基于GF-1卫星遥感数据识别京津冀冬小麦面积
2018-05-14王利民杨福刚杨玲波姚保民王小龙
王利民 刘 佳 杨福刚 杨玲波 姚保民 王小龙
基于GF-1卫星遥感数据识别京津冀冬小麦面积
王利民*刘 佳 杨福刚 杨玲波 姚保民 王小龙
中国农业科学院农业资源与农业区划研究所, 北京 100081
省级尺度冬小麦面积的精准获取技术是农作物面积遥感监测研究的主要内容之一。为了获取省级尺度的冬小麦种植面积, 该文以北京市(京)、天津市(津)和河北省(冀) 3个省域范围为例, 以国家标准地形图分幅为分类的图幅单元, 利用国产GF-1/WFV数据, 构建冬小麦面积指数, 实现了省级尺度冬小麦面积的识别。本文以冬小麦全部9个月生育期的984景影像作为数据源, 依次经过数据预处理、标准图幅单元的NDVI合成、样本点选择、冬小麦面积指数构建、冬小麦作物类型确认、省域范围制图及精度验证等步骤完成研究区域内冬小麦面积的提取。采用区域网平差和6S大气校正算法对数据源预处理, 以中国1︰10万标准地形图分幅为分类图幅单元构建冬小麦面积指数, 将冬小麦面积指数按照1%的比例等分, 并将面积指数从0到100%分割为101个提取节点, 将提取节点的NDVI值依次与类型确认样本比较, 精度最高的则确认为冬小麦面积提取阈值, 同时将该阈值应用于图幅单元内冬小麦面积指数影像, 获取冬小麦种植分布。最后冬小麦面积识别的精度表明, 以标准地图分幅作为计算单元, 在GF-1影像基础上, 利用冬小麦面积指数能够显著提高冬小麦与其他地物类型的波谱差异, 且冬小麦的总体识别精度达到89.6%, 用户精度达到89.8%, 制图精度96.5%, Kappa系数0.72。在典型区域, 本文算法与监督分类算法精度结果较为一致, 除制图精度相差4.77%外, 总体精度与用户精度差都在1.00%以内, 说明本文算法具有精度高、运行效率高、分类单元识别结果一致性强的特点, 能够满足省级尺度农情遥感业务监测的需要。
GF-1卫星; 区域尺度; 冬小麦; 面积指数; 遥感监测
大宗农作物的播种面积空间分布数据的准确获取是国家、省级政府制定粮食政策, 保证粮食安全的重要依据[1]。北京市(京)、天津市(津)、河北省(冀)冬小麦面积占全国冬小麦总面积的10.3%[2], 其变化对中国冬小麦生产形势具有显著影响。采用遥感技术在省级尺度上开展冬小麦面积的全覆盖监测, 是中国农情遥感监测的主要目标之一[3]。
按照遥感数据使用时相的差别、重要性程度来划分, 农作物面积遥感监测研究可以区分为基于单时相数据分类技术研究、多时相数据分类技术研究以及遥感数据辅助的遥感抽样技术研究3类。单一时相法主要通过选取作物关键物候期的单景遥感影像, 利用目视解译[4]、监督分类[5]、非监督分类[6]、面向对象分类[7]、人工神经网络分类[8]、基于专家知识的图像分类[9]、混合像元分解[10]等方法, 基于地物的光谱、纹理特征等信息, 对目标作物进行识别及面积提取, 其优势是处理数据量小、效率高、时效性强, 相比多时相方法, 无需作物完整物候期的所有遥感影像即可进行, 便于提取当年度作物即时播种面积等[11-12]。Chellasamy等[13]利用WorldView-2卫星1.8 m分辨率的多光谱影像, 使用自动选择训练样本的方法, 研究丹麦Vennebjerg地区650 hm2农田的作物分类, 对油菜、冬小麦和果树的分类精度分别达91.2%、88.4%和96.5%。一般认为, 不同分辨率的遥感影像进行作物面积识别, 空间分辨率越高则更容易获得更高的分类精度[14]。多时相数据能够覆盖作物发育的关键时期, 可以基于不同发育时期波谱差异对作物类型进行有效识别, 因而在农作物面积提取研究方面得到广泛应用[15-17]。中低空间分辨率的多时相遥感数据相对容易获取, 这类研究以NOAA/AVHRR和EOS/MODIS等类似数据研究较多, 如Brian等[18]利用MODIS的250 m分辨率影像制作NDVI (Normalized Difference Vegetation Index)时序影像数据进行美国中央大平原大范围作物面积制图研究, 其精度达80%以上。随着中高空间分辨率遥感数据的增多, 以LandSat、HJ、SPOT和Rapideye卫星数据的研究逐渐增多, 如Zheng等[19]利用Landsat/TM卫星30 m分辨率的数据制作NDVI时序影像, 并用支持向量机的方法对美国凤凰城的各种作物类型进行识别, 分类总体精度达到86%以上; 刘佳等[20]基于HJ-1A/B卫星时间序列数据, 针对河北省衡水市冬小麦、夏玉米、春玉米、棉花、花生、大豆等主要作物类型进行决策树分类识别研究, 总体分类总体精度达到90.9%; Suzuki等[21]利用RapidEye的5 m分辨率影像制作时序NDVI数据, 对日本北海道平原小麦、马铃薯、甜菜、红小豆等旱地作物识别的总体精度达到90%以上。
