桂南山姜茎精油化学成分及抗菌活性研究
2019-09-10赵东升邓景丹郭幼红
赵东升 邓景丹 郭幼红
摘 要:为研究桂南山姜茎精油化学成分及精油对食源性细菌的抑菌能力,用水蒸气蒸馏法提取桂南山姜茎精油,采用气相色谱氢火焰离子化检测器(GCFID)和气相色谱质谱联用法(GCMS)鉴定精油化学成分,用紙片扩散法及96孔板微量稀释法测定精油对4种食源性细菌的抑菌能力。结果表明:桂南山姜茎部位的精油提取得率为0.034%;共鉴定出桂南山姜茎精油化学成分23种,主要由单萜类化合物及其含氧衍生物、倍半萜类化合物及其含氧衍生物、醇类化合物组成,占精油总量的94.19%,其中1,8桉叶油素和β蒎烯含量较高,分别占32.39%和23.99%;桂南山姜茎精油对铜绿色假单胞菌的最小抑菌浓度(minimal inhibitory concentration,MIC)为10.0 mg·mL-1,对金黄色葡萄球菌和枯草芽孢杆菌的最小抑菌浓度均为5.0 mg·mL-1。综上表明,桂南山姜茎精油中以1,8桉叶油素含量最高,桂南山姜精油对4种食源性致病菌有一定的抑制作用。
关键词:桂南山姜;精油;化学成分;抗菌活性
Abstract:In order to study the chemical constituents of essential oil of Alpinia japonica stem in South Guangxi and its bacteriostasis against foodborn bacteria, the essential oil of Alpinia Guinanensis Stem was extracted by steam distillation, and its chemical constituents were identified by gas chromatographyflame ionization detector (GCFLD) and gas chromatographymass spectrometry (GCMS). The antibacterial activity of essential oil against 4 kinds of foodborn bacteria was determined by the method of paper diffusion and 96well plate microdilution method. The results showed that the extraction rate of essential oil from Alpinia Guinanensis Stem was 0.034%. A total of 23 chemical constituents of essential oil from Alpinia Guinanensis Stem were identified, which were mainly composed of monoterpenoids and their oxygenated compounds, sesquiterpenoids and their oxygenated compounds, and alcohol components, accounting for 94.19% of the total amount of essential oil. The contents of 1,8cineole and βpinene were higher, accounting for 32.39% and 23.99%, respectively. The minimal inhibitory concentration (MIC) of the essential oil from Alpinia Guinanensis Stem was 10.0 mg·mL-1 for the pseudomonas aeruginosa, and 5.0 mg·mL-1 for staphylococcus aureus and bacillus subtilis. In conclusion, the content of 1,8cineole was the highest in the essential oil from Alpinia Guinanensis Stem, and the essential oil from Alpinia japonica in South Guangxi had certain inhibitory effect on the 4 kinds of foodborn bacteria.
Key words:Alpinia Guinanensis Stem; Essential oil; Chemical composition; Antibacterial activity
