APP下载

诱导型启动子在植物基因工程中的研究进展

2018-03-03杨瑞娟白建荣常利芳

山西农业科学 2018年2期
关键词:拟南芥元件克隆

杨瑞娟 ,白建荣 ,李 锐 ,常利芳

(1.山西大学生物工程学院,山西 太原 030006;2.山西省农业科学院作物科学研究所,山西 太原 030031)

启动子是位于基因的上游,能够被RNA聚合酶特异性识别的一段DNA序列。它像“开关”,控制基因表达的起始时间和程度。启动子组成包括核心启动子与上游启动子元件。核心启动子由转录起始位点、TATA框和5'UTR序列组成[1-2]。上游启动子元件包括CAAT框、GC框和一些组成型及特异型元件,这些元件结合相应的蛋白因子能够提高转录效率[3]。启动子按功能及作用方式可分为诱导型启动子、组织特异型启动子和组成型启动子[4]。但是某些条件下,一个启动子可能有2类启动子的特性[5]。

植物基因工程是将外源基因导入受体细胞,使其与受体染色体整合,改变受体植物遗传特性的一种方法。它不但可以克服物种间的生殖隔离,还可以大大加快植物育种进程。外源基因的表达必须有启动子的驱动。传统的基因工程中使用的大多是组成型启动子,它在植物的整个生命周期中都高强度表达,导致基因产物过度累积以及随之而来的代谢紊乱甚至植物死亡。诱导型启动子是在植物适应环境和长期进化过程中形成的,能够响应特殊的生物、物理、化学信号,进而提高特定基因转录水平,来适应一定范围内环境变化的一类启动子。在没有诱导因子存在的条件下,它控制的编码基因不表达或本底表达,一旦环境中出现诱导因素,编码基因表达迅速增加。按照响应环境的不同可以分为生物胁迫诱导的启动子、物理胁迫诱导的启动子、化学胁迫诱导的启动子[6]。诱导型启动子不但可以避免目的基因的持续表达对植物能量的过度消耗,而且可以消除基因产物积累对植物本身造成的伤害,成为近年来植物基因工程的研究热点。

笔者从生物、物理、化学3个诱导方面对抗逆相关诱导型启动子的研究进行了综述,以期为相关学者的研究提供依据。

1 生物胁迫诱导型启动子

植物在生长发育过程中会受到病原微生物如病毒、细菌、真菌等的侵染以及害虫的吞食侵害,从而导致存活率下降。生物胁迫诱导型启动子是指在植物受到生物胁迫时可以激活保护蛋白基因并调控其相关表达,从而消除有害代谢产物对植物自身起到保护作用。目前相关研究已取得一定进展(表1)。

表1 生物胁迫诱导型启动子

1.1 病原菌诱导型启动子

WRKYs转录因子在植物抗病反应中起重要作用,PETITOT等[7]克隆了咖啡WRKY转录因子的同源基因启动子CaWRKY1a和CaW-RKY1b,发现真菌胁迫可以诱导该启动子。何康[8]通过研究水稻抗纹枯病基因OS2H16启动子POs2H16,确定AATCA片段能够独立响应纹枯病菌诱导。牟少亮等[9]研究发现,OsERF96基因可应答白叶枯病或稻瘟病病原菌的侵染,其启动子可以应答病原菌侵染诱导。

1.2 害虫诱导型启动子

当受到害虫吞食后植物体内水杨酸(SA)剧增,促使相关基因表达。KUMAR等[22]将烟草病害蛋白启动子PR-1a嵌合CaMV35S导入棉花,发现昆虫吞食能够驱动cry1EC基因表达,同时喷施SA可以提高棉花的抗虫性。有研究发现,当拟南芥根部有线虫寄生时,3种细菌防卫素基因(Pdf2.1,Pdf2.2,Pdf2.3)被诱导表达。SIDDIQUE等[23]将Pdf2.1启动子与GUS基因融合转入拟南芥之后用线虫感染,发现GUS基因在其根中特异性表达。关丽梅等[24]将从籼稻基因组中获得的Os01g73940启动子片段BPHIP连接到带有GUS报告基因的植物表达载体上,并转入中花11。通过GUS组织化学染色和定量RT-PCR检测证明,BPHIP是一个受褐飞虱和茉莉酸处理诱导上调的启动子。