针对区域尺度上全覆盖遥感影像获取困难、分类技术难以标准化的现状, 样方内作物类型遥感识别辅助的空间抽样研究成为大尺度农作物数量获取的主要方法[22]。焦险峰等[23]利用分层抽样的方法对中国水稻种植面积进行遥感调查, 以1∶5万比例尺标准地形图图幅为抽样单元, 设计了中国水稻种植面积抽样框架。但是, 分层抽样方法同传统的统计调查方法一样, 都无法获取作物的空间分布, 因而无法得到广泛的应用。
与利用单景影像识别作物容易出现异物同谱及同物异谱现象相比, 利用多时相影像识别作物可结合作物物候特征分类, 具有明显优势。然而, 受限于数据预处理能力、云雾遮挡, 以及缺乏自动化程度高的识别技术, 目前基于多时相、中高分辨率影像开展区域农作物遥感识别的研究还比较少。GF-1卫星是中国2013年4月成功发射的高分系列卫星, 其所携带的WFV (wide field view)传感器空间分辨率为16 m, 观测幅宽达800 km, 标称回访周期为4 d, 观测能力大幅度提升, 对区域农作物面积遥感监测具有独特优势。本文基于GF-1/WFV数据, 通过获取小麦生长期内每月1期晴空NDVI数据, 在冬小麦分类单元划分与面积指数(winter wheat area index, WWAI)构建基础上, 设计了自动化运行能力较高的省级冬小麦遥感监测技术, 建立适合于时间序列影像的快速、直观的分类方法, 以提高业务运行效率。实现了京津冀范围内的年度冬小麦种植面积提取, 并在中国农情遥感监测业务中得到应用。
1 研究区域
京津冀地处华北平原北部(36°05′~42°40′ N, 113°27′~119°50′ E), 总面积21.7万公顷。地貌复杂多样, 高原、山地、丘陵、盆地、平原类型完整, 地势由西北向东南倾斜。其中, 中南部平原区是冬小麦适宜种植区, 按其成因可分为山前冲洪积平原、中部湖积平原区和滨海平原区3种地貌类型, 占京津冀区域总面积的43.4%。该区跨中温带和南温带, 属温带大陆性季风气候, 四季分明。年日照时数2303.1 h, 无霜期81~204 d; 年均降水量484.5 mm, 分布不均, 呈东南多、西北少的趋势, 且夏季降水多, 占全年降水量的65%~80%。1月平均气温低于3℃, 7月平均气温18~27℃, 年平均气温由北向南逐渐升高。
中南部平原区≥0℃积温在3000~4800℃之间, 能够满足农作物一年二熟的需要。该区耕地面积938.82万公顷, 占全区总土地面积的43.2%, 粮食播种面积占耕地总面积的72.4%以上, 是中国重要粮棉产区。主要粮食作物有小麦、玉米、高粱、谷子、薯类等, 经济作物以油料作物为主, 与棉花、麻类、甜菜、烟叶并称本区五大经济作物。京津冀地区冬小麦总播种面积占全国第4位, 占全国总播种面积的10.1%[2], 分为北部春麦区、北部冬麦区和黄淮冬麦区(图1)。
图1 京津冀地区小麦区划
2 数据获取与数据处理
2.1 卫星影像预处理
GF-1卫星搭载有4个WFV传感器WFV1、WFV2、WFV3和WFV4, 单传感器幅宽200 km, 同时成像时幅宽可达800 km。影像具备蓝(0.45~0.52 μm)、绿(0.52~0.59 μm)、红(0.63~0.69 μm)和近红外(0.77~0.89 μm) 4个波段, 重访周期4 d, 空间分辨率16 m。采用云量低于10%的GF-1卫星WFV影像984景进行京津冀地区冬小麦种植面积提取研究, 2013年10月至2014年6月每月依次使用118、123、145、148、104、81、92、92和81景, 保证冬小麦生长期内每月至少获取一次晴空合成影像。
经过系统几何和辐射校正的WFV影像1级产品由中国资源卫星中心提供。在此基础上, 采用6S模型对所有影像进行大气校正; 以同期Landsat8 OLI 15 m数据作为参考影像, 利用影像的RPC (rational polynomial coefficient)参数和ASTER GDEM高程数据, 对影像进行区域网平差和几何精校正; 分别计算影像的归一化植被指数NDVI, 作为冬小麦面积指数构建的基础。
式中, Ref3和Ref4分别是WFV影像红光波段和近红外波段的反射率。
2.2 基于图幅单元的NDVI合成
