变式训练在高中数学解题教学中的应用浅谈
2019-02-06温庆文
温庆文
【摘要】高中数学与人们的日常生活有着千丝万缕的联系,但是由于高中数学知识过于抽象复杂,也在一定程度上加大了学生学习的难度,大部分高中生的数学解题能力较为薄弱,影响学生的数学成绩.因此,为了解决此教学现状,越来越多的教师重视变式训练法,将其应用到高中数学解题教学中,可以开阔学生的解题思路,使学生的数学思维更加灵活多变,达到提高学生的数学综合能力的效果.由此可见,变式训练在高中数学解题教学中的应用浅谈是十分必要的.
【关键词】变式训练;高中数学;解题教学
当前,大部分高中数学教师为了提高学生的解题能力,通常都会运用题海战术,这无疑加大了学生的学习负担,枯燥单一的刷题模式只会使学生更加反感高中数学的学习,反而不利于培养学生的数学核心素养.因此,高中数学教师在解题教学中,应该合理运用变式训练法,让学生在灵活多变的解题形式中,激活学生的数学学习主动性,开发学生的智力,让学生掌握更多的解题技巧,提高学生的数学综合能力,促进高中生未来发展.故此,本文主要以变式训练在高中数学解题教学中的应用,进行以下几点分析,以期促进高中数学教育长效发展.
一、一题多解的解题技巧
在高中数学解题教学中,每个数学知识点都有着较大的关联性特点,这也使同一种数学问题拥有着多种解题方法.由于每名学生的思维方式、思考角度都各不相同,但是都能抓住问题的重点,进而根据学生自己的理解解决相关数学问题[1].因此,在高中数学解题教学中,合理运用变式训练法,调动学生的数学学习兴趣,给予学生更多的数学学习自信,锻炼学生的数学思维与解题能力,让学生在解题中,逐渐培养学生的自主学习与独立思考的能力.一题多解的解题技巧在于问题切入点的不同,进一步锻炼学生的数学思维,也是提高学生数学解题能力的重要方式之一.在高中数学解题教学中,教师应该根据教学内容,结合本班学生的接受能力与认知水平,为学生精心设计数学问题,便于促进学生的数学能力的提高.
根据高中数学教材内容,其中不等式、概率等数学知识都可以采用变式训练法中的一题多解法,让学生的数学解题思维更加灵活多变.例如,不等式5<|4x-2|<10的数学问题.第一种解题方法,学生可以依照绝对值的定义,进行不等式的求解.學生分别想出两种情况:其一,4x-2≥0;其二,4x-2<0,进而进行不等式求解.第二种解题方法,学生可以将其转变为不等式组,可以将其转变成为|4x-2|>5与|4x-2|<10,进行不等式组求解.第三种解题方法,学生可以运用等价命题法解决此题:其一,5<4x-2<10;其二,-5<4x-2<-10,进而进行数学解题.由此可见,不同的解题思路,解题过程也不尽相同,但是解题结果却存在唯一性[2].学生只要掌握一题多解的解题技巧,使学生的数学思维得到锻炼,进一步提高学生的数字综合能力.
二、一题多变的解题技巧
在高中数学日常解题教学中,相同的数学知识都可以运用不同的思维方式设计多变的数学问题,也使现阶段高中数学问题更加灵活,数学题型更加丰富,这就要求高中生在解决此类问题时,应该熟练地掌握数学知识与数学解题方法,加深对数学问题的理解[3].在高中数学解题教学当中,教师应该以一道数学题为基准,进而变式出多种数学问题,让学生在不同的数学问题中,激活学生的数学探究兴趣,使学生的数学解题思路更加开阔,进一步提高学生的数学解题综合能力.
例如,f(x)=ax2+4x+2的定义域为R,求a的取值范围.学生可以根据问题就可以解决此类问题,ax2+4x+2≥0,且R的恒成立,进而解决此类问题.教师可以将其数学问题进行变式,如f(x)=log3ax2+4x+2的定义域为R,求a的取值范围;同时,教师还可以将此题变式成f(x)=log3(ax2+4x+2)的值域为R,进而求a的取值范围.教师运用变式训练法的一题多变,可以将同一个数学问题,考验学生不同的数学知识,让学生真正达到举一反三、学以致用的教学目的,学生掌握一题多变的解题技巧,能够使学生的数学思维更加灵活,有利于调动学生的数学探究积极性,提高学生的数学解题能力.
三、结束语
综上所述,在高中数学日常解题教学中,由于数学问题的共通性特点,也使每道数学题有着较大的联系,解题方法存在不唯一的特性,因此,高中数学教师应该根据数学问题的这一特点变化,合理运用变式训练法,让学生在数学解题过程中,逐渐掌握解题规律的变化,进一步调动学生的数学探究积极性,提高学生的数学解题效率,使学生的数学思维与逻辑思维得到良好的提高,有利于促进高中生全面发展,为高中生的未来发展打下坚实的基础.
【参考文献】
[1]梁海艺,吴跃忠.解析几何变式问题制作的一种方法[J].数学通报,2018(3):49-52.
[2]尤善培.围绕核心 主动变式——数学“变式教学”的实践与思考[J].数学通报,2016(2):17-19.
[3]顾日新.主动变式探究 体验数学发现——以一道向量题的变式教学为例[J].数学通报,2017(6):30-33.