灌溉水盐分组成对土壤水盐迁移参数的影响
2017-12-20郭全恩南丽丽李保国曹诗瑜
郭全恩,南丽丽,李保国,曹诗瑜
灌溉水盐分组成对土壤水盐迁移参数的影响
郭全恩1,2,3,南丽丽4,李保国3,曹诗瑜1,2
(1. 甘肃省农业科学院土壤肥料与节水农业研究所,兰州 730070;2. 农业部甘肃耕地保育与农业环境科学观测实验站,武威 733017;3. 中国农业大学资源与环境学院,北京 100193;4. 甘肃农业大学草业学院,兰州 730070)
淡水资源不足和盐渍化是干旱地区农业生产的限制因子。研究水盐迁移参数是水盐调控的重要目标。为此,该研究以甘肃省秦安县兴国镇果园土样为研究对象,采用水平土柱入渗法,探讨不同盐溶液(氯化钠、氯化钠和氯化镁、氯化钠和氯化钙、氯化钠和氯化钾)在矿化度均为3 g/L的条件下对土壤水分扩散率和盐分离子水平迁移的影响。结果表明:不同盐分组成的灌溉水质和含水率对土壤水分扩散率的影响均达极显著水平(<0.01)。在灌溉水矿化度均为3 g/L的条件下,氯化钠盐溶液传输水分的潜在能力最大,加入一定的复盐对水分的传导起到阻滞作用,阻滞能力的大小是:氯化钙>氯化钾>氯化镁。不同盐分组成的灌溉水对土壤碳酸氢根和硫酸根的水平迁移具有显著的影响(<0.05),对盐分、钙离子和钠离子水平迁移具有极显著的影响(<0.01)。入渗距离对土壤pH的影响以及灌溉水盐分组成对土壤钠吸附比的影响均达显著水平(<0.05)。灌溉水盐分组成对模型参数初始值和终止值有显著的影响,参数初始值和终止值均呈现:氯化钠>氯化钠和氯化镁>氯化钠和氯化钾>氯化钠和氯化钙。因此,从微咸水利用和盐渍化土壤改良的角度考虑,在微咸水灌溉中加入一定量的钙制剂可抑制水分扩散和降低土壤盐分含量;从灌溉方法来看,需从地块的两端轮换灌溉可预防地块一端脱盐而另一端积盐的现象。这一研究结果对于指导干旱、半干旱地区微咸水利用具有重要的科学意义。
灌溉;盐分;土壤水分;扩散率;水平迁移;Boltzmann函数
0 引 言
中国西北旱区水源短缺已成为农业生产的重要限制因素。如何有效开发利用咸水资源已成为科研和政府部门迫切需要解决的难题。据统计,中国矿化度为2~5 g/L的地下微咸水资源为200亿m3/a[1],大多位于较为干旱的西北地区和华北平原[2],若能合理开采利用,可有效弥补该地区降雨量少、地面灌溉水资源不足的劣势。因此,微咸水的合理开发利用已成为缓解水资源紧缺的重要途径之一。
近年来众多学者就微咸水灌溉进行了研究[3-8],适宜的微咸水灌溉不仅能补充作物生长所需水分,而且能淋洗掉土壤剖面多余的盐分,有利于作物生长[9-10]。方生等[11]用微咸水(矿化度2~4 g/L)和半咸水(矿化度4~6 g/L)灌溉的小麦玉米,比不灌的雨养农业增产1.2~1.6倍。张展羽等[12]对玉米苗期进行微咸水灌溉,矿化度低于3 g/L时,对幼苗生长没有影响甚至有促进作用,当微咸水矿化度大于3 g/L时,光合作用明显受到抑制。陈素英等[13]对冬小麦在拔节期和灌浆期用微咸水灌溉,结果表明利用矿化度小于5 g/L的微咸水灌溉,不会使冬小麦产量降低,灌溉1次微咸水比雨养旱作处理增产10%~30%。
长期以来,一些学者只关注灌溉水的矿化度[14-16],而对灌溉水的化学组成重视不够。灌溉过程中土壤水分入渗会驱逐土壤空气,可能导致土壤出现周期性的滞水,这时土壤胶体中的某些盐分离子与灌溉水质中的盐分离子发生化学反应,容易造成土壤结构的崩解。因此,灌溉水离子组成对土壤理化性状的影响应当引起重视。
甘肃省秦安县兴国镇果园长期利用微咸水灌溉,导致果园土壤次生盐渍化的发生,特别是钠盐的危害[17]。由于土壤钠质(碱)化,干时收缩坚硬板结,湿时膨胀泥泞;结构性差,通透性不良,严重妨碍果树的正常生长。为此,本研究从微咸水利用和土壤改良的角度出发,在陪伴阴离子均为Cl-的条件下,研究灌溉水质中添加等摩尔量的阳离子(K+、Ca2+、Mg2+)对盐渍化土壤水盐迁移参数的影响,旨在为农业生产管理提供科学依据。