采用国家标准的1∶10万地形图图幅框作为基本分类单元, 按照1∶10万标准分幅对监测区进行裁切分割, 每幅的经度差为30′, 纬度差为20′, 每个分类单元的平均面积为16.3万公顷, 本研究区域内共179个图幅单元, 其中98个属于冬小麦分布区, 是进行冬小麦识别与面积提取的区域。将研究区域划分为标准单元进行分类, 有利于编程实现; 单元内冬小麦发育时期更趋于一致, 可以保证算法参数相对一致。在标准图幅框对NDVI影像裁切基础上, 对每个图幅框单元逐月最大值合成, 获取每月NDVI最大值影像, 以去除云、雾霾等的干扰。图2是研究区冬小麦遥感监测图幅单元分布, 以及廊坊市所在单元的放大图。
2.3 样本点的选择与获取
提取冬小麦面积时包括训练样本和验证样本两类样本, 训练样本又包括权值构建和类型确认两种样本数据, 验证样本也包括规则样本和随机样本两种。所选择的样本点类型是否为冬小麦, 是根据目视解译、专家知识判断及地面调查实际验证等方式确认的。训练样本的选择是在每个图幅单元内制作10×10个网格, 在研究区内格网大小平均为4 km × 4 km, 每个网格再划分为4个子格网, 以100个左上角的子网格中心点作为权值构建样本, 以100个右下角的子网格中心点作为类型确认样本。本研究区内共有19 600个训练样本点。规则验证样本点的选择是在冬小麦初步提取结果基础上叠加5 km × 5 km网格, 共获取1159个网格中心点作为规则验证样本, 其中1027个样本位于冬小麦种植区, 132个样本位于非冬小麦种植区, 该类验证点主要分布在冬小麦种植区域内。随机验证样本点是在冬小麦图幅单元中按照等距原则随机选择320个点, 其中43个样本是冬小麦, 277个是非冬小麦, 该类样本主要以非冬小麦类型为主。采用上述方案进行样本点选择, 具有样点分布随机性、区域覆盖均匀性、冬小麦样本率高的特点。图3为研究区内各类样本点的分布, 以及位于保定市内J50D004004图幅框的放大显示。
图2 研究区冬小麦遥感监测图幅单元分布及高分影像示例
A: 京津冀WFV晴空影像及图幅单元分布; B: 廊坊市所在图幅单元WFV晴空影像; C: 廊坊市所在图幅单元4月份NDVI最大值合成
A: Beijing-Tianjin-Hebei WFV clear sky image and image unit distribution; B: WFV clear sky images of Langfang city; C: NDVI maximum value composition of Langfang image unit of April.
2.4 样方数据选择与获取
选取研究区1∶10万地形图图幅框中编号J50D006006作为样方数据选取的范围, 将图幅单元再分成15´15个格网作为样方数据的基本单元, 将单元格网内作物面积比例作为抽样参数, 采用等概率原则进行地面样方抽样。覆盖图幅单元的网格共225个。基于监督分类方法获得图幅单元内冬小麦初步分类结果, 计算每个网格中的冬小麦面积, 从小到大排序, 最小为0, 最大98.6%, 按10%的级差分级, 统计每个级别中的频数, 等概率抽取10个网格作为监督分类的训练样方、抽取10个网格作为监督分类结果的验证样方。结合研究区地面调查获取的解译标志, 采用目视解译的方法获得20个样方内冬小麦及其他2种类别分布结果, 训练及验证样方如图4所示。
3 技术路线及算法原理
3.1 技术路线
本研究区冬小麦面积空间制图包括数据预处理、标准分类单元的NDVI合成、样本点选择、WWAI构建、冬小麦作物类型确认、省域范围制图及精度验证等7项内容(图5)。本文对98个有冬小麦分布的单元依次进行NDVI合成、样本点选择、WWAI指数构建、冬小麦类型确认等过程, 获取每个分类单元的冬小麦面积空间分布, 并对提取结果进行拼接, 拼接结果就是研究区内的冬小麦空间分布结果, 最后利用混淆矩阵方法进行精度验证。WWAI构建是该项技术的核心, 主要思路是根据冬小麦种植期间与其他在田作物的物候特征差异, 在各时相赋予NDVI不同权重的方式, 扩大冬小麦指数与其他地物的差异, 达到准确提取冬小麦种植面积的目的。
图3 研究区样本点及示例图幅的分布
A: 权值构建样本; B: 类型确认样本; C: 规则验证样本; D: 随机验证样本。
A: weights build samples; B: type confirmation samples; C: rule verification samples; D: random verification samples.