2 物理胁迫诱导型启动子

物理胁迫诱导型启动子是指响应光、极端温度、干旱等逆境胁迫使植物适应非正常光照、温度和干旱等恶劣环境,维持生长发育。这类启动子的研究开始的较早,研究成果最多(表2)。

2.1 光诱导型启动子

光在植物生长发育中起重要作用,如光合作用、光形态建成。常见的光诱导型启动子有cab启动子和rbcS基因启动子。一般光诱导启动子同时具有绿色组织特异性[5,25]。王旭静等[25]研究发现,中棉Gacab启动子含有GT1元件I-box和G-box等光诱导元件并且具有光诱导性。习雨琳等[5]将A-tRBCS-1A启动子片段转化拟南芥,分析不同光照条件下的表达模式,结果显示,该启动子是光诱导型和组织特异型启动子。

2.2 温度诱导型启动子

2.2.1 高温诱导型启动子 高温胁迫条件下植物体内会大量合成如HSP70,HSP90和HSP100等热激蛋白来减轻胁迫引起的伤害[26],当热激元件HSE与热激因子HSF相互作用才能激活热激蛋白基因的转录活性。RRÄNDL等[27]研究发现,大豆Gmhsp17.32B启动子具有一段热诱导因子(HSE)的同功序列。FREEMAN等[28]研究表明,大麦Hvhsp17基因启动子在高温下能驱动Hvhsp17基因在水稻中表达。

2.2.2 冷冻诱导型启动子 低温条件下,植物体内会发生如改变蛋白质、碳水化合物组分或合成一些新的物质等一系列生化反应。冷响应基因COR(cold-regulated)含有顺式作用元件CRT和DRE[29]。BELINTANI等[30]研究发现,甘蔗ipt基因启动子ATCOR15a可使ipt基因在冷冻胁迫下表达量增加,减少冷冻引起植物的损伤。WANG等[31]分离了玉米中受低温、干旱诱导显著表达的蛋白激酶基因ZmCKS2的启动子,并对其进行功能验证。结果表明,ZmCKS2启动子受干旱、低温胁迫和不同激素(ABA,MeJA,SA)的多因素诱导,缺失启动子片段P2(367 bp)是受低温、MeJA和SA诱导的最小的启动子片段。吕兆勇等[32]研究证明,葡萄PCAN启动子具有低温和干旱胁迫下诱导表达的特性(表2)。

表2 物理胁迫诱导型启动子

2.3 干旱诱导型启动子

干旱条件下,植物根毛细胞感知水分胁迫信号并进行信号转导,诱导水分胁迫相关基因的表达。1992年YAMAGUCHI-SHINOZAKI等[53]首次从拟南芥中分离并且克隆出逆境诱导型启动子rd29。BIHMIDINE等[54]研究发现,rd29A,rd29B基因启动子在干旱条件下均被明显激活,是抗旱型启动子。杨梅等[55]分离了干旱胁迫强烈诱导的水稻内源基因Oshox24的启动子Oshox24P,并通过GUS活性检测证明,该启动子是干旱诱导型启动子,可以调控目标基因在水稻中的表达。

3 化学胁迫诱导型启动子

化学胁迫诱导型启动子是指在激素、高盐、营养元素缺乏和含量过高等逆境条件下使植物可以生长的一类启动子。这类启动子的诱导因素受人类活动影响较大,比如为了作物增产而过量施肥,导致土地盐碱化和土壤板结,使农作物受到新的胁迫,导致减产。与物理胁迫诱导型启动子相比,该类启动子研究较少(表3)。

