条弧所对的圆周角等于它所对圆心角的一半。为了验证这个猜想,教学时常将圆对折,使折痕经过圆心和圆周角的顶点,这时可能出现三种情况:(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部。验证时,要分三种情形来说明,这里实际上也体现了分类讨论的思想方法。
四、总结
在初中数学教学中,渗透数学思想方法,可以克服就题论题、死套模式。数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析、解决问题的能力,从而使思维品质和能力有所提高。提高学生的数学素质,必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。 数学思想方法是数学教学中联系各项知识的纽带,它较数学知识有更大的抽象性和概括性,只有在教学过程中长期渗透,才能收到较好的效果。我们在教学中要给予足够的重视,同时在九年级最后总复习阶段要上升到较高层次的数学思想,用较高观点去概括知识的逻辑结构,提示知识的内在联系,使掌握的知识层次更具深度和广度,才能将数学思想方法的学习转变为基础知识。
参考文献:
[1] 邓云.新课程背景下初中数学教学研究.湖南师范大学课程与教学论硕士学位论文,2006.
[2] 马玉娇.新课标下初中数学教学活动的探究.河北师范大学数学与系统科学学院硕士学位论文,2005.
[3] 姜昊.初中数学思想方法教学的实践研究.天津师范大学学科教学(数学)硕士学位论文,2012.