1 材料与方法
1.1 供试土壤
供试土壤取自甘肃中东部地区的秦安县兴国镇果园,土壤电导率为0.43 mS/cm,pH值为8.54,有机质质量分数为10.52 g/kg,碳酸钙质量分数为134.8 g/kg。土壤颗粒分析采用MS2000激光粒度仪(英国马尔文仪器有限公司),黏粒(<0.002 mm)质量分数为208.7 g/kg,粉砂粒(0.002~0.02 mm)质量分数为539.3 g/kg,砂粒(>0.02~2 mm)质量分数为252.0 g/kg,属粉砂黏壤土。土壤盐分离子含量见表1。
1.2 试验设计及过程
本试验设4个处理:Ⅰ NaCl;Ⅱ NaCl∶MgCl2摩尔比=1∶1;Ⅲ NaCl∶CaCl2摩尔比=1∶1;Ⅳ NaCl∶KCl摩尔比=1∶1,每个处理重复3次。所有处理的质量浓度均为3 g/L。
试验是在水平土柱中进行的,柱体分为3段:水室段、滤层段和试样段。水室段连接马氏瓶,控制水室内液面与试样段土样的高度相同;滤层段,内填石英砂缓冲水流;试样段,总长度为40 cm,填装供试土样。供试验装置如图1所示。
图1 试验装置
1.3 测定及计算方法
土壤浸提液用1∶5土水比提取,盐分离子的测定均用常规方法[19],电导率的测定用电导仪(DDS-11A,),盐分的计算用如下公式(1)换算:
土壤全盐(%)=电导率(mS/cm)´温度校正系数()´
电极常数()´水土比 (1)
土壤钠吸附比(sodium absorption ratio,SAR)的计算参考俞仁培等[20]方法。土壤水分扩散率的计算参考雷志栋等[18]方法。
采用Origin8.0软件,对不同灌溉水质土壤盐分水平迁移进行模型拟合,研究发现Boltzmann函数拟合度最高,适合模拟盐分的水平迁移。Boltzmann方程式[21]为:
式中1和2是该曲线的2条渐近线(初始值与终止值),0是曲线对称轴的横坐标(即中心),d是曲线倾斜的斜率;为土壤盐分含量,g/kg;为水平入渗距离,cm。
2 结果与分析
2.1 灌溉水盐分组成对土壤水分扩散率的影响
土壤水分扩散率与体积含水率之间的关系通常符合=e,模型参数的物理意义是指当含水率为0时的土壤水分扩散能力,取决于土壤基模特性[22];模型参数表示土壤水分扩散率随含水率的变化速率,取决于液体性质。由图2可知,对于4个处理的值比较,处理Ⅰ(2×10-4)>处理Ⅱ(7×10-5)>处理Ⅳ(4×10-6)>处理Ⅲ(3×10-10),这说明单盐NaCl的盐溶液传输水分的潜在能力最大,加入一定的复盐对水分的传导起到阻滞作用,阻滞能力的大小是:CaCl2>KCl>MgCl2。
注:灌溉水盐分质量浓度为3 g×L-1。下同。
对4个处理的值进行比较(图2),处理Ⅲ(67.372)>处理Ⅳ(37.518)>处理Ⅱ(27.685)>处理Ⅰ(24.57),这说明加入一定的复盐对土壤水分扩散率随含水率的变化速率有明显的影响,影响能力的大小同样是:CaCl2>KCl>MgCl2。这一研究结果与张继红等[23-24]报道的土壤水分扩散率随着石膏(CaSO4)施量增加而减小的规律相一致。
对灌溉水离子组成和不同入渗距离时的土壤含水率进行双因素方差分析,表明灌溉水盐分组成和土壤含水率极显著地影响土壤水分扩散率(<0.01)。
2.2 灌溉水盐分组成对土壤盐分离子水平迁移的影响