表3 化学胁迫诱导型启动子

3.1 激素诱导型启动子

植物的生长发育过程受激素的调节作用,但是激素不能直接作用于启动子序列,而是先与植物体内受体结合,激活受体蛋白,然后再由作用于启动子中相应激素应答元件,驱动下游基因的表达,从而引起一系列生理反应[87]。XU等[70]分离了白松PsPR10启动子,并构建融合报告基因载体转入烟草,分别用 SA,ABA,JA,NaCl,甘露醇和 PEG-6000 处理转基因植株,分别分析各种胁迫条件下GUS基因在根、茎、叶中的表达。结果表明,在所有胁迫条件下根的GUS活性均比对照组高,而茎和叶中GUS活性只在SA,ABA和JA条件下有增高。余建等[74]克隆了桑树MnACO基因MnACO1启动子片段,对序列进行分析发现,含有响应赤霉素的GARE-motif和响应植物激素的AuxRE元件。GUS活性分析表明,MnACO1为诱导型启动子兼具组成型启动子特性。

3.2 盐诱导型启动子

最早被克隆并进行功能分析的盐诱导型启动子是拟南芥rd29A基因的启动子[53]。张新宇等[82]对经300 mmol/LNaCl处理前后的转AtPUB18基因启动子的拟南芥幼苗进行组织化学染色,结果表明,处理后GUS基因的表达量明显上调,说明At-PUB18基因启动子是高盐诱导型启动子。SUN等[83]研究发现,旱稻液泡膜质子转运焦磷酸酶启动子TsVP1在高盐诱导下有较强的活性。

3.3 营养元素相关诱导型启动子

营养元素在植物的生命活动中起重要作用,是植物正常的生长发育不可缺少的因素。在一定的浓度范围内,植物可以正常吸收外界环境中的营养元素,然而当环境中元素浓度不足或者过高,却会对植物造成胁迫,影响植物生长发育。

氮是植物蛋白质、核酸和叶绿素的重要组成部分,氮素的含量直接影响叶片中叶绿素的含量,土壤中氮素缺乏会导致植物叶片黄化、根系量减少。刘生等[84]克隆了2个在大豆叶片或根系高丰度表达且响应低氮胁迫的基因(RNDI和LNDI)的启动子,并分别融合GUS基因转化拟南芥。GUS染色表明,2个基因的启动子都对低氮胁迫有响应,在氮素胁迫环境条件下能够调控组合的功能基因表达。铜是植物体多种酶类(细胞色素氧化酶、抗坏血酸氧化酶、多酚氧化酶等)的组成成分,还与光合作用有关。但植物正常生长对铜需要少,土壤中铜含量由于污水灌溉和施用农药远远超过了植物所需,导致植物生长受抑制甚至死亡。钟活权[86]研究发现,拟南芥AtRD22启动子含有多个铜响应元件CURECORECR,把该启动子与连接GUS报告基因转化拟南芥后,发现高Cu2+胁迫条件下,AtRD22启动子能明显诱导GUS基因在转基因拟南芥茎和叶中表达。

4 小结与展望

诱导型启动子是仅在转基因植物受到外界胁迫时驱动外源基因表达的一种启动子,相比组成型启动子的表达模式,诱导型启动子可以节约植物体能量,减轻代谢负担,在避免目的基因过量表达对植物的负面影响的同时提高植物抗逆性,具有重要的科研价值和商业价值。启动子主要通过顺式作用元件来调控基因表达。一种启动子常常存在多种顺式作用元件,这些元件以特殊组合方式调控相关抗逆基因的表达。目前胁迫诱导启动子研究主要集中在极端温度、干旱和高盐等方面,而关于营养元素相关的诱导型启动子报道较少。

综上所述,研究诱导型启动子作用方式和信号传递途径之间联系,可以为外源基因在转基因植株精细调节提供理论依据。同时开展诱导型启动子尤其是营养元素相关的启动子研究,培育营养元素高吸收利用和重金属耐受性新品种。最终将相关研究结果大规模应用于生产实践,加速植物基因工程改良植物的进程。

[1]BASEHOAR AD,ZANTONS J,PUGH B F.Identification and distinct regulation of yeast TATA box-containing genes[J].Cell,2004,116(5):699-709.

