一类带有逐段常变量的二阶微分方程的概周期解
2019-07-31姚慧丽张悦娇侯盛楠
姚慧丽 张悦娇 侯盛楠
摘 要:基于微分方程的概周期解比周期解更具有一般性,本文将对一类带有逐段常变量的二阶微分方程的概周期解进行研究。根据这类方程的解在整数点的连续性,构造了一类非齐次差分方程。利用对应的齐次差分方程的特征根,并借助于相应的差分方程的概周期序列解和概周期函数以及概周期序列的一些性质,探讨了这类方程的概周期解的存在性以及该类解的唯一性。
关键词:概周期解;概周期序列解;微分方程;差分方程;逐段常变量
DOI:10.15938/j.jhust.2019.03.024
中图分类号: O177.9
文献标志码: A
文章编号: 1007-2683(2019)03-0143-06
Abstract:Almost periodic solutions of differential equations are more general than periodic solutions, so almost periodic solutions will be studied on a class secondorder differential equations with piecewise constant argument. A class of nonhomogeneous difference equations are constructed by the continuity of solutions at the integer point of this class of equations. The existence of almost periodic solutions and the uniqueness of this kind of solutions on this class of equations are investigated by using of eigenvalue of corresponding homogeneous difference equations, almost periodic sequence solutions of relevant difference equations and some properties of almost periodic functions and almost periodic sequences.
Keywords:almost periodic solutions; almost periodic sequence solutions; differential equations; difference equations; piecewise constant argument
參 考 文 献:
[1] COOK K L, WIENER J. Retarted Differential Equations with Piecewise Constant Delays[J]. Math. Anal. Appl., 1984, 99(2): 265.
[2] SHAH S M, WIENER J. Advanced Differential Equations with Piecewise Constant Argument Deviations[J]. Acta Math, 1983, (6): 671.
[3] BOHR H. Zur Theorie Der Fastperiodischen[J]. Acta. Math., 1925, 45: 19.
[4] FRECHET M. Les Functions Asymptotiquement Presque Periodiques[J]. Rev. Scientifique, 1941, 79: 341.
[5] EBERLEIN W F. Abstract Ergodic Theorems and Weakly Almost Periodic Functions[J]. Amer. Math. Soc., 1949, 69: 217.
[6] ZHANG C. Pseudoalmost Periodic Functions and Their Applications[D]. The University of Western Ontario, 1992: 55.
[7] 朴大雄. 带逐段常变量[t+1/2]的微分方程组的伪概周期解[J]. 中国科学, 2003, 33(3):220.
[8] YUAN RONG. A New Almost Periodic Type of Solutions of Second Order Neutral Delay Differential Equations with Piecewise Constant Argument[J]. Sci.China, 2003, 43(2): 371.
[9] GUO JIANLIN, YUAN RONG. Pseudo Almost Periodic Solutions of A Singularly Perturbed Differential Equation with Piecewise Constant Argument[J]. Acta Math, 2007, 23(3): 423.
[10]姚慧丽, 张娜, 薛寒. 一类具有逐段常变量扰动系统的渐近概周期解. 哈尔滨理工大学学报,2015,1:89.
[11]王丽,张传义. 带逐段常变量的二阶中立型延迟微分方程的概周期解[J]. 数学学报, 2010, 53(2): 227.
[12]常永奎, 成转霞. 两类随机发展方程的伪概自守型解[D]. 兰州交通大学, 2014:1.
[13]WU QIONG. MeanSquare Asymptotically Almost Automorphic Solutions to Fractional Stochastic Relaxation Equations[J]. International Journal of Differential Equations, 2015: 1.
[14]袁榮. 具逐段常变量中立型时滞微分方程的概周期解[J]. 数学年刊, 1998, 499.
[15]ZHANG HONG. Existence and Stability of Almost Periodic Solutions for CNNs with Continuously Distributed Leakage Delays[J]. Neural Comput and Applic, 2014, 24:1135.
[16]XU YANLI. New Results on Almost Periodic Solutions for CNNs with Timevarying Leakage Delays[J]. Neural Comput and Applic, 2014, 25: 1293.
[17]YUAN RONG. On the Spectrum of Almost Periodic Solution of SecondOrder Scalar Function Differential Equation with Piecewise Constant Argument[J]. J. Math. Anal. Appl., 2005, 303: 103.
[18]杨淑芳, 王鑫. 二阶中立型含逐段常滞量微分方程的伪概周期解的存在性[J].国防科技大学学报, 2005, 27(3): 120.
[19]FINK A M. Almost Periodic Differential Equation[C]// Lecture Notes in Mathematics Springer Verlag, Berlin, 1974: 45.
[20]PIAO DAXIONG. Almost Periodic Solutions of Neutral Differential Difference Equations with Piecewise Constant Argument[J]. Acta Math, 2002, 18(2): 263.
[21]MEISTERS G H. On Almost Periodic Solutions of A Class of Differential Equations[J]. Proc.Amer. Math. Soc.,1959(10): 113.
[22]ZHANG CHUANYI. Almost Periodic Type Functions And Ergodicity[M]. Beijing:Science Press, 2003: 1.
[23]张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 1987: 10.
(编辑:关 毅)