APP下载

早期血管性认知功能障碍生物标志物的研究进展

2018-09-20毛蕾付饶马天君尹又

上海医药 2018年17期
关键词:生物标志物危险因素

毛蕾 付饶 马天君 尹又

摘 要 血管性认知功能障碍(vascular cognitive impairment, VCI)是指由脑血管疾病危险因素和脑血管疾病引起的一类认知功能损害综合征。VCI的发生、发展与脑血管疾病危险因素、糖脂代谢、甲状腺功能、慢性炎症和阿尔茨海默病(Alzheimers disease, AD)相关的β-淀粉样蛋白、tau蛋白等均相关,筛选VCI相关的有效的生物标志物并在VCI早期有效地控制其危险因素可能是延缓VCI患者认知功能下降和痴呆发生的关键。本文从代谢相关的生物标志物、炎症相关的生物标志物和AD相关的生物标志物这3个主要方面对近年来VCI相关的生物标志物的研究进展作一概要介绍。

关键词 血管性认知功能障碍 危险因素 生物标志物

中图分类号:R749.13 文献标志码:A 文章编号:1006-1533(2018)17-0013-05

Advances in biomarkers of early vascular cognitive impairment*

MAO Lei1, 2, FU Rao1, MA Tianjun1, YIN You1**

(1. Department of Neurology, Changzheng Hospital affiliated to the Naval Military Medical University, Shanghai 200003, China; 2. Department of Neurology, Baoshan Branch of Shanghai First Peoples Hospital, Shanghai 200940, China)

ABSTRACT Vascular cognitive impairment (VCI) is a type of cognitive impairment syndrome caused by cerebrovascular disease risk factors and cerebrovascular diseases. The occurrence and development of VCI are related to vascular risk factors, glycolipid metabolism, thyroid function, chronic inflammation, amyloid β-protein and tau protein associated with Alzheimers disease (AD) and so on. Screening of effective biomarkers related to VCI and effective control of risk factors at the early stage of VCI may be the key to delay cognitive decline and reduce the risk of dementia. This article reviews the recent research progress in three major VCI-related biomarkers including metabolic biomarkers, inflammatory biomarkers and AD-related biomarkers.

KEy WORDS vascular cognitive impairment; risk factors; biomarkers

血管性認知功能障碍(vascular cognitive impairment, VCI)是指由脑血管疾病危险因素和脑血管疾病引起的一类认知功能损害综合征。随着人口老龄化,我国VCI的发病率逐年升高。VCI涵盖了起源于脑血管病变的轻度认知功能障碍至血管性痴呆的所有疾病阶段,其可严重影响患者的日常生活质量,使患者家属背负沉重的精神和经济负担[1-3]。2011年,中华医学会神经病学分会痴呆与认知障碍学组提出,VCI的诊断应具备三要素,即认知功能损害、血管因素、认知功能障碍与血管因素之间有因果关系[4]。VCI的发生、发展与脑血管疾病危险因素相关。筛查VCI相关的有效的生物标志物并在VCI早期对其危险因素进行有效的控制可能是延缓VCI患者认知功能下降和痴呆发生的关键[5]。本文主要就近年来VCI相关的生物标志物的研究进展作一概要介绍。