不同盐分组成的灌溉水处理下土壤盐分、SO42-、Ca2+、K+、Na+含量随着入渗距离的增加大多数呈现增大的趋势,而HCO3-的含量随着入渗距离的增加而呈现减小的趋势,Cl-和Mg2+的含量随着入渗距离的增加没有明显的规律性(图3)。方差分析结果表明:不同盐分组成的灌溉水对土壤HCO3-和SO42-的水平迁移具有显著的影响(<0.05),对盐分、Ca2+和Na+水平迁移的影响达极显著水平(<0.01)。从不同灌溉水处理来看,在矿化度均为3g/L的情况下,处理Ⅰ(单盐NaCl)土壤盐分和Na+的含量在整个入渗过程中均最高,且在湿润锋末端(入渗距离26~32cm之间),土壤盐分和Na+的含量均呈现规律性的变化,即:处理Ⅰ>处理Ⅱ>处理Ⅳ>处理Ⅲ。这说明加入钙盐可减小土壤盐分含量,同时也证明钙制剂在土壤盐分改良中的作用。这与罗小东等[25]报道的施用石膏(钙制剂)有助于土壤脱盐结果一致。
注:H代表不同入渗距离间比较;T代表不同处理间比较;*,P<0.05;**,P<0.01;下同。
2.3 灌溉水盐分组成对土壤pH值和SAR的影响
由图4a可知,对于处理Ⅰ,随着入渗距离的增加,土壤pH值呈现依次减小的趋势,而对于处理Ⅱ、Ⅲ、Ⅳ来说,土壤pH值随着入渗距离的增加呈现波动式的减小趋势。对影响土壤pH值和SAR的灌溉水盐分组成以及水平入渗距离进行方差分析,结果表明:水平入渗距离对土壤pH值的影响达显著水平(<0.05),多重比较发现,入渗距离8cm处和32cm处土壤pH值差异显著,其他不同入渗距离间土壤pH值差异不显著(>0.05);灌溉水盐分组成对土壤pH的影响不显著(>0.05)。
钠吸附比值法是美国农田灌溉水质评价中常采用的方法[26]。本研究进一步对土壤钠吸附比SAR值进行分析,结果见图4b,对于处理Ⅰ,土壤SAR值随着入渗距离增加呈现明显的减小趋势,且在整个入渗过程中,处理Ⅰ的SAR值明显高于其他处理,而处理Ⅱ、Ⅲ、Ⅳ的SAR值随入渗距离的增加呈现波动式增加的趋势。对影响SAR值的灌溉水盐分组成和入渗距离进行方差分析,结果表明:灌溉水盐分组成对土壤SAR值的影响达显著水平(<0.05)。
图4 灌溉水盐分组成对不同入渗距离土壤pH和钠吸附比(SAR)的影响
2.4 基于Boltzmann的土壤盐分水平迁移模拟
基于Boltzmann函数拟合土壤盐分含量与水平运移距离的关系,结果见表2。
表2 土壤盐分含量与运移距离关系的模拟
所有处理的拟合均取得了很好的效果,2>0.89(0.05)。灌溉水盐分组成对模型参数1(初始值)和2(终止值)影响较大,对于处理Ⅰ,参数1和2值分别为0.152和0.517,明显高于其他处理,且不同处理之间,参数1和2值均呈现:处理Ⅰ>处理Ⅱ>处理Ⅳ>处理Ⅲ,这说明处理Ⅰ函数在纵向的分布宽度最大,而处理Ⅲ函数在纵向的分布宽度最小。函数在纵向的分布宽度大说明土壤盐分含量高,宽度小说明土壤盐分含量低,这与图3的结果一致。参数0值在28.488~28.700之间变化,不同处理之间差别不大。而参数d在不同处理之间没有变化,均为1.2,这说明曲线的倾斜程度相同。
3 讨 论
微咸水灌溉导致土壤剖面盐分含量增加,土壤盐分的累积量随着矿化度的增加而增大[27-29]。在垂直剖面,土壤盐分随着土层深度的增加而增加[30];在水平面,本研究结果表明土壤盐分随着入渗距离的增加而增大,而土壤pH随着入渗距离的增加呈现减小的趋势。这也证明土壤脱盐碱化这一现象。这与郭全恩等[31]报道土壤pH随着NaCl加入量的增加而减小基本一致。
由于农田灌溉水中不仅含有盐分离子,还有氮、磷、钾、重金属、有机化合物以及微生物等。本研究主要从咸水灌溉对土壤盐渍化影响的角度出发,探讨咸水中的盐分离子和土壤中的盐分离子之间的相互作用,别的元素或化合物暂且没有考虑。
在试验设计过程中只选择了4种盐(NaCl、MgCl2、CaCl2和KCl),而没有选择MgSO4、CaSO4、Na2CO3等,这是因为在盐渍化土壤常见的阳离子有K+、Na+、Ca2+、Mg2+这4种离子,一方面想探讨在陪伴阴离子类型相同的情况下,不同阳离子对土壤盐分离子迁移的影响;另一方面想忽略次要离子,放大主要离子的效应。