图4 监督分类方案实施区域(图幅编号J50D006006)与样本分布
图5 冬小麦面积提取处理流程
3.2 基于NDVI时序的冬小麦识别原理
本研究区内冬小麦的生育期从每年10月到次年6月, 经历播种、出苗、分蘖、越冬、返青、起身、拔节、挑旗、抽穗、开花、灌浆、成熟12个阶段, 南北、东西不同地理位置冬小麦物候会有10~15 d的差异。选取10月初至次年6月底的卫星影像, 可以覆盖研究区内不同区域的全冬小麦生育期。分别选择位于河北省唐山市、保定市、沧州市、邢台市、邯郸市的5个图幅单元J50D002010、J50D003004、J50D006006、J50D008002、J50D011002作为示例, 统计5个图幅单元内冬小麦和其他地物以月为时间节点的NDVI平均值谱曲线(图6-A)。利用ASD FieldSpec地物光谱仪, 于2013年10月30日、11月4日、12月28日以及2014年3月4日、4月12日、4月21日、5月12日、5月20日、6月10日和6月23日进行10期地面观测, 得到冬小麦和其他两种地物NDVI变化曲线(图6-B), 以进一步明确NDVI对物候的直观反映。
尽管本研究区内冬小麦物候有一定的差异, 但是从影像获取或者地面光谱观测的NDVI谱曲线表现是类似的, 即10月上旬播种期最低, 11月上旬出苗后开始逐步增加, 11月末至12月中旬达到冬前的最大值, 12月下旬进入越冬期后明显下降, 2月下旬返青后开始快速增长, 至4月下旬达到最大值, 5月下旬乳熟后逐渐下降, 6月下旬收获后, 随着玉米等其他作物的出苗, NDVI又开始上升(图6-A, B)。这主要是由于NDVI月度合成将掩盖物候的差异, 是该技术能够在不同种植区域应用的前提。
3.3 冬小麦面积指数构建及阈值确定
针对每个图幅单元, 提取权值构建样本点的各期NDVI值, 计算冬小麦、非冬小麦样本点的NDVI均值; 若当期冬小麦NDVI平均值大于其他地物NDVI平均值, 则判定该时期为冬小麦生长优势期, 其权值设定为1; 若当期冬小麦NDVI平均值小于其他地物的NDVI平均值, 则判定该时期为冬小麦生长劣势期, 其权值设定为-1。各期的NDVI值与权值相乘得到该期NDVI影像加权值, 各时相NDVI加权值相加并除以影像期数, 得到的结果即为“冬小麦面积指数WWAI”影像。
式中,为权值,表示第期影像, 下标w表示冬小麦, 下标O表示其他。确定WWAI阈值是类型识别的基础, 是根据类型确定样本判定的。具体是将冬小麦面积指数以1%的比例等分, 从0开始至100%结束, 循环迭代101次, 以各比例节点的WWAI值为阈值, 将所有101个冬小麦面积提取结果依次与类型确定样本比较, 正确率最高的阈值即为最优的WWAI提取阈值。该方法的优势是无需人工干预, 最大程度降低了人为误差, 只要样本点的冬小麦识别结果准确, 即可获取一致的冬小麦面积识别阈值。
图6 基于影像数据(A)和地面观测数据(B)的冬小麦和其他地物类型NDVI曲线
在获取各图幅单元最优冬小麦面积指数提取阈值后, 应用到整幅WWAI影像中, 就是各单元内冬小麦作物种植分布结果。将研究区内所有图幅单元分类成果拼接修正, 即可获取研究区内监测年度的冬小麦种植面积。
3.4 监督分类算法
最大似然分类算法(maximum likelihood, ML)是一种具有理论性的点估计法, 最大似然分类法是最常用的监督分类方案, 算法假设每个波段中各类数据分布为高斯分布, 各个波峰则可能代表唯一的类别。采用训练样本的方式获取正态分布的统计量, 然后计算每个像元属于不同正态分布的概率(距离), 像元将归属于概率最大的类别。该算法的分类结果具稳定可靠、精度较高的优势[24]。本文以GF-1多时相反射率数据作为输入, 采用上述的10个格网单元作为训练样本, 以最大似然分类算法进行分类, 获取冬小麦、其他两种地物类型的空间分布。