[2] BRADY J,RADONOVICH M,THOREN M,et al.Simian virus 40 major late promoter:an upstream DNA sequence required for efficient in vitro transcription[J].Molecular&Cellular Biology,1984,4(1):133-141.

[3]张晓枫.抗草甘膦基因植物双价表达载体的构建 [D].乌鲁木齐:新疆农业大学,2008.

[4]王关林,方宏筠.植物基因工程 [M].2版.北京:科学出版社,2002.

[5]习雨琳,周朋,宋梅芳,等.拟南芥RBCS-1A基因受光调节表达模式及其启动子遗传转化应用评价[J].作物学报,2012,38(9):1561-1569.

[6]肖兴国,韩蕾.一种植物气孔特异性启动子及其应用:中国,CN 102433338 B[P].2012-05-02.

[7] PETITOT A S,BARSALOBRES-CAVALLARI C,RAMIRO D,et al.Promoter analysis ofthe WRKYtranscription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee(Coffea arabica)[J].Plant Cell Reports,2013,32(8):1263.

[8]何康.水稻病原诱导启动子POs2H16顺式作用元件的分离与鉴定[D].泰安:山东农业大学,2016.

[9]牟少亮,申磊,石星辰.水稻OsERF96应答病原菌的表达及启动子的功能分析[J].植物遗传资源学报,2017,18(1):133-138.

[10] SONG F M,GOODMAN R M.Cloning and identification of the promoter of the tobacco Sar8.2b gene,a gene involved in systemic acquired resistance[J].Gene,2002,290:115-124.

[11] LI A,CHEN L,REN H,et al.Analysis of the essential DNA region for OsEBP-89 promoter in response tomethyljasmonic acid[J].Science in China Series C:Life Sciences,2008,51(3):280-285.

[12]COUTOS-THÉVENOT P,POINSSOT B,BONOMELLI A,et al.In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stiibene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J].J Exp Bot,2001,52:901-910.

[13] SA Q,WANG Y,LI W,et al.The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid[J].Plant Cell Reports,2003,22(1):79-84.

[14]李云锋,朱蕊,谢龙旭,等.大麦 β-1,3- 葡聚糖酶基因(GIII)启动子在转基因水稻中的诱导表达 [J].植物生理与分子生物学学报,2005,31(2):143-148.

[15]GAO Y,ZAN X L,WU X F,et al.Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene,BjCHI1[J].Plant Science An International Journal of Experimental Plant Biology,2014,215/216:190-198.

[16]CHAI C,LINY,SHEND.Identification and functional characterization of the soybean GmaPPO12 promoter conferringPhytophthora sojae induced expression[J].Plos One,2013,8(6):e67670.

[17] ZHENG H Q,LIN S Z,QIAN Z,et al.Isolation and analysis of a TIR-specific promoter from poplar[J].Forest Ecosystems,2007,9(2):95-106.

[18]CHOI J J,KLOSTERMAN S J.A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance[J].Phytopathology,2004,94(6):651-660.

[19]刘志钦,杨晟,蔡金森,等.辣椒CaWRKY5启动子的分离及其调控元件分析 [J].应用与环境生物学报,2013,19(3):389-394.

[20] ADAMS-PHILLIPS L,BRIGGS A G.Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress[J].Plant Physiology,2010,152(1):267-280.

[21] ZHANG X C,LI M Y,RUAN M B,et al.Isolation of AtNUDT5,gene promoter and characterization of its activity in transgenic Arabidopsis thaliana [J].Applied Biochemistry&Biotechnology,2013,169(5):1557-1565.

[22]KUMAR M,SHUKLA A K,SINGH H,et al.Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter[J].Journal of Biotechnology,2009,140(3/4):143-148.

[23]SIDDIQUE S,WIECZOREK K,SZAKASITS D,et al.The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots[J].Plant Physiology&BiochemistryPpb,2011,49(10):1100-1107.

[24]关丽梅,马伟华,林拥军,等.一个水稻褐飞虱为害诱导型启动子的克隆[J].植物保护,2016,42(1):19-25.