微生物是食物腐败、甚至是导致食物中毒和食源性疾病的主要原因[1]。合成防腐剂对人体健康风险较高,具有累积毒性、致癌性、致畸性和降解缓慢等缺点[2-4],因此,寻找一种安全的防腐剂意义重大。植物精油作为食品工业中更安全的生物防腐剂,已有大量的研究[5-7],姜科植物是一种原产于热带地区的物种,已经有相当多的证据表明,部分山姜属植物具有杀菌活性并被用作食物香料,甚至可以作为民间药物用于缓解胃痛[8-9]。桂南山姜在其叶片与茎部分散发出独特的芳香气味,富含精油[10]。桂南山姜叶片部位精油的研究已有报道[11],但未见茎部精油成分及抗菌活性的报道。本研究利用水蒸气蒸馏法提取桂南山姜新鲜茎部位的精油,采用GCFID和GCMS技术分析所提取的桂南山姜茎化学成分,并进行桂南山姜茎精油对4种食源性致病菌抗菌活性的试验,以期为开发和利用桂南山姜茎精油提供理论依据。
1 材料与方法
1.1 材料与仪器
桂南山姜鲜茎样品采集于广州市,由中国科学院南方植物园的高泽正博士鉴定。革兰氏阳性菌株金黄色葡萄球菌(CMCC 26003)、枯草芽孢杆菌(CMCC 63501)、革兰氏阴性菌株铜绿假单胞菌(ACTT 27853)和大肠杆菌(CMCC 44825)均由广州工业微生物检测中心提供。
仪器:Focus GC气相色谱仪(Thermo科技有限公司)、GCMSQP2010气质联用仪(岛津公司)。
1.2 试验方法
1.2.1 桂南山姜茎精油提取 称取桂南山姜新鲜茎220 g,适度破碎后用Clevenger types水蒸气蒸馏装置蒸馏4 h,将得到的精油用无水硫酸钠干燥,并于4℃条件下储存于密封离心管中。
1.2.2 桂南山姜茎精油成分定量分析与定性分析 采用Thermo科技有限公司Focus GC气相色谱仪对精油成分进行定量分析,检测器为氢火焰离子化(FID)检测器,色谱柱为安捷伦DB5柱(30 m×0.25 mm,膜厚0.25 μm),载气为氮气,柱流量为1.0 mL·min-1;样品采用乙醚稀释,进样量1 μL(使用微量進样针进样),分流比设定为1∶50;进样口汽化温度和FID检测器温度均保持在270℃;柱箱起始温度50℃,保留4 min,以5 ℃·min-1速率升温至250℃,保留10 min至分析结束。采用GCFID色谱图峰面积归一化法计算每种组分的相对百分比。采用GCMSQP2010气质联用仪对精油成分进行定性分析,气相色谱条件与定量分析时相同,载气为氦气,流量设定为1.69 mL·min-1,离子源的温度设定为200℃,质谱扫描范围设定为30~600 m·z-1。将质谱分析结果与质谱数据标准库(NIST08)匹配,进行相似度分析,结合文献报道的相似化合物的保留指数,最终鉴定出精油化学成分及含量[12],采用正构烷烃标准品(C7C30),在相同色谱分析条件下,分析各组分保留时间,通过Kovats公式计算保留指数。
1.2.3 桂南山姜茎精油抗菌活性测定 (1)致病菌培养。针对食源性致病菌进行了精油抗菌活性测定,将金黄色葡萄球菌(CMCC 26003)、枯草芽孢杆菌(CMCC 63501)、铜绿假单胞菌(ACTT 27853)和大肠杆菌(CMCC 44825)于37℃在灭菌后的水解酪蛋白胨培养基(MuellerHinton,MH肉汤)或牛肉膏蛋白胨琼脂(MuellerHinton,MH琼脂)培养基中培养。
(2)抑菌圈直径测定。使用美国临床实验室标准化协会(2012)推荐的纸片扩散法测定桂南山姜茎精油对选定的食源性细菌病原体的抗菌活性。将每种菌株在MH肉汤中孵育12 h,然后将菌悬液浓度调节至1×108 CFU·mL-1,吸取100 μL细菌悬浮液涂布在MH琼脂培养基上,在其上放置浸有测试精油的滤纸盘(6.0 mm),将培养基在37℃下孵育24 h,测量抑菌圈直径,使用链霉素(10 μg·dusc-1)作为阳性对照。所有样品进行3组平行测试。(3)最小抑菌浓度测定。按照Piras等[13]推荐的培养基微量稀释方法测定精油的最小抑菌浓度(MIC)值。菌悬液浓度由1×108 CFU·mL-1稀释至0.5×106 CFU·mL-1,精油采用等体积的二甲基亚砜(DMSO)(分析纯级别)溶解,并加入MH肉汤稀释,在96孔板中,每孔加入100 μL含有精油的MH肉汤与100 μL稀释后的菌悬液,每孔加入的精油浓度梯度为10.0000、5.0000、2.5000、1.2500、0.6250、0.3125 mg·mL-1,以含有和精油等体积的DMSO培养液作为阴性对照,96孔板在37 ℃下培养24 h后,用酶标仪测定吸光度,得出最小抑菌浓度值,所有试验平行测试3次。
1.2.4 统计分析 抗菌活性试验均平行测定3次,试验数据均以平均值±SD表示,使用SPSS软件计算平均值与标准偏差。
2 结果与分析
2.1 桂南山姜精油化学成分分析