1 代谢相关的生物标志物

1.1 糖代谢

慢性高糖血症、高胰岛素血症、代谢综合征和糖尿病均是认知功能减退的重要危险因素,但有关机制仍存争议。糖尿病与血管性痴呆风险增加相关。一项基于不同人群的荟萃分析发现,与非糖尿病个体相比,老年糖尿病患者罹患血管性痴呆的风险高约2.4倍[6]。在所有痴呆患者中,有7% ~ 13%的患者在发生痴呆前存在糖尿病危险因素[7]。2型糖尿病患者的认知功能变化涉及多个认知领域[8],其中脑处理速率减缓是最一致的表现[9]。糖尿病对认知功能的影响可通过多种机制介导,包括血管损伤、葡萄糖毒性、高胰岛素血症和淀粉样蛋白代谢紊乱[9]。糖尿病与微血管、大血管疾病和脑血流改变有关,但部分可通过改善患者的血糖水平得到逆转[10]。此外,糖尿病患者更可能在神经影像学上出现症状性脑梗死[9],这与观察到的糖尿病与血管性痴呆相关的结果相符。然而,糖尿病常在已存在代谢综合征的其他组分的背景下发生、发展,因此通过糖尿病或代谢综合征其他组分介导的对患者认知功能变化的影响程度仍需进一步的研究[11]。“糖尿病患者记忆研究(Memory in Diabetes Study)”观察了强化与标准血糖控制对2型糖尿病患者脑结构和认知功能影响的差异[12],结果发现在40个月时,与标准控制组患者相比,强化控制组患者的脑总体积显著更大,表明他们的脑总体积自基线下降速率减缓。然而,采用任何认知功能量表评估发现,两种治疗方案对患者认知功能的影响没有显著差异。“ADVANCE”试验也显示,强化血糖控制没有减缓2型糖尿病患者认知功能下降速率的作用,且强化控制组的事件性痴呆数量比例更高。

综上所述,高糖血症或糖尿病是血管性痴呆的危险因素[13-18],而强化血糖控制对此类患者认知功能保护作用的证据水平非常低[19]。此外,一项以老年2型糖尿病患者为对象的研究发现,严重低血糖事件与痴呆风险增加相关[20],但低血糖事件与VCI的关联还需进一步研究证实。

1.2 脂质和血脂异常

胆固醇可能与血管性痴呆和阿尔茨海默病(Alzheimers disease, AD)均相关,因这两种疾病的发病机制有部分重叠[13]。流行病学研究发现,中年人较高的血清总胆固醇水平与其多年后发生的认知功能障碍之间存在关联[21],且此种关联在血管性痴呆和AD患者中均被发现[22],提示血清高胆固醇水平可增加血管性痴呆和AD风险。然而,有关胆固醇与痴呆之间的关联仍存争议,特别是在老年人群中。认知功能是“心脏保护研究(Heart Protection Study)”[23]和“PROSPER”试验[24]的一项三级结果,这两项研究的平均随访时间分别为5和3.5年。“心脏保护研究”在最终随访时采用了电话访谈方式,其评估了归类为认知功能障碍和罹患痴呆事件的患者的百分比。“PROSPER”试验使用了4种不同的结果参数[《简易精神状态检查(Mini-Mental State Examination)》、 Stroop色词测验、字母数字编码和图片学习评分],并分析了最后1次治疗后的结果与基线之间的差异。两项研究均表明,控制血脂水平对任何认知功能评估结果都没有改善作用。换言之,他汀类药物治疗对老年人的认知功能没有改善作用。然而,前瞻性研究显示,脂质和血脂异常是VCI、特别是血管性痴呆的危险因素[13-15, 21]。

1.3 甲状腺激素水平

正常的甲状腺激素水平对促进及维持学习、记忆等高级认知功能活动极为重要[25],但甲状腺激素水平异常與VCI的关联尚无定论[26-28]。例如,Ichibangase等[25]的研究发现,伴有痴呆的血管性疾病患者的血清三碘甲状腺原氨酸(triiodothyronine, T3)水平显著低于无痴呆症状的血管性疾病患者,提示血清低T3水平与认知功能障碍相关。Forti等[29]评估了受试者的血清促甲状腺激素(thyroid-stimulating hormone, TSH)水平与认知功能变化之间的关联,发现基线血清TSH水平高的受试者在4年后随访时的VCI发生率更高,提示高TSH水平可能是VCI的预测因子。但Agarwal等[30]在比较了105例健康对照者和35例血管性痴呆患者的血清甲状腺激素水平后发现,健康对照者和血管性痴呆患者的血清T3、甲状腺素和TSH水平均无显著差异,提示甲状腺激素水平与VCI无关。各项研究结果之间存在差异这一事实提示,血清甲状腺激素水平可能与纳入研究的VCI患者的疾病分型密切相关,并受到诸多因素如入组时的年龄、既往病史、脑梗死的类型及部位等的影响,因此甲状腺激素水平异常是否可用于预测VCI还有待进一步研究的确认。