[25]王旭静,李为民,唐巧玲,等.中棉(Gossypium arboreum)光诱导基因Gacab启动子在转基因烟草中的功能缺失分析 [J].作物学报,2009,35(6):1006-1012.

[26]张晶红,那杰.植物逆境胁迫耐受性启动子的研究进展[J].植物生理学报,2014(6):707-710.

[27] PRÄNDL R,SCHÄFFL F.Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation[J].Plant Molecular Biology,1996,31(1):157-162.

[28]FREEMAN J,WEST J,SHEWRY P R,et al.Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat[J].Plant Biotechnology Journal,2011,9(7):788-796.

[29]YONG H C,CHANG H S,GUPTA R,et al.Transcriptional profiling reveals novel interactions between wounding,pathogen,abiotic stress,and hormonal responses in Arabidopsis[J].Plant Physiology,2002,129(2):661-677.

[30]BELINTANI NG,GUERZONI J TS,MOREIRAR MP,et al.Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter[J].Biologia Plantarum,2012,56(1):71-77.

[31] WANG F,LIU J,LI J,et al.Functional analyses of the maize CKS2,gene promoter in response to abiotic stresses and hormones[J].Acta Physiologiae Plantarum,2014,36(7):1867-1878.

[32]吕兆勇,赵春梅,薛仁镐.葡萄逆境胁迫诱导启动子的克隆及表达分析[J].华北农学报,2016,31(1):77-82.

[33]GAYLE LAMPPA,FERENCNAGY,NAM-HAI CHUA.Light-reg ulated and organ-specific expression of a wheat Cab gene in transgenic tobacco[J].Nature,1985,316:750-752.

[34] TADA Y,SAKAMOTO M,MATSUOKA M,et al.Expression of a monocot LHCP promoter in transgenic rice[J].The EMBO Journal,1991,10(7):1803-1808.

[35]王念捷,程奇.水稻4CL基因启动子引导的GUS在紫外诱导下的组织特异性表达[J].中国农业科学,1996,29(1):73-77.

[36] INABA T,NAGANO Y,REID J B,et al.DE1,a 12-base pair cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea[J].Journal of Biological Chemistry,2000,275(26):19723-19727.

[37]WELSCH R,MEDINAJ,GIULIANOG,et al.Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana[J].Planta,2003,216(3):523-534.

[38]黄海群,林拥军.水稻rbcS基因启动子的克隆及结构功能分析[J].农业生物技术学报,2007,15(3):451-458.

[39]LI J,LIANG D,LI M,et al.Light and abiotic stresses regulate the expression of GDP-L-galactosephosphorylase and levels of ascorbicacid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters [J].Planta,2013,238(3):535-547.

[40]瞿韵,张宁,常璟,等.马铃薯光诱导型茎叶特异表达启动子ST-LS1的克隆与功能分析 [J].农业生物技术学报,2013,21(7):828-837.

[41] COCA M A,ALMOGUERA C,THOMAS T L,et al.Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter[J].Plant Molecular Biology,1996,31(4):863-876.

[42] DUNN M A,WHITE A J,VURAL S,et al.Identification of promoter elements in a low-temperature-responsive gene(blt4.9)from barley (Hordeum vulgare L.)[J].Plant Molecular Biology,1998,38(4):551-564.

[43]ROJAS A,ALMOGUERA C,JORDANO J.Transcriptional activation of a heat shock gene promoter in sunflower embryos:synergism between ABI3 and heat shock factors[J].The Plant Journal,1999,20(5):601-610.

[44]伊淑莹,孙爱清,赵春梅,等.番茄多胁迫诱导型LeMTshsp启动子的分子克隆及其功能分析 [J].植物分类与资源学报,2007,29(2):223-230.

[45] NAVARRE C,SALLETS A,GAUTHY E,et al.Isolation of heat shock-induced Nicotiana tabacum,transcription promoters and their potential as a tool for plant research and biotechnology[J].Transgenic Research,2011,20(4):799-810.

