鄂尔多斯盆地南缘长7油层组碳酸盐结核的特征及石油地质意义
2017-09-25胡作维袁效奇王玉龙
董 杰, 胡作维, 袁效奇, 贺 静, 李 云, 王玉龙
(1.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059;2.中国石油长庆油田分公司勘探开发研究院,西安 710018)
鄂尔多斯盆地南缘长7油层组碳酸盐结核的特征及石油地质意义
董 杰1, 胡作维1, 袁效奇2, 贺 静2, 李 云1, 王玉龙1
(1.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059;2.中国石油长庆油田分公司勘探开发研究院,西安 710018)
探讨鄂尔多斯盆地南缘渭北地区上三叠统延长组长7油层组油页岩中的碳酸盐结核与优质烃源岩发育的关系。通过野外观察、薄片鉴定、扫描电镜、X射线衍射和碳、氧同位素等多种分析手段的研究,认为长7油层组灰岩和白云岩结核为成岩早期的产物,方解石和白云石圆球粒的形成时间较早,特征与藻类习性非常相似。δ13C明显重于晚三叠世δ13C的变化范围,表明碳酸盐结核的形成与产烷带微生物代谢活动引起的甲烷生成有关。结核中方解石、白云石圆球粒的形成可能是蓝细菌细胞方解石化或白云石化的结果。长7油层组中富含的碳酸盐结核指示其为优质的烃源岩,具有良好的生烃能力。
鄂尔多斯盆地;延长组;油页岩;碳酸盐结核
1 沉积背景
图1 鄂尔多斯盆地南部延长组综合柱状图[24-25]Fig.1 The comprehensive stratigraphic column of Yanchang Formation in the southern Ordos Basin
延长组在鄂尔多斯盆地内分布广泛,厚逾千米,是重要的油气产层[18]。据岩性和沉积特征,延长组自上而下划分为长1—长10共10个油层组,记录了整个大型陆相湖盆的发生、发展到消亡的全过程(图1)。长7沉积时期为湖泊发展的鼎盛时期,大范围发育了一套深湖相—半深湖相泥页岩层[19-21]。长7油层组暗色泥岩、油页岩最大厚度120 m,一般为70~80 m,是盆地主要的烃源岩[22]。依据沉积旋回,长7油层组自上而下划为长71、长72和长73等3个小层,其中长73期湖盆面积最大,暗色泥岩及高阻泥岩发育,为中生界主要优质烃源岩;长72和长71期,湖盆面积及半深湖—深湖相沉积面积持续减少,浊积砂体发育,是长7油藏的储层[23]。长7烃源岩形成于还原的沉积环境,有机质来源主要为湖生低等生物中的藻类,干酪根类型为Ⅰ型(腐泥型)-Ⅱ1(腐殖腐泥型)型,有机质丰度较高[19],镜质体反射率Ro>1.0%,湖盆中部生烃强度>500×104t/km2,排烃效率高达72%,已达到成熟—高成熟演化阶段,为一套优质烃源岩[20]。
2 野外露头特征
渭北地区长7油层组为一套半深湖—深湖相黑色泥岩、油页岩和砂质碎屑流、浊积岩夹凝灰岩和碳酸盐岩等沉积。长7油层组主要分布在西起彬县、东至宜君马庄一带,也是油页岩勘探和开发的主要地区。区域构造上属向西缓倾的单斜,主要发育北东向右旋走滑断层及近东西走向并向南倾的正断层,尤其是走滑断层规模大、延伸远、连续性好,地貌上为平直沟谷,控制长7油层组剖面点的分布,油页岩露头在断裂以南星罗棋布,以北则几乎见不到露头。长7油层组地层倾角一般小于10°,但受耀州区瑶曲镇—宜君县五里镇走滑断层及其两侧近东西向正断层影响,在烈桥、淌泥河产状近于直立;在袁家山山顶斜坡处,由于重力作用,出现逆掩滑脱构造。