3.5 精度验证
基于验证样本点对应的冬小麦识别结果, 采用混淆矩阵、Kappa系数、总体分类精度、制图精度、用户精度5种方式, 对研究区域内冬小麦面积遥感监测结果进行精度验证。总体分类精度指的是所有被正确分类的像元总和除以总像元数。制图精度指正确分为A类的像元数与A类真实参考总数的比率。用户精度是指正确分到A类的像元总数与分类器将整个影像的像元分为A类的像元总数(混淆矩阵中A类的总和)比率。
4 结果与分析
4.1 基于面积指数的识别结果
根据中国小麦种植区划, 研究区内包括北部春麦区、北部冬麦区和黄淮冬麦区3个区域, 冬小麦分布的北部边界在燕山山脉与平原的交汇处, 冬小麦的实际分布也是如此(图1)。研究中将这一边界与1︰10万标准图幅单元叠加, 去除没有冬小麦分布的北部春麦区的图幅单元, 仅对有冬小麦分布的98个图幅单元进行冬小麦面积的识别与提取, 以避免数据冗余。为便于叙述, 以冬小麦生长和生产代表性较强的河北省保定市(J50D003004)、沧州市(J50D006006)、邯郸市(J50D011002)、唐山市(J50D002010)、邢台市(J50D008002)的5个图幅单元为例, 基于本文提出的WWAI提取技术, 分别提取这5个图幅单元的冬小麦种植面积。
根据冬小麦面积指数影像计算流程, 统计研究区每一时期影像所有网格左上中心点的NDVI值, 并结合该点目视分类结果, 分别统计冬小麦地类和其他地类的平均NDVI值, 若冬小麦NDVI平均值大于其他地类, 则将其NDVI乘以权值1, 否则就乘以权值–1, 并将各期影像NDVI加权值叠加并除以影像的期数, 即可得到最终的冬小麦面积指数影像(图7-A)。在获取得到冬小麦面积指数影像后, 通过最优WWAI提取阈值自适应确定方法, 设置最合适的WWAI提取阈值, 提取冬小麦种植区域。在本研究区, 冬小麦面积指数提取阈值设定为0.16时, 样本点具有最高的总体识别精度94.0%, 其中冬小麦的识别精度为95.5%。利用自适应选取的冬小麦面积指数提取阈值, 进行冬小麦分类工作, 提取结果如图7-B所示。分别统计左上样本点冬小麦WWAI值、NDVI均值及非冬小麦区域的WWAI、NDVI均值(表1), 可见WWAI值相比NDVI均值指数, 显著扩大了冬小麦地类和非冬小麦地类之间的差异, 差异绝对值从0.1626增加到0.2191, 差异倍数更是从1.62增加到2.69, 相比传统的NDVI阈值法, 利用冬小麦面积指数将更有利于进行冬小麦的面积提取工作。
由实际分布结果(图7)和统计值(表1)可以看出, 通过设定正负权值, 扩大了冬小麦优势期NDVI值, 缩小了非冬小麦优势期NDVI值, 可以使冬小麦类别像元WWAI值最大化, 能够直观地通过设定WWAI提取阈值的方式, 剔除掉非冬小麦区域。另外, 冬小麦种植区域的WWAI值显著大于非冬小麦区域(图7)。
A1B1: 保定市(J50D003004); A2B2: 沧州市(J50D006006); A3B3: 邯郸市(J50D011002); A4B4: 唐山市(J50D002010); A5B5: 邢台市(J50D008002)。
A1B1: Baoding city (J50D003004); A2B2: Cangzhou city (J50D006006); A3B3: Handan city (J50D011002); A4B4: Tangshan city (J50D002010); A5B5: Xingtai city (J50D008002).