[46]BROWN A P C,DUNN MA,GODDARD N J,et al.Identification of a novel low-temperature-response element in the promoter of the barley(Hordeum vulgare L)gene blt101.1[J].Planta,2001,213(5):770-780.

[47]DOLFERUS R,JACOBS M,PEACOCK W J,et al.Differential interactions of promoter stress responses of the Arabidopsis elements in Adh gene[J].Plant Physiol,1994,105(4):1075-1087.

[48] KASUGA M,MIURA S,SHINOZAKI K,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rD29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer[J].Plant Cell Physiol,2004,45(3):346-350.

[49]杜娟,朱祯,李晚忱.植物逆境诱导启动子mwcs120的克隆及表达特性研究[J].作物学报,2005,31(10):1328-1332.

[50] TAKUMI S,KOIKE A,NAKATA M,et al.Cold-specific and light-stimulated expression of a wheat(Triticum aestivum L.)Cor gene Wcor15 encodinga chloroplast-targeted protein[J].Journal of Experimental Botany,2003,54:2265-2274.

[51]KOVALCHUK N,JIA W,EINI O,et al.Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters[J].Plant Biotechnol J,2013,11(6):659-670.

[52] LI M,WANG X,CAO Y,et al.Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco [J].Plant Physiology&Biochemistry,2013,71(2):77-86.

[53] YAMAGUCHI-SHINOZAKI K,SHINOZAKI K.Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants[J].Molecular and General Genetics,1993,236(2/3):331-340.

[54]BIHMIDINE S,LIN J,STONE J M,et al.Activity of the Arabidopsis,RD29A and RD29B promoter elements in soybean under water stress[J].Planta,2013,237(1):55-64.

[55]杨梅,熊立仲.水稻干旱诱导型启动子Oshox24P的分离与鉴定[J].华中农业大学学报:自然科学版,2011,30(5):525-531.

[56]ZAHUR M,MAQBOOL A,IRFAN M,et al.Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J].Molecular BiologyReports,2009,36(7):1915-1921.

[57] BEHNAM B,IUCHI S,FUJITA M,et al.Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenaseinvolved in dehydration-inducible transcription[J].DNAResearch,2013,20(4):315-324.

[58]李丽丽,李甜甜,高利芬,等.二穗短柄草逆境诱导型启动子pBdDREB-47的克隆及功能验证 [J].分子植物育种,2017,15(1):58-64.

[59] AYADI M,MIEULET D,FABRE D,et al.Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response toabiotic stress in rice[J].Plant Physiology&Biochemistry,2014,79(3):98-108.

[60]INJUNG KIM,JEONGYEO LEE,JEONGA HAN,et al.Citrus Lea promoter confers fruit-preferential and stressinducible gene expression in Arabidopsis[J].Canadian Journal of Plant Science,2013,91(3):459-466.

[61]刘习文,畅文军,朱家红,等.海马齿SpSCL1基因启动子克隆及序列分析[J].广东农业科学,2013,40(4):124-127.

[62]LEE SC,KIMSH,KIMS R.Drought inducible OsDhn1,promoter is activated by OsDREB1A and OsDREB1D[J].Journal of Plant Biology,2013,56(2):115-121.

[63]阴霞,陈雯,王磊,等.激素和非生物胁迫对月季RhPIP1;1启动子活性的调节作用[J].园艺学报,2014,41(1):107-117.

[64]FANG H,LIU X,THORN G,et al.Expression analysis of histone acetyltransferases in rice under drought stress[J].Biochemical&Biophysical Research Communications,2014,443(2):400-405.

[65]XU D,MC ELROY D,THORNBURG R W,et al.Systemic induction of a potato pin2 promoter by wounding,methyl jasmonate,and abscisicacid in transgenic rice plants[J].Plant Molecular Biology,1993,22(4):573-588.

[66]RAI M,HE C K,WU R.Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice[J].Transgenic Research,2009,18(5):787-799.

[67]NARUSAKA Y,NAKASHIMA K,SHINWARI Z K,et al.Interaction betweentwocis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J].Plant Journal,2003,34:137-148.