长7油层组泥页岩中富含碳酸盐沉积,但以结核为主,在宜君县套滩、铜川市印台区霸王庄、铜川市何家坊、耀县聂家河、彬县水北沟等剖面均有发育,主要见于渭北地区露头剖面(图2)。铜川霸王庄长7油层组剖面泥页岩中见各种产状及外形的碳酸盐岩结核,可分为次生灰岩结核和次生白云岩结核2种类型,以形态各异、大小不一的灰岩结核为主。次生灰岩结核有圆锥状、椭圆状、扁圆状等多种形态类型,结核大小差异悬殊(图3)。个体较大的结核宽可达50 cm、高可达60 cm(图3-A)。由于油页岩开采,现均已脱离原层位,难以准确地恢复原始产出状态。个体较小的扁平状和椭圆状灰岩结核类型较为常见(图3-D~F),大多顺层保存在地层中。霸王庄次生白云岩结核主要为小型扁圆状或扁透镜状(图3-A~C),部分白云岩结核具有环形纹(图3-C)。铜川何家坊长7油层组剖面以灰黑色薄层或纹层状泥云岩为主,纹层状具变形层理,含少量个体较大、壳壁成分为硅质的似介形类化石;该剖面东距霸王庄剖面仅3 km,但未见灰岩结核。耀州区小桥河长7油层组剖面主要为薄层状和结核状泥云岩,上下紧覆油页岩。耀县聂家河长7油层组剖面主要为透镜状白云岩结核(图4-D)。彬县水北沟长7油层组剖面薄层状泥晶云岩,与黑色泥岩、油页岩及薄层凝灰岩互层产出(图4-E)。宜君县套滩长7油层组油页中发育透镜状次生球粒灰岩结核。
图2 鄂尔多斯盆地南缘野外剖面位置图Fig.2 Sketch map showing the location of field cross sections in the southern Ordos Basin
图3 鄂尔多斯盆地南缘铜川霸王庄剖面长7油层组灰岩结核的宏观特征Fig.3 The macro features of Chang-7 limestone concretions of Bawangzhuang in southern Ordos Basin(A)外形呈圆锥状,高约0.6 m,最宽处0.5 m,尖锥处宽约0.15 m,表面具细密排列的纵向纹饰,已脱离原始岩层,结合其他已发现尚保存在地层中的类似结核形态,推测尖锥部位向上; (B)长约0.45 m,宽约0.25 m,椭圆形,灰黑色,围岩为黑色油页岩,油页岩绕过结核沉积; (C)岩石新鲜断面为黑色,表面似具高温烘烤的黑褐色,由黑色泥岩包覆,底面平整覆于黑色泥岩之上; (D)宽约0.6 m,高约0.3 m, 扁圆形, 灰褐色, 疏松多孔, 裂隙面含褐色有机质膜和颗粒状干沥青; (E)椭圆形扁平状,灰褐色,围岩为富有机质泥岩; (F)椭圆状,灰黑色,高10 cm,长20 cm
鄂尔多斯盆地南缘渭北地区长7油层组油页岩中富含灰岩和白云岩两种类型的碳酸盐结核。灰岩结核以铜川霸王庄剖面最发育且形态类型最丰富(图3),其次发育于宜君县套滩。铜川市何家坊、耀县聂家河、彬县水北沟剖面均为白云岩结核。这些结核多呈透镜状,其长轴方向平行于围岩地层。虽然较大的结核由于油页岩开采而脱离原来的层位无法准确地判断出原始产出状态,但根据较小的现今仍保存于地层中的结核,它们顺层保存于油页岩中,未切穿层理,其上覆页岩层绕过结核沉积,页岩岩层在结核上下弯曲,因此可以判断这些结核形成的时间较早,可能为成岩早期的产物。
3 岩石矿物学特征
3.1 岩石学特征
经茜素红染色薄片观察,长7段油页岩中广泛发育的碳酸盐结核的岩性大都为球粒灰岩和白云岩两种类型。
球粒灰岩中,球粒由纤状方解石组成,具放射状结构(图5-A~E、L),正交偏光下呈十字消光(图5-B),大者约1 mm,小者约0.5 mm。球粒间充填晶粒方解石,方解石晶间及解理缝内见大量油而呈网格状(图5-A~E、L)。部分球粒呈不规则状,外层被长英质交代(图5-D),但球粒外形尚存,纤状、放射状结构隐约可辨;靠近最外层,纤状、放射状结构明显(图5-D、E、L);部分球粒可见近圆形的核部,部分球粒核部重结晶作用较强,经重结晶后形成多晶镶嵌状或巨晶方解石。在球粒放射纹之间见10~20 μm的白云石圆球粒或方解石圆球粒(图5-E)。