表1 NDVI均值结果与冬小麦面积指数的比较
4.2 研究区冬小麦面积制图精度
省域范围内的制图是将上述方法逐一应用于98个图幅单元, 每个图幅单元建立1 km的缓冲区, 并对提取结果拼接, 拼接结果就是研究区内的冬小麦空间分布结果, 最终得到2013—2014年度的研究区冬小麦种植范围(图8)。利用在研究区获取的1479验证样本点对区域内的冬小麦空间分布精度进行验证, 可以看出, 总体识别精度达到89.6%, 用户精度达到89.8%, 制图精度96.5%, Kappa系数0.72 (表2)。这表明使用冬小麦面积指数方法进行京津冀区域冬小麦种植范围提取具有较高的精确性, 该方法是切实可行的。
本研究区域内冬小麦主要有3个集中分布区域, 即北部、中部与南部集中分布区, 北部集中分布区包括北京市、天津市、河北省唐山市行政区域, 中部集中分布区包括河北省保定市、廊坊市、沧州市行政区域, 南部的石家庄市、衡水市、邢台市和邯郸市行政区域(图8)。总体上空间分布结果与实际相符。
表2 冬小麦提取结果验证样本点混淆矩阵
图8 本研究区2013–2014年度冬小麦种植空间分布
4.3 基于监督分类的提取结果
采用基于最大似然分类器的监督分类方法, 利用10个训练样方对研究区中编号J50D006006的图幅单元进行冬小麦面积识别(图9)。采用混淆矩阵的方式, 通过10个验证样方对监督分类结果进行精度评价, 与通过冬小麦面积指数提取的结果精度进行对比(表3)。监督分类和WWAI冬小麦提取的总体精度分别为91.46%和90.64%, Kappa系数分别为0.83和0.81, 用户精度分别为87.88%和87.35%, 制图精度分别为95.11%和90.34%, 除制图精度相差4.77%以外, 其他都在1.00%以内。WWAI冬小麦识别效果与常规监督分类方法具有较高的一致性, 同时也具有较高的精度, 考虑到监督分类需要大量的样方, 在实际区域应用中具有实际的不可操作性, 显然WWAI指数算法更加简洁高效, 人为干预少, 具有更强的区域适用性。
图9 图幅编号J50D006006区域冬小麦监督结果
表3 监督分类方案与WWAI算法精度比较
5 讨论
标准化的分类单元构建、规范化的样本选择技术, 以及机理明确的算法选择, 是区域尺度农作物面积遥感自动识别精度与效率的主要影响因素。当前的研究重点更为注重算法选择[25], 而对标准化分类单元的构建、规范化的样本选择技术研究关注不足, 但这两个因素恰恰是区域性业务监测研究能够顺利进行的保证。该文将轨道覆盖范围变化较大的GF-1/WFV影像重新标准化到地形图分幅单元中, 等同于对WFV数据进行标准化分幅处理, 便于后续的业务分工、软件编程等研究工作的开展。采用规则化格网结合随机选择的方式获取训练和验证样本, 实现了样本选择可操作性, 也增强了样方的选择均匀性, 避免了由于样本选择聚集性带来的精度误差。
从农作物面积识别的研究方法来分析, 多时相数据一维压缩的算法已经开始得到重视, 如王利民等[26]基于WFV数据, 采用与WWAI指数类似的权重值被指数算法开展了冬小麦识别研究; Bargiel[27]基于VV和VH极化的Sentinel-1A数据, 以每种作物在6个时相中出现概率的累加值作为参数, 实现了多源数据的一维压缩, 提取了玉米、冬小麦、马铃薯、甜菜等8种作物识别。更多研究的重点仍然是决策树原理的多维影像数据的多层次识别[28], 这虽然完善了遥感影像作物识别能力的研究, 但仍需进行深入研究才能在区域范围内推广应用。该文提出的WWAI以NDVI时序数据为基础, 能够充分利用每一个时期的NDVI, 增加冬小麦识别优势期NDVI的比重, 降低非优势期NDVI的影响, 实现冬小麦与非冬小麦种植区的区分, 是降维算法在省级尺度农情遥感监测业务运行中的具体应用。
6 结论
利用GF-1/WFV遥感数据, 基于时序NDVI物候权重不同的原理, 结合标准化地图分幅单元构建、格网化样本选择技术, 开发了区域尺度冬小麦遥感识别算法, 实现了京津冀地区2013—2014年度冬小麦种植区的空间分布制图, 总体精度达到89.6%, 是大范围冬小麦面积监测业务化运行较为可行的方法。
[1] 吴炳方. 中国农情遥感速报系统. 遥感学报, 2004, 8: 481–497 Wu B F. China crop watch system with remote sensing., 2004, 8: 481–497 (in Chinese with English abstract)
[2] 中华人民共和国统计局. 中国统计年鉴2017 (12-8 农作物播种面积). 北京: 中国统计出版社, 2017 National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2017 (12-8 Sown areas of farm crops). Beijing: China Statistics Press, 2017 (in Chinese with English abstract)
[3] 杨邦杰, 裴志远. 国家级农情遥感监测系统的研究开发与运行. 农业工程学报, 2003, 19(增刊): 11–14 Yang B J, Pei Z Y. National agricultural condition monitoring system based on satellite remote sensing: development, application and improvement., 2003, 19(suppl): 11–14 (in Chinese with English abstract)
[4] Tarko A, De Bruin S, Fasbender D, Bregt A. Users’ assessment of orthoimage photometric quality for visual interpretation of agricultural fields., 2015, 7: 4919–4936
[5] Khatami R, mountrakis G, Stehman S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research., 2016, 177: 89–100
[6] Löw F, Duveiller G. Determining suitable image resolutions for accurate supervised crop classification using remote sensing data. In: Proceedings of the SPIE, Vol. 8893: Earth Resources and Environmental Remote Sensing/GIS Applications IV, Dresden, Germany, 2013. pp 909–927
[7] Lewiński S A. Object-oriented classification of Landsat ETM+ satellite image., 2007, 10: 91–106
[8] Kumar P, Gupta D K, Mishra V N, Prasad R. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data., 2015, 36: 1604–1617
[9] Li J, Zhao G X, Yang P G. Knowledge-based land use/cover classification of remote sensing image in Kenli, Shandong Province, China., 2006, 51: 218–224