从灌溉水不同盐分的配比来看,本研究从等量代换的角度考虑了矿化度相同的条件下同一配比盐溶液的阳离子摩尔浓度相同,如在3 g/L氯化钠和氯化镁混合的盐溶液中,Na+和Mg2+的摩尔浓度相同,均为0.019 7 mol/L,Cl-的摩尔浓度为0.059 1 mol/L;在3 g/L氯化钠和氯化钾混合的盐溶液中,Na+和K+的摩尔浓度相同,均为0.022 6 mol/L,Cl-的摩尔浓度为0.045 2 mol/L。可以看出陪伴阴离子Cl-类型相同,而浓度不同。因此,对于设置陪伴阴离子类型和浓度相同,而阳离子的摩尔浓度不同的试验有待于今后进一步去研究。
4 结 论
设置4个盐分组成处理,研究灌溉水组成对土壤水分扩散、盐分离子迁移、pH和钠吸附比(sodium absorption ratio,SAR)的影响,结果表明:
1)灌溉水盐分组成和含水率对土壤水分扩散率的影响均达极显著水平(<0.01)。在灌溉水矿化度均为3 g/L的条件下,NaCl的盐溶液传输水分的潜在能力最大,加入一定的复盐对水分的传导起到阻滞作用,阻滞作用的大小是:CaCl2>KCl>MgCl2。因此,这一结果启示我们在微咸水灌溉或盐渍化土壤改良中可适当加入钙制剂,抑制盐渍化土壤水分的快速迁移。
2)不同盐分组成的灌溉水对土壤HCO3-和SO42-的水平迁移具有显著的影响(<0.05),对盐分、Ca2+和Na+水平迁移的影响达极显著水平(<0.01)。说明微咸水灌溉时不能经常从同一地块的同一方向灌溉,这样长期灌溉会导致地块两端盐分离子分布不均,一端产生脱盐现象,而另一端产生积盐现象。
3)对于单盐NaCl处理,土壤pH值随着入渗距离的增加呈现减小的趋势,而对于复盐(处理Ⅱ、Ⅲ、Ⅳ),土壤pH值随着入渗距离的增加呈现波动式的减小趋势。入渗距离对土壤pH的影响达显著水平(<0.05),而灌溉水盐分组成对土壤SAR值的影响达显著水平(<0.05)。
4)基于Boltzmann函数拟合表明,灌溉水盐分组成对模型参数有显著影响(<0.05)。
[1] 刘友兆,付光辉. 中国微咸水资源化若干问题研究[J]. 地理与地理信息科学,2004,20(2):57-60. Liu Youzhao, Fu Guanghui. Utilization of gentle salty water resource in China[J]. Geography and Geo-Information Science, 2004, 20(2): 57-60. (in Chinese with English abstract)
[2] 赖永明,洪林,陈浩,等. 咸水灌溉影响及改善措施研究进展[J]. 节水灌溉,2015(12):55-59. Lai Yongming, Hong Lin, Chen Hao, et al. Research advances in impacts and improvement measures of irrigation with saline water[J]. Water Saving Irrigation, 2015(12): 55-59. (in Chinese with English abstract)
[3] Incrocci L, Malorgio F, Della Bartola A, et al. The influence of drip irrigation or subirrigation on tomato grown in closed- loop substrate culture with saline water[J]. Scientia Horticulturae, 2006, 107: 365-372.