2 炎症相关的生物标志物

固有免疫和系统性炎症在认知功能损害的病理生理学过程中起着重要作用[31-32]。因此,筛选认知功能损害相关的炎性标志物有助于VCI的早期识别。目前,对炎症相关的VCI的生物标志物研究主要集中于C-反应蛋白(C-reactive protein, CRP)和白介素-6上。CRP是临床上最为常用的炎症标志物,外周血CRP水平升高已被证实可增加VCI风险[33-35]。“檀香山-亚洲老龄化研究(Honolulu-Asia Aging Study)”为了研究炎症与认知功能损害之间的关联,对入组人群进行了长达25年的随访,发现基线血清CRP水平高(≥0.34 mg/L)的男性个体出现血管性痴呆的风险较高,且血管性痴呆发生风险与CRP水平呈正相关性[35],提示CRP水平的变化早于痴呆相关临床症状的出现。与此研究结果一致,Ravaglia等[34]和Engelhart等[33]进行的前瞻性研究也均发现,基线血清CRP水平高的个体更易出现血管性痴呆。白介素-6是一种炎症因子,其也被认为与VCI相关。Ravaglia等[34]对804例中年受试者进行了长达4年的观察,发现基线血清白介素-6水平升高联合血清CRP水平升高可以预测血管性痴呆的发生。尽管如此,但因血清CRP和白介素-6的水平受到多种因素的影响,它们联合用于VCI预测的敏感性和特异性仍有待进一步研究的揭示。

3 AD相关的生物标志物

已有研究提示,脑血管疾病与AD密切相关[36-38],这主要表现在以下几个方面:①有关AD的流行病学研究提示,AD与脑血管疾病有着共同的危险因素[39];②脑卒中后AD的发生风险显著增加,且脑卒中可引起AD患者的认知功能进一步下降[40-42];③尸检结果显示,AD患者脑内存在着一系列的脑血管病变,包括脑淀粉样变、脑室周围白质病变和脑梗死[43]。基于以上研究结果,有研究者认为AD的本质是血管性疾病而非神经系统变性疾病[44],提示AD相关的生物标志物可能可用于VCI预测。

3.1 β-淀粉样蛋白(amyloid β-protein, Aβ)水平

Aβ42是AD患者老年斑的主要成分。AD患者脑脊液中的Aβ42水平与脑内淀粉样蛋白的沉积量呈负相关性。一项长达9年的前瞻性研究发现,脑脊液中Aβ42水平下降可预测AD的发生[45]。Kapaki等[46]的研究显示,与健康对照者相比,AD患者脑脊液中的Aβ42水平下降,使用脑脊液中Aβ42水平下降诊断AD的敏感性和特异性均>80%。以上研究结果提示,脑脊液中Aβ42水平下降既可用于AD预测,又可用于AD诊断。然而,有关VCI患者脑脊液中Aβ42水平的变化目前尚无定论:一部分研究认为,VCI患者脑脊液中的Aβ42水平下降,且下降至与AD患者的水平相当或介于健康对照者和AD患者的水平之间[38, 47-49];另一部分研究则认为,VCI患者脑脊液中的Aβ42水平与健康对照者的水平相当[46, 50-53]。鉴于研究结果的不一致性,脑脊液中Aβ42水平下降可否用于VCI预测仍需进一步研究的确认。

3.2 tau蛋白水平

tau蛋白是神经原纤维缠结的主要成分,脑内总tau蛋白水平升高被认为是神经元和(或)轴突变性的标志,而磷酸化的tau蛋白(phosphory tau protein, P-tau)水平升高是AD中神经原纤维缠结形成的标志[54]。目前,大部分研究均显示,VCI患者脑脊液中的总tau蛋白和P-tau水平较健康对照者高,介于AD患者和健康对照者的水平之间,与AD患者的水平有部分重叠[50-52, 55-56]。然而,VCI患者脑脊液中的总tau蛋白和P-tau水平与认知功能量表评分之间并没有显著的相关性[56]。因此,脑脊液中总tau蛋白和P-tau水平用于VCI预测的可行性仍待考量。