[68]XU D Q,LI J G,GANGAPPA SREERAMAIAH N,et al.Convergence of light and ABA signaling on the ABI5 promoter[J].PLoS Genetics,2014,10(2):e1004197.

[69] YANG Y Z,TAN B C.A distal ABA responsive element in At NCED3 promoter is required for positive feedback regulation of ABA bios-ynthesis in Arabidopsis[J].PLoS Genetics,2014,9(1):e87283.

[70]XU X B,GUO S,CHEN K,et al.A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco[J].BiotechnologyLetters,2010,32(10):1533-1539.

[71]YOON I S,PARK D H,MORI H,et al.Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene,VR-ACS6,of mungbean(Vignaradiata L.Wilczek)and hormonal interactions on the promoter activityin transgenic tobacco[J].Plant Cell Physiol,1999,40(4):431-438.

[72]孙涛,柴团耀,张玉秀.拟南芥GH3基因家族启动子序列分析[J].中国科学院大学学报,2010,27(6):847-852.

[73] WANG X,REPLOGLE A,DAVIS E L,et al.The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feedingsite of heterologous plan[J].Molecular Plant Pathology,2007,8(4):423-436.

[74]余建,刘长英,赵爱春,等.桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析[J].作物学报,2017,43(6):839-848.

[75]余丽,杨世湖,晋玉宽,等.Pib启动子中茉莉酸和乙烯响应元件的转基因分析[J].遗传,2010,32(1):73-80.

[76]叶凌凤,刘琳,张志高,等.玉米ZmPGP1基因启动子的克隆及结构功能分析[J].中国农业大学学报,2017,22(3):1-5.

[77]李婵娟,杨世湖,武亮,等.pib基因启动子及其诱导启动性初探[J].遗传,2006,28(6):689-694.

[78] LI Q,YIN H,LI D,et al.Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K.[J].Journal of Genetics&Genomics,2007,34(4):355-361.

[79] BHUIYAN N H,HAMADA A,YAMADA N,et al.Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor[J].Journal of Experimental Botany,2007,58(15/16):4203-4212.

[80]GUTHALR,REDDYA R.Rice DREB1B promoter shows distinct stress-specific responses,and the overexpression of cDNA in tobaccoconfers improved abiotic and biotic stress tolerance[J].Plant Molecular Biology,2008,68(6):533-555.

[81] WOODROW P,PONTECORVO G,CIARMIELLO L F.Ttd1a,promoter is involved in DNA-protein binding by salt and light stresses[J].Molecular BiologyReports,2011,38(6):3787-3794.

[82]张新宇,赵兰杰,李艳军,等.盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析 [J].西北植物学报,2014,34(1):54-59.

[83] SUN Q,GAO F,ZHAO L,et al.Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response fromThellungiella halophila[J].Bmc Plant Biology,2010,10(1):90.

[84]刘生,苏晶,夏铜梅,等.两个大豆低氮响应启动子的克隆及初步功能验证[C]//全国大豆科研生产研讨会.大庆:中国作物学会大豆专业委员会,2012.

[85]孔佑宾,李喜焕,张彩英.大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析 [J].中国农业科学,2017,50(3):582-590.

[86]钟活权.Cu2+胁迫下拟南芥AtRD22的表达及作用分析[D].深圳:深圳大学,2017.

[87]孙芳芳,宋洪元.植物诱导型启动子研究进展 [J].南方园艺,2014,25(2):51-56.

猜你喜欢

拟南芥元件克隆
克隆狼
承压类特种设备受压元件壁厚测定问题的探讨
浙江:诞生首批体细胞克隆猪
富天冬酰胺蛋白增强拟南芥辐射抗性的研究
两种LED光源作为拟南芥生长光源的应用探究
QFN元件的返工指南
属于“我们”
宝马i3高电压元件介绍(上)
Galectin-7多克隆抗体的制备与鉴定
木醋液与6-苄基腺嘌呤对拟南芥生长的影响研究