[4] Malash N, Flowers T J, Ragab R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production[J]. Agricultural Water Management, 2005, 78: 25-38.
[5] 雪静,王全九,毕远杰. 微咸水间歇供水土壤入渗特征[J]. 农业工程学报,2009,25(5):14-19. Xue Jing, Wang Quanjiu, Bi Yuanjie. Soil infiltration properties with saline water intermittent application[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 14-19. (in Chinese with English abstract)
[6] 万书勤,康跃虎,王丹,等. 微咸水滴灌对黄瓜产量及灌溉水利用效率的影响[J]. 农业工程学报,2007,23(3):30-35. Wan Shuqin, Kang Yuehu, Wang Dan, et al. Effects of saline water on cucumber yields and irrigation water use efficiency under drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 30-35. (in Chinese with English abstract)
[7] 王全九,单鱼洋. 微咸水灌溉与土壤水盐调控研究进展[J].农业机械学报,2015,46(12):117-127. Wang Quanjiu, Shan Yuyang. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117-127. (in Chinese with English abstract)
[8] 雷廷武,肖娟,王建平,等. 地下咸水滴灌对内蒙古河套地区蜜瓜用水效率和产量品质影响的试验研究[J]. 农业工程学报,2003,19(2):80-84. Lei Tingwu, Xiao Juan, Wang Jianping, et al. Experimental investigation into effects of drip irrigation with saline groundwater on water use efficiency and quality of honeydew melons in Hetao Region, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 80-84. (in Chinese with English abstract)
[9] 李法虎,Benhur M,Keren R. 劣质水灌溉对土壤盐碱化及作物产量的影响[J]. 农业工程学报,2003,19(1):63-66. Li Fahu, Benhur M,Keren R. Effect of marginal water irrigation on soil salinity, sodicity and crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 63-66. (in Chinese with English abstract)
[10] Moreno F, Cabrera F, Fernandez-Boy E. Irrigation with saline water in the reclaimed marsh soils of south-west spain: Impact on soil properties and cotton and sugar beet crops[J]. Agricultural Water Management, 2001, 48: 133-150.
[11] 方生,陈秀玲. 农业节水灌溉与咸水利用淡化[M]. 北京:中国农业技术出版社,2008.
[12] 张展羽,郭相平. 微咸水灌溉对苗期玉米生长和生理性状的影响[J]. 灌溉排水,1999,18(1):18-22. Zhang Zhanyu, Guo Xiangping. Effects of NaCl on growth and physiological processes of maize seedlings[J]. Irrigation and Drainage, 1999,18(1): 18-22. (in Chinese with English abstract)
[13] 陈素英,邵立威,孙宏勇,等. 微咸水灌溉对土壤盐分平衡与作物产量的影响[J]. 中国生态农业学报,2016,24(8): 1049-1058. Chen Suying, Shao Liwei, Sun Hongyong, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco- Agriculture, 2016, 24(8): 1049-1058. (in Chinese with English abstract)
[14] 郭仁松,林涛,徐海江,等. 微咸水滴灌对绿洲棉田水盐运移特征及棉花产量的影响[J]. 水土保持学报,2017, 31(1):211-216. Guo Rensong, Lin Tao, Xu Haijiang, et al. Effect of saline water drip irrigation on water and salt transport features and cotton yield of oasis cotton field[J]. Journal of Soil and Water Conservation, 2017, 31(1): 211-216. (in Chinese with English abstract)
[15] 张珂萌,牛文全,汪有科,等. 微咸水微润灌溉下土壤水盐运移特性研究[J]. 农业机械学报,2017, 48(1):175-182. Zhang Kemeng, Niu Wenquan, Wang Youke, et al. Characteristics of water and salt movement in soil under moisture-irrigation with brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 175-182. (in Chinese with English abstract)
[16] 王全九,许紫月,单鱼洋,等. 磁化微咸水矿化度对土壤水盐运移的影响[J]. 农业机械学报,2017,48(1):1-14. Wang Quanjiu, Xu Ziyue, Shan Yuyang, et al. Experiment on salt and water movement affected by salinity of magnetized brackish water[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 1-14. (in Chinese with English abstract)
[17] 郭全恩,王益权,南丽丽,等. 灌水定额对旱区苹果园土壤水盐再分布的影响[J]. 应用生态学报,2013,24(7):1863-1870. Guo Quanen, Wang Yiquan, Nan Lili, et al. Effects of irrigation quota on moisture and salt redistribution in apple orchard soil in arid region[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1863-1870. (in Chinese with English abstract)
[18] 雷志栋,杨诗秀,谢森传. 土壤水动力学[M]. 北京:清华大学出版社,1988:231-234.