4 结语

脑卒中后的认知功能障碍发生率很高,其中部分患者在脑卒中后迅即出现痴呆症状,另有部分患者出现认知功能障碍,尽管未达到痴呆的程度,但日后罹患痴呆的风险仍很高。VCI已受到临床的高度重视,但在对VCI的早期甄别方面仍需进行大量的研究,其中VCI生物标志物是研究热点之一,其可能为VCI的早期诊断提供科学的依据。然而,迄今发现的VCI生物标志物均不具有特异性,且其中不少还存争议。寻找到切实有效的VCI生物标志物将是未来数十年内VCI相关研究领域最重要的任务之一。

参考文献

[1] Panza F, Frisardi V, Capurso C, et al. Possible predictors of vascular cognitive impairment-no dementia [J]. J Am Geriatr Soc, 2009, 57(5): 943-944.

[2] Ghio L, Natta W, Fravega R, et al. Cognitive impairment and psychopharmacological treatment: a drug utilization study in the emergency department [J]. Int J Geriatr Psychiatry, 2011, 26(4): 438-439.

[3] Schneider LS. Commentary on “a roadmap for the prevention of dementia II: Leon Thal Symposium 2008”. A federally funded corporation for the prevention and treatment of cognitive impairment and brain aging [J]. Alzheimers Dement, 2009, 5(2): 172-179.

[4] 中華医学会神经病学分会痴呆与认知障碍学组写作组. 血管性认知障碍诊治指南[J]. 中华神经科杂志, 2011, 44(2): 142-147.

[5] Román GC. Vascular dementia prevention: a risk factor analysis [J]. Cerebrovasc Dis, 2005, 20(Suppl 2): 91-100.

[6] Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multisystem aging phenotypes: a systematic review and metaanalysis [J/OL]. PLoS One, 2009, 4(1): e4144 [2018-04-17]. doi: 10.1371/journal.pone.0004144.

[7] Biessels GJ, Deary IJ, Ryan CM. Cognition and diabetes: a lifespan perspective [J]. Lancet Neurol, 2008, 7(2): 184-190.

[8] Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review [J]. Lancet Neurol, 2006. 5(1): 64-74.

[9] Saczynski JS, Jónsdóttir MK, Garcia ME, et al. Cognitive impairment: an increasingly important complication of type 2 diabetes: the age, gene/environment susceptibility —Reykjavik study [J]. Am J Epidemiol, 2008, 168(10): 1132-1139.

[10] Cosentino F, Battista R, Scuteri A, et al. Impact of fasting glycemia and regional cerebral perfusion in diabetic subjects: a study with technetium-99m-ethyl cysteinate dimer single photon emission computed tomography [J]. Stroke, 2009, 40(1): 306-308.

[11] Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged [J]. Arch Neurol, 2009, 66(3): 300-305.

[12] Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy [J]. Lancet Neurol, 2011, 10(11): 969-977.

[13] Dichgans M, Zietemann V. Prevention of vascular cognitive impairment [J]. Stroke, 2012, 43(11): 3137-3146.

[14] Dichgans M, Leys D. Vascular cognitive impairment [J]. Circ Res, 2017, 120(3): 573-591.

[15] Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association [J]. Stroke, 2011, 42(9): 2672-2713.

[16] Yang J, Wong A, Wang Z, et al. Risk factors for incident dementia after stroke and transient ischemic attack [J]. Alzheimers Dement, 2015, 11(1): 16-23.

[17] Panza F, Solfrizzi V, Logroscino G, et al. Current epidemiological approaches to the metabolic-cognitive syndrome [J]. J Alzheimers Dis, 2012, 30(Suppl 2): S31-S75.

[18] Zietemann V, Wollenweber FA, Bayer-Karpinska A, et al. Peripheral glucose levels and cognitive outcome after ischemic stroke — results from the Munich Stroke Cohort [J]. Eur Stroke J, 2016, 1(1): 51-60.