白云岩类结核中,岩性有泥质粉晶白云岩(图6-A、C)、粉晶白云岩(图6-B、D~F)、白云石化蚀变凝灰岩(图6-G、H)。白云石沿泥岩裂缝生长呈纤柱状集合体(图6-C)或交代泥质形成泥云岩,含残余油页岩纹层(图6-A~C)。未见白云石圆球粒和方解石圆球粒(如铜川霸王庄剖面),或见少量白云石圆球粒和方解石圆球粒(如铜川何家坊剖面)。
目前,在鄂尔多斯盆地南缘渭北地区宜君县套滩、铜川市印台区霸王庄、铜川市何家坊、耀县聂家河、彬县水北沟等多个长7油层组露头剖面中碳酸盐岩结核中发现个体极其微小(一般在10~20 μm)的白云石和方解石圆球粒(图5-E~K,图6-D~H)。首先,含这些白云石和方解石圆球粒的碳酸盐结核都富含有机质(图5、图6),同时也含有较多黄铁矿(图5-F、图6-D)。其次,这些圆球绝大部分形态完整,少量溶蚀后充填有机质(图5-F~K,图6-D~F),甚至完全被有机质充填(图5-G、H),或者被黄铁矿交代成黄铁矿圆球(图6-D)。这些圆球大都具有晶体腔和黑色的有机边缘,绝大部分圆球的黑色有机边缘较薄,部分具有较厚的壳壁(图5-J,图6-D~H),并具有刺状突起(图6-D~H),甚至在同一个薄片和同一个球粒中,厚壳壁和薄壳壁同时存在(图5-J,图6-D~H)。圆球大小比较均一,球粒直径在10~20 μm之间;形状基本都为球形;而且这些球粒大多都是在局部密集分布(图5-E~K,图6-D~H)。
图4 鄂尔多斯盆地南缘长7油层组白云岩结核的宏观特征Fig.4 The macro features of Chang-7 dolomite concretions of Bawangzhuang in southern Ordos Basin(A)灰黄色薄层或扁透镜状泥云岩碎块,厚4 cm,上下紧覆黑色泥岩,层面平整,裂缝发育,沿裂缝壁及裂隙面见1~2 mm厚干沥青,铜川霸王庄剖面; (B)灰黑色纹层状次生白云岩结核碎块,纹层为残余油页岩构成,含胶磷质结核,铜川霸王庄剖面; (C)灰黄色白云岩结核,大小约7 cm×25 cm,表面隐见环形纹,铜川霸王庄剖面; (D)长72下部灰黑色薄透镜状含晶屑、玻屑次生白云岩透镜体,长1.2 m, 最厚处0.15 m, 耀县聂家河剖面; (E)透镜状白云岩结核,见多层凝灰岩透镜状夹层,彬县水北沟剖面
图5 鄂尔多斯盆地铜川霸王庄剖面长7油层组灰岩结核的显微特征Fig.5 The microscopic features of Chang-7 limestone concretions of Bawangzhuang in southern Ordos basin(A)球粒灰岩,球粒由纤状方解石组成,球粒间充填晶粒方解石; (B)正交偏光下球粒灰岩具十字消光; (C)部分球粒残余放射状结构保存较好; (D)少量长英质交代放射状球粒; (E)球粒放射纹之间见10~20 μm的方解石圆球粒和白云石圆球粒,局部密集分布; (F)含白云石圆球粒的母岩孔隙中见油迹和有机质浸染现象,局部方解石圆球粒和白云石圆球粒腔体内见有机质; (G)方解石圆球粒和白云石圆球粒呈条带状分布; (H)局部见方解石圆球粒和白云石圆球粒呈有机质状; (I)方解石圆球粒和白云石圆球粒直径20 μm左右,溶孔充填有机质,个别白云石圆球粒具有厚壳壁和薄壳壁; (J)个别方解石圆球粒被云化,但仍保留原形态; (K)部分方解石圆球粒和白云石圆球粒在镜下呈交代状,晶粒状方解石沿圆形生物边缘发生交代,核部见残留有机质; (L)球粒的放射状结构部位具有机质浸染,球粒之间方解石晶间缝含油