[19] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,2000:140.
[20] 俞仁培,尤文瑞.土壤盐化、碱化的监测与防治[M]. 北京:科学出版社,1993.
[21] 于成龙,郝欣,沈清. Origin 8.0应用实例详解[M]. 北京:化学工业出版社,2010:198.
[22] 郭全恩,王益权,马忠明,等. 溶质类型与矿化度对土壤水分扩散率的影响[J]. 干旱区地理,2011,34(1):86-90. Guo Quanen,Wang Yiquan, Ma Zhongming, et al. Effect of solute type and mineralizations on soil moisture diffusivity[J]. Arid Land Geography, 2011, 34(1): 86-90. (in Chinese with English abstract)
[23] 张继红,王全九,谭帅,等. 微咸水入渗下施加石膏对盐碱土水分运动特征的影响[J]. 水土保持学报,2016,30(4):130-134. Zhang Jihong, Wang Quanjiu, Tan Shuai, et al. Effects of gypsum on water movement characteristics of saline alkali soil under brackish water infiltration[J].Journal of Soil and Water Conservation, 2016, 30(4):130-134. (in Chinese with English abstract)
[24] 梁嘉平,史文娟,王全九. 石膏对土壤水分入渗特性的影响[J]. 水土保持通报,2016,36(6):160-164. Liang Jiaping, Shi Wenjuan, Wang Quanjiu. Effects of gypsum on soil water infiltration characteristics[J]. Bulletin of Soil and Water Conservation, 2016, 36(6): 160-164. (in Chinese with English abstract)
[25] 罗小东,王全九,谭帅. 基于土壤钠离子含量的不同施用量石膏改良剂改良效果[J]. 干旱地区农业研究,2016,34(1):288-292. Luo Xiaodong, Wang Quanjiu, Tan Shuai. The effect of gypsum improver based on Na+concentration in soil[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 288-292. (in Chinese with English abstract)
[26] Christiansen J E, Olsen E C, Willardson L S. Irrigation water quality evaluation[J].Journal of the Irrigation and Drainage Division, 1977, 103(2): 155-169.
[27] Amer K H. Corn crop response under managing different irrigation and salinity levels[J]. Agricultural Water Management, 2010, 97(10): 1553-1563.
[28] Pang H C, Li Y Y, Yang J S, et al. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions[J]. Agricultural Water Management, 2010, 97(12): 1971-1977.
[29] 吴忠东,王全九.入渗水矿化度对土壤入渗特征和离子迁移特性的影响[J]. 农业机械学报,2010,41(7):64-69.
Wu Zhongdong, Wang Quanjiu. Effect on both soil infiltration characteristics and ion mobility features by mineralization degree of infiltration water[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(7):64-69. (in Chinese with English abstract)
[30] 朱成立,舒慕晨,张展羽,等.咸淡水交替灌溉对土壤盐分分布及夏玉米生长的影响[J]. 农业机械学报,2017,48(10):220-228.