[19] Areosa SA, Grimley EV. Effect of the treatment of type II diabetes mellitus on the development of cognitive impairment and dementia [J/OL]. Cochrane Database Syst Rev, 2002(4): CD003804 [2018-04-17]. doi:10.1002/14651858.CD003804.

[20] Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus [J]. JAMA, 2009, 301(15): 1565-1572.

[21] Solomon A, K?reholt I, Ngandu T, et al. Serum total cholesterol, statins and cognition in non-demented elderly [J]. Neurobiol Aging, 2009, 30(6): 1006-1009.

[22] Solomon A, Kivipelto M, Wolozin B, et al. Midlife serum cholesterol and increased risk of Alzheimers and vascular dementia three decades later [J]. Dement Geriatr Cogn Disord, 2009, 28(1): 75-80.

[23] Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial [J]. Lancet, 2002, 360(9326): 7-22.

[24] Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial [J]. Lancet, 2002, 360(9346): 1623-1630.

[25] Ichibangase A, Nishikawa M, Iwasaka T, et al. Relation between thyroid and cardiac functions and the geriatric rating scale [J]. Acta Neurol Scand, 1990, 81(6): 491-498.

[26] Ganguli M, Burmeister LA, Seaberg EC, et al. Association between dementia and elevated TSH: a community-based study [J]. Biol Psychiatry, 1996, 40(8): 714-725.

[27] Yoshimasu F, Kokmen E, Hay ID, et al. The association between Alzheimers disease and thyroid disease in Rochester, Minnesota [J]. Neurology, 1991, 41(11): 1745-1747.

[28] Chen Z, Liang X, Zhang C, et al. Correlation of thyroid dysfunction and cognitive impairments induced by subcortical ischemic vascular disease [J/OL]. Brain Behav, 2016, 6(4): e00452 [2018-04-17]. doi: 10.1002/brb3.452.

[29] Forti P, Olivelli V, Rietti E, et al. Serum thyroid-stimulating hormone as a predictor of cognitive impairment in an elderly cohort [J]. Gerontology, 2012, 58(1): 41-49.

[30] Agarwal R, Kushwaha S, Chhillar N, et al. A cross-sectional study on thyroid status in North Indian elderly outpatients with dementia [J]. Ann Indian Acad Neurol, 2013, 16(3): 333-337.

[31] Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimers disease [J]. Nat Immunol, 2015, 16(3): 229-236.

[32] Holmes C. Review: systemic inflammation and Alzheimers disease [J]. Neuropathol Appl Neurobiol, 2013, 39(1): 51-68.

[33] Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study [J]. Arch Neurol, 2004, 61(5): 668-672.

[34] Ravaglia G, Forti P, Maioli F, et al. Blood inflammatory markers and risk of dementia: the Conselice Study of Brain Aging [J]. Neurobiol Aging, 2007, 28(12): 1810-1820.

[35] Schmidt R, Schmidt H, Curb JD, et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study [J]. Ann Neurol, 2002, 52(2): 168-174.

[36] Strickland S. Blood will out: vascular contributions to Alzheimers disease [J]. J Clin Invest, 2018, 128(2): 556-563.

[37] Vijayan M, Kumar S, Bhatti JS, et al. Molecular links and biomarkers of stroke, vascular dementia, and Alzheimers disease [J]. Prog Mol Biol Transl Sci, 2017, 146: 95-126.

[38] Wallin A, Nordlund A, Jonsson M, et al. Alzheimers disease— subcortical vascular disease spectrum in a hospital-based setting: overview of results from the Gothenburg MCI and dementia studies [J]. J Cereb Blood Flow Metab, 2016, 36(1): 95-113.

[39] Pansari K, Gupta A, Thomas P. Alzheimers disease and vascular factors: facts and theories [J]. Int J Clin Pract, 2002, 56(3): 197-203.

[40] Ballard C, McKeith I, OBrien J, et al. Neuropathological substrates of dementia and depression in vascular dementia, with a particular focus on cases with small infarct volumes[J]. Dement Geriatr Cogn Disord, 2000, 11(2): 59-65.