将桂南山姜新鲜茎220 g进行水蒸气蒸馏,得到0.075 g淡黄色油状物,得率为0.034%。将桂南山姜精油进行GCFID分析,结果如图1所示。从图1可以看出,试验共检出28个较明显的峰,分析其中25个峰共鉴定出23种成分,占精油总量的94.19%。桂南山姜茎精油的化学成分列于表1,结果表明,精油成分主要由单萜类化合物(48.15%)及其含氧衍生物(36.44%)、倍半萜类化合物(2.28%)及其含氧衍生物(6.81%)、醇类化合物(0.51%)组成。其中1,8桉叶油素(32.39%)、β蒎烯(23.99%)、α水芹烯(10.25%)、α蒎烯(6.05%)和胡萝卜醇(4.99%)为含量最多的前5种化合物。
2.2 桂南山姜精油抗菌活性测定
以纸片扩散法测定桂南山姜茎精油对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和铜绿假单胞菌的抗菌活性,结果(表2)表明,4种细菌菌株对桂南山姜茎精油敏感,抑菌圈直径为14.0~17.5 mm。桂南山姜茎精油对枯草芽孢杆菌具有最高抑菌活性,抑菌圈直径为17.5 mm;其次是金黄色葡萄球菌(17.0 mm)和大肠杆菌(17.0 mm);对铜绿假单胞菌的抑菌活性较弱,抑菌圈为14.0 mm。桂南山姜茎精油10
μL·dusc-1对4种菌株的抗菌作用与链霉素10 μg·dusc-1接近。
以微量肉汤稀释法测定桂南山姜茎精油对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和铜绿假单胞菌的抗菌活性。结果(表2)表明,桂南山姜茎精油对枯草芽孢杆菌、金黄色葡萄球菌和大肠杆菌的MIC值均为5.0 mg·mL-1,而桂南山姜茎精油对铜绿假单胞菌的活性较弱,MIC值为10.0 mg·mL-1,阴性对照(2%DMSO)对任何测试的细菌都没有抗菌作用
3 讨论与结论
桂南山姜茎部位提取精油得率为0.034%,共鉴定23种化学成分,主要由单萜类化合物(48.15%)及其含氧衍生物(36.44%)、倍半萜类化合物(2.28%)及其含氧衍生物(6.81%)、醇类化合物(0.51%)组成。其中主要化学成分为1,8桉叶油素,占精油总量的32.39%。DENG等[11]研究发现,以相同方式提取桂南山姜叶精油主要化学成分为1,8桉叶油素(43.11%)>α水芹烯(17.17%)>β蒎烯(14.51%)>α蒎烯(5.56%),而本研究中桂南山姜茎精油化学成分含量高低为1,8桉叶油素(32.39%)>β蒎烯(23.99%)>α水芹烯(10.25%)>α蒎烯(6.05%),茎精油中的β蒎烯含量比叶精油多9.5%左右。1,8桉叶油素广泛应用于食品加工、医药、化妆品及化工领域[14],桂南山姜茎部位富含1,8桉叶油素成分,故桂南山姜可作为1,8桉叶油素新的天然来源。
精油的抗菌活性可归因于其主要组分如1,8桉叶油素、β蒎烯及其异构体α蒎烯的存在。研究表明,1,8桉叶油素具有各种药理活性,包括抗炎、抗微生物、抗癌、抗氧化、除草等[15-19]。1,8桉葉油素对各种昆虫的幼虫及成虫有杀灭作用,对昆虫有拒食活性[20-21],它能穿透细胞膜,增加细胞膜的渗透性并导致细胞内容物损失[22-23]。有证据表明蒎烯可以限制生物膜的形成从而抑制细菌的繁殖与生长[23]。精油中其他含量较低的成分也可以通过协同作用在抗菌性能中发挥重要作用[24]。本研究表明,桂南山姜茎精油具有一定的抑菌作用,对供试的金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和铜绿假单胞菌4种食源性致病菌均有较好的抑制作用,抗菌谱广,有望作为潜在的新型食源性细菌天然抗菌剂开发利用。
参考文献:
[1]SHAN B,CAI Y Z,BROOKS J D,et al.Antibacterial properties and major bioactive components of cinnamon stick(Cinnamomum burmannii):activity against foodrelated pathogenic bacteria
[J].Journal of Agricultural and Food Chemistry,2007,55(14):5484-5490.
[2]NAIR B.Final report on the safety assessment of benzyl alcohol,benzoic acid,and sodium benzoate[J].International Journal of Toxicology,2000,20(3):23-50.
[3]CALO J R,CRANDALL P G,O′BRYAN C A,et al.Essential oils as antimicrobials in food systemsa review[J].Food Control,2015,54:111-119.