Zhu Chengli, Shu Muchen, Zhang Zhanyu, et al. Effect of alternate irrigation with fresh and brackish water on saline distribution characteristics of soil and growth of summer maize[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 220-228. (in Chinese with English abstract)
[31] 郭全恩,郭天文,王益权,等.三种钠盐对石灰性土壤盐化特性的影响[J]. 西北农业学报,2009,18(4):155-159. Guo Quanen, Guo Tianwen, Wang Yiquan, et al. Effect of three sodic salinity on salinization characteristic in limy soils[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009,18(4): 155-159. (in Chinese with English abstract)
郭全恩,南丽丽,李保国,曹诗瑜. 灌溉水盐分组成对土壤水盐迁移参数的影响[J]. 农业工程学报,2017,33(23):123-128. doi:10.11975/j.issn.1002-6819.2017.23.016 http://www.tcsae.org
Guo Quanen, Nan Lili, Li Baoguo, Cao Shiyu. Effect of salt ion composition of irrigation water on parameters of soil water and salt movement[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 123-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.016 http://www.tcsae.org
Effect of salt ion composition of irrigation water on parameters of soil water and salt movement
Guo Quanen1,2,3, Nan Lili4, Li Baoguo3, Cao Shiyu1,2
(1.730070,; 2.(),733017,;3.100193,;4.730070,)
Shortage of freshwater resources restricts agricultural production in arid and semiarid region. Irrigation with saline water provides an effective way to make up for the deficiency of freshwater resources. However, it is unknown about influence of irrigation with different salt ion compositions on soil physical and chemical properties. In this study, the effect of different salt ion compositions of irrigation on soil water and salt movement was investigated. The soil samples were collected from orchard calcareous soil in Qin’an County of Gansu Province. The soil electrical conductivity was 0.43 mS/cm, pH was 8.54 and soil organic matter was 10.52 g/kg. A total of 4 treatments were included: NaCl, NaCl:MgCl2with the ratio of 1∶1, NaCl:CaCl2with the ratio of 1∶1, NaCl:KCl with the ratio of 1∶1. The concentration of all the treatments was 3 g/L. Soil water diffusivity and salt ions movement along the horizontal distance were studied by the method of horizontal soil column infiltration. Soil pH and sodium adsorption ratio were determined. The Boltzmann function was used for simulation of soil salt movement. The relationship between soil water diffusivity and water content was simulated by an power function. The results showed that the soil water diffusivity capacity at water content of 0 was the highest in the treatment of NaCl, followed by NaCl:MgCl2, NaCl:KCl and NaCl:CaCl2. The change rate of diffusivity with water content was the highest in the treatment of NaCl:CaCl2followed by the NaCl:KCl, NaCl:MgCl2and NaCl only. The salt ion composition of irrigation water and soil water content both significantly affected the soil water diffusivity (<0.01). For all the treatments, the soil salt content, calcium ions, potassium ions, sulfate ions and sodium ions all increased with the infiltration distance but the bicarbonate ion decreased with the distance. The obvious trend wasn’t found for the chloride and magnesium ions. Soil pH decreased with infiltration distance for the treatment of NaCl only. The decrease trend of soil pH fluctuated for the other treatments. The soil pH at distance of 8 and 32 cm was significantly different (<0.05). The salt ion composition did not significantly affect the soil pH. The sodium adsorption ratio decreased obviously with the infiltration distance in the treatment of NaCl only. The sodium adsorption ratio in the treatment of NaCl was higher than the other treatments. The sodium adsorption ratio increase trend fluctuated for the other treatments. The salt ion composition of irrigation water significantly affected the sodium adsorption ratio (<0.05). Based on the Boltzmann function fitness, the initialization value and final value were influenced by the salt ion composition of irrigation water and the treatment NaCl was higher than the other treatments. The center was similar for all the treatments (28.488-28.700). The simulation was well with the determination coefficient higher than 0.89. The study indicated that adding calcium ions in irrigation water could inhibit water movement and decrease salt accumulation in the process of irrigation with brackish water. The irrigation at one end of plot was not recommended since it may cause salt accumulation and we suggested to irrigate at both ends of the plot. The study could guide the irrigation with brackish water in arid or semiarid regions.
irrigation; salts; soil moisture; diffusivity; horizontal movement; Boltzmann function
10.11975/j.issn.1002-6819.2017.23.016
S278
A
1002-6819(2017)-23-0123-06
2017-07-19
2017-10-01
国家自然科学基金项目(41363004);甘肃省农业科学院科技创新工程学科团队(2015GAAS03)
郭全恩,男,天水人,副研究员,博士,主要从事盐渍化土壤研究。Email:qnguo@sina.com