[41] Kokmen E, Whisnant JP, OFallon WM, et al. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960-1984) [J]. Neurology, 1996, 46(1): 154-159.

[42] Pasquier F, Leys D, Scheltens P. The influence of coincidental vascular pathology on symptomatology and course of Alzheimers disease [J]. J Neural Transm Suppl, 1998, 54: 117-127.

[43] Attems J, Jellinger KA. The overlap between vascular disease and Alzheimers disease — lessons from pathology [J/OL]. BMC Med, 2014, 12: 206 [2018-04-17]. doi: 10.1186/s12916-014-0206-2.

[44] Kalaria RN. The role of cerebral ischemia in Alzheimers disease [J]. Neurobiol Aging, 2000, 21(2): 321-330.

[45] Stomrud E, Minthon L, Zetterberg H, et al. Longitudinal cerebrospinal fluid biomarker measurements in preclinical sporadic Alzheimers disease: a prospective 9-year study [J/ OL]. Alzheimers Dement (Amst), 2015, 1(4): 403-411 [2018-04-17]. doi: 10.1016/j.dadm.2015.09.002.

[46] Kapaki E, Paraskevas GP, Zalonis I, et al. CSF tau protein and β-amyloid (1-42) in Alzheimers disease diagnosis: discrimination from normal ageing and other dementias in the Greek population [J]. Eur J Neurol, 2003, 10(2): 119-128.

[47] Bjerke M, Zetterberg H, Edman ?, et al. Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimers disease [J]. J Alzheimers Dis, 2011, 27(3): 665-676.

[48] Bjerke M, Andreasson U, Rolstad S, et al. Subcortical vascular dementia biomarker pattern in mild cognitive impairment [J]. Dement Geriatr Cogn Disord, 2009, 28(4): 348-356.

[49] Rosenberg GA, Prestopnik J, Adair JC, et al. Validation of biomarkers in subcortical ischaemic vascular disease of the Binswanger type: approach to targeted treatment trials [J]. J Neurol Neurosurg Psychiatry, 2015, 86(12): 1324-1330.

[50] Andreasen N, Minthon L, Davidsson P, et al. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice [J]. Arch Neurol, 2001, 58(3): 373-379.

[51] Jia JP, Meng R, Sun YX, et al. Cerebrospinal fluid tau, Aβ1-42 and inflammatory cytokines in patients with Alzheimers disease and vascular dementia [J]. Neurosci Lett, 2005, 383(1-2): 12-16.

[52] Stefani A, Bernardini S, Panella M, et al. AD with subcortical white matter lesions and vascular dementia: CSF markers for differential diagnosis [J]. J Neurol Sci, 2005, 237(1-2): 83-88.

[53] Paraskevas GP, Kapaki E, Papageorgiou SG, et al. CSF biomarker profile and diagnostic value in vascular dementia[J]. Eur J Neurol, 2009, 16(2): 205-211.

[54] Cavedo E, Lista S, Khachaturian Z, et al. The road ahead to cure Alzheimers disease: development of biological markers and neuroimaging methods for prevention trials across all stages and target populations [J]. J Prev Alzheimers Dis, 2014, 1(3): 181-202.

[55] Tato RE, Frank A, Hernanz A. Tau protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type [J]. J Neurol Neurosurg Psychiatry, 1995, 59(3): 280-283.

[56] Andreasen N, Vanmechelen E, Van de Voorde A, et al. Cerebrospinal fluid tau protein as a biochemical marker for Alzheimers disease: a community based follow up study [J]. J Neurol Neurosurg Psychiatry, 1998, 64(3): 298-305.

猜你喜欢

生物标志物危险因素
水环境中木质素光降解及其对有机物相关指示参数影响研究进展
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
基于UPLC—Q—TOF—MS技术的牛血清白蛋白诱导过敏反应的代谢组学研究
围绝经期妇女骨质疏松症的预防与保健指导
骨瓜提取物的不良反应分析
老年骨质疏松性骨折的危险因素及临床护理对策