[10] 李霞, 王飞, 徐德斌, 刘清旺. 基于混合像元分解提取大豆种植面积的应用探讨. 农业工程学报, 2008, 24(1): 213–217 Li X, Wang F, Xu D B, Liu Q W. Application research on the method for extracting soybean covered areas based on the pixel unmixing., 2008, 24(1): 213–217 (in Chinese with English abstract)
[11] 张建国, 李宪文, 吴延磊. 面向对象的冬小麦种植面积遥感估算研究. 农业工程学报, 2008, 24(5): 156–160 Zhang J G, Li X W, Wu Y L. Object oriented estimation of winter wheat planting area using remote sensing data., 2008, 24(5): 156–160 (in Chinese with English abstract)
[12] Lennington R K, Sorensen C T, Heydorn R P. A mixture model approach for estimating crop areas from Landsat data., 1984, 14: 197–206
[13] Chellasamy M, Ferré T P A, Greeve M H. Automatic training sample selection for a multi-evidence based crop classification approach. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 7th edn., Vol. 40, 2014. pp 63–69
[14] 王利民, 刘佳, 高建孟, 杨玲波, 杨福刚, 王小龙. 冬小麦面积遥感识别精度与空间分辨率关系. 农业工程学报, 2016, 32(23): 152–160 Wang L M, Liu J, Gao J M, Yang L B, Yang F G, Wang X L. Relationship between accuracy of winter wheat area remote sensing identification and spatial resolution., 2016, 32(23): 152–160 (in Chinese with English abstract)
[15] 李颖, 陈秀万, 段红伟, 沈阳. 多源多时相遥感数据在冬小麦识别中的应用研究. 地理与地理信息科学, 2010, 26(4): 47–49 Li Y, Chen X W, Duan H W, Shen Y. Application of multi-source and multi-temporal remote sensing data in winter wheat identification., 2010, 26(4): 47–49 (in Chinese with English abstract)
[16] Conese C, Maselli F. Use of multi-temporal information to improve classification performance of TM scenes in complex terrain., 1991, 46: 187–197
[17] 张喜旺, 秦耀辰, 秦奋. 综合季相节律和特征光谱的冬小麦种植面积遥感估算. 农业工程学报, 2013, 29(8): 154–163 Zhang X W, Qin Y C, Qin F. Remote sensing estimation of planting area for winter wheat by integrating seasonal rhythms and spectral characteristics., 2013, 29(8): 154–163 (in Chinese with English abstract)
[18] Wardlow B D, Egbert S L. Large-area crop mapping using time- series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains., 2008, 112: 1096–1116
[19] Zheng B, Myint S W, Thenkabail P S, Aggarwal R M. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data., 2015, 34: 103–112
[20] 刘佳, 王利民, 杨福刚, 杨玲波, 王小龙. 基于HJ时间序列数据的农作物种植面积估算. 农业工程学报, 2015, 31(3): 199–206 Liu J, Wang L M, Yang F G, Yang L B, Wang X L. Remote sensing estimation of crop planting area based on HJ time-series images., 2015, 31(3): 199–206 (in Chinese with English abstract)
[21] Suzuki K, Takeuchi T. Classification of upland crops using multi-temporal RapidEye data., 2015, 31: 1–10
[22] Carfagna E, Gallego F J. Using remote sensing for agricultural statistics., 2005, 73: 389–404
[23] 焦险峰, 杨邦杰, 裴志远. 基于分层抽样的中国水稻种植面积遥感调查方法研究. 农业工程学报, 2006, 22(5): 105–110 Jiao X F, Yang B J, Pei Z Y. Paddy rice area estimation using a stratified sampling method with remote sensing in China., 2006, 22(5): 105–110 (in Chinese with English abstract)
[24] 王增林, 朱大明. 基于遥感影像的最大似然分类算法的探讨. 河南科学, 2010, 28: 1458–1461 Wang Z L, Zhu D M. A study of maximum likelihood classification algorithm based on remote sensing image., 2010, 28: 1458–1461 (in Chinese with English abstract)
[25] Mosleh M K, Hassan Q K, Chowdhury E H. Application of remote sensors in mapping rice area and forecasting its production: a review., 2015, 15: 769–791