[4]FARZANEH V,CARVALHO I S.A review of the health benefifit potentials of herbal plant infusions and their mechanism of actions[J].Industrial Crops and Products,2015,65:247-258.
[5]CHEN Z F,HE D H,DENG J D,et al.Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves[J].Natural Products Research,2015,29(21):2050-2053.
[6]PRAKASH B,MEDIA A,MISHRA P K,et al.Plant essential oils as food preservatives to control moulds,mycotoxin contamination and oxidative deterioration of agrifood commoditiespotentials and challenges[J].Food Control,2015,47:381-391.
[7]FISHER K,PHILLIPS C.Potential antimicrobial uses of essential oils in food:is citrus the answer[J].Trends in Food Science & Technology,2008,19(3):156-164.
[8]CHEN Z F,HE B,ZHOU J,et al.Chemical compositions and antibacterial activities of essential oils extracted from Alpinia guilinensis against selected foodbornepathogens[J].Industrial Crops and Products,2016,83:607-613.
[9]SUN C H,HSIAO W F,WANG S,S et al.Compositional variability of functional ingredients from various parts of Alpinia Uraiensis Hayata[J].Journal of Food Biochemistry.2013,37(2):193-202.
[10]方鼎.广西姜科新植物[J].广西植物,1982(4):3-4.
[11]DENG J D,HE B,HE D H,et al.A potential biopreservative:Chemical composition,antibacterial andhemolytic activities of leaves essential oil from Alpinia guinanensis[J].Industrial Crops and Products,2016,94:281-287.
[12]ADAMS R P.Review of Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry[M].Illinois:Allured Publishing Corporation,2007.
[13]PIRAS A,ROSA A, MARO NGUY B,et al.Chemical composition and in vitro bioactivity of the volatile and fixedoils of Nigella sativa L.extracted by supercritical carbon dioxide[J].Industrial Crops and Products,2013,46:317-323.
[14]张怡,沈旭成,叶兴东.桉树脑与皮肤屏障相关性研究进展[J].皮肤性病诊疗学杂志,2019,26(3):191-194.
[15]SILVA C J,BARBOSA L C A,DEMUNER A J,et al.Chemical composition and antibacterial activities from the essential oils of Myrtaceae species planted in Brazil[J].Quimica nova,2010,33 (1):104-108.
[16]PADALIA R C,VERMA R C,CHAUHAN A,et al.Chemical composition of Melaleuca linarrifolia Sm.from India:a potential source of 1,8cineole[J].Industrial Crops and Products,2005,63:264-268.
[17]BUDIADI ISHII H T, SUNARTO S, KANAZAWA Y.Variation in Kayu Putih (Melaleuca leucadendron Linn) oil quality under different farming systems in Java Indonesia[J].Eurasian Soil Science for Research,2005(8):15-20.
[18]JUERGENS U R,DETHLEFSEN U,STEINKAMP G,et al.Antiinflammatory activity of 1,8cineole (eucalyptol) in bronchial asthma:adoubleblind placebocontrolled trial[J].Respiratory Medicine,2003,97(3):250-256.
[19]EBADOLLAHI A.Essential oils isolated from Myrtaceae family as natural insecticides[J].Annual Review & Research in Biology,2013,3(3):148-175.
[20]PARK H M,KIM J,CHANG K S,et al.Larvicidal activity of Myrtaceae essential oils and their components againstAedes aegypti, acute toxicity on Daphnia magna,and aqueous residue[J].Journal of Medical Entomology,2011,48(2):405-410.
[21]SOUSA J P D,RAYANNE DE A T,GEZA ALVES DE AZER,et al.Carvacrol and 1,8cineole alone or in combination at sublethal concentrations induce changes in the cell morphology and membrane permeability of Pseudomonas fluorescens in a vegetablebased broth[J].International Journal of Food Microbiology,2012,158(1):9-13.
[22]TYAGI A K,MALIK A.Antimicrobial action of essential oil vapours and negative air ions against Pseudomonas fluorescens[J].International Journal of Food Microbiology,2010,143(3):205-210.
[23]SILVA A C R D,LOPES P M,AZEVEDO M M B D,et al.Biological Activities of αPinene and βPinene Enantiomer[J].Molecules,2012,17(6):6305-6316.
[24]XIE X F,WANG J W,ZHANG H P,et al.Chemical composition,antimicrobial and antioxidant activities of essential oil from Ampelopsis megalophylla[J].Natural Products Research,2014,28(12):853-860.
(責任编辑:林玲娜)