[26] 王利民, 刘佳, 杨玲波, 杨福刚, 滕飞, 王小龙. 基于 NDVI 加权指数的冬小麦种植面积遥感监测. 农业工程学报, 2016, 32(17): 127–135 Wang L M, Liu J, Yang L B, Yang F G, Teng F, Wang X L. Remote sensing monitoring winter wheat area based on weighted NDVI index., 2016, 32(17): 127–135 (in Chinese with English abstract)
[27] Bargiel D. A new method for crop classification combining time series of radar images and crop phenology information., 2017, 198: 369–383
[28] Massey R, Sankey T T, Congalton R G, Yadav K, Thenkabail P S, Ozdogan M, Meador A J S. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types., 2017, 198: 490–503
Acguisition of Winter Wheat Area in the Beijing-Tianjin-Hebei Region with GF-1 Satellite Data
WANG Li-Min*, LIU Jia, YANG Fu-Gang, YANG Ling-Bo, YAO Bao-Min, and WANG Xiao-Long
Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Winter wheat area accurate acquisition at provincial scale is an important aspect in remote-sensing monitoring of crop area. This study aimed at estimating winter wheat area in Beijing, Tianjin, and Hebei at provincial scale using classification map units from the national standard topographic map and the winter wheat area index (WWAI) created from the wide field view (WFV) data of GF-1 satellite. A total of 984 satellite monitoring images between October 1, 2013 and June 30, 2014 were used as data sources. The major process steps were data preprocessing, NDVI synthesis of standard map units, selection of samples, creation of winter wheat area index, confirmation of winter wheat crop type, provincial scale mapping, and accuracy verification. Multi-temporal GF-1/WFV data were preprocessed and NDVI value of images were calculated by using block adjustment and 6S atmospheric correction algorithm. By means of the 1:100 000 national standard topographic map framings of China, as the classification map units, WWAI was equally divided at a proportion of 1 percent into 101 extraction nodes from 0 to 100%. The NDVI values of extraction nodes were compared with type confirmation samples, and the most accurate NDVI was adopted as the extraction threshold value of winter wheat area. This threshold was then used into WWAI image in the map units to obtain winter wheat planting distribution. The identification result showed that, by taking standard map framing as calculation units and based on the creation of WWAI of GF-1 images, we remarkably improved the wave spectrum difference between winter wheat and other ground objects, with the overall accuracy of 89.6%, user accuracy of 89.8%, mapping accuracy of 96.5%, and Kappa coefficient of 0.72. In a typical region, the algorithm proposed had a similar accuracy with supervised classification algorithm. Except for 4.77% of the difference in mapping accuracy, the differences in overall accuracy and user accuracy were less than 1.00%. These results indicate that the used in this study is of algorithm high accuracy, efficiency and consistency in classification unit identification and applicable in agricultural monitoring at provincial level.
GF-1 satellite; region scale; winter wheat; area index; remote sensing
2017-06-14;
2018-01-08;
2018-01-26.
10.3724/SP.J.1006.2018.00762
本研究由国家重点研发计划项目(2016YFD0300603)资助。
This study was supported by the National Key Research and Development Program of China (2016YFD0300603).
王利民, E-mail: wanglimin01@caas.cn
http://kns.cnki.net/kcms/detail/11.1809.S.20180125.1755.006.html