图6 鄂尔多斯盆地南缘渭北地区长7油层组白云岩结核的显微特征Fig.6 The microscopic features of Chang-7 dolomite concretions in Weibei area, southern Ordos Basin(A)泥质粉晶云岩,见残留富有机质泥岩条带,铜川霸王庄剖面; (B)压溶作用形成的云质雏形叠锥,含残余油页岩纹层,铜川霸王庄剖面; (C)沿油页岩发育的雏形叠锥状云岩,残余油页岩中富含黄钾铁钒,铜川霸王庄剖面; (D)比例尺之上化石体腔孔含油,之下黑色圆球状颗粒为球粒状黄铁矿,部分白云石圆球粒具有厚壳壁,耀县聂家河剖面; (E)白云石圆球一部分为单层壳壁,而另一部分则具较厚的壳壁,并常具刺状突起,耀县聂家河剖面; (F)白云石圆球似具厚层壳壁并具刺状突起,柳林川剖面; (G)白云石化蚀变凝灰岩,局部见密集分布的白云石圆球,局部白云石圆球黄铁矿化呈球粒状黄铁矿状,部分白云石圆球具有厚壳壁,彬县水北沟剖面; (H)白云石圆球直径一般为10~20 μm, 以15 μm左右比较多见, 局部见外壳包裹有机质; 正交偏光下白云石圆球为单晶, 具明显壳壁,彬县水北沟剖面; (I)油页岩富含有机质条带及白云石圆球,耀县尖坪沟长71剖面
除了在碳酸盐纹层和结核中广泛发育方解石和白云石圆球,在泥页岩中,方解石和白云石圆球在局部也密集分布(图6-I)。
在扫描电镜之下,球粒灰岩中方解石呈放射状、簇状。白云岩类结核中,白云石呈他形粒状,数量巨大,是构成岩石的主要组成部分。白云石圆球绝大部分保存完整,部分表面由菱形白云石构成(图7-B~E),部分表面非常光滑(图7-F),极少量球形不规则(图7-A)。方解石圆球全部由菱形方解石构成(图7-G、H)。
3.2 矿物学特征
对白云岩类结核进行X射线衍射分析发现,白云石有2种类型,一种为含铁白云石,另一种为铁白云石,两者的阴极发光特征具有非常明显的差异(图8)。以含铁白云石为主的白云岩类结核中,各类组分的体积分数(φ)为:白云石61.03%~93.62%,平均78.73%;石英6.38%~19.97%,平均10.19%; 长石0%~6.19%,平均2.59%,以斜长石为主;含少量方解石;泥质0%~13.72%,平均7.26%。在以铁白云石为主的白云岩类结核中,各类组分的体积分数为:铁白云石11.41%~93.12%,平均49.56%;石英6.19%~42.47%,平均17.17%;长石0%~39.48%,平均8.05%;泥质0%~26.17%,平均9.24%;同时含少量的方解石和较多的黄铁矿。相比较而言,铁白云石类的结核富含长石和泥质。含铁白云石的有序度平均约0.435,铁白云石有序度平均0.38。
图7 鄂尔多斯盆地南缘长7油层组方解石和白云石圆球粒的扫描电镜特征Fig.7 The SEM images of Chang-7 spherulitic calcites and dolomites in southern Ordos Basin(A)白云石圆球粒,水北沟剖面; (B)白云石圆球粒,水北沟剖面; (C)白云石圆球粒,霸王庄剖面; (D)白云石圆球,霸王庄剖面; (E)白云石圆球粒,霸王庄剖面; (F)白云石圆球粒, 霸王庄剖面; (G)方解石圆球粒,霸王庄剖面; (H)方解石圆球粒,霸王庄剖面
图8 鄂尔多斯盆地南缘渭北地区长7油层组两种白云石结核的X射线衍射和阴极发光特征Fig.8 The features of X-ray and cathode luminescence of Chang-7 dolostone concretions in Weibei area, Ordos Basin(A)白云石X射线衍射特征,苍窑-38; (B)铁白云石X射线衍射特征,柳林川-30; (C)泥晶白云岩,含白云石圆球,岩石整体上发暗红色光,水北-4; (D)左侧为贫泥质的细晶白云岩,白云石结晶粒度较粗大,泥质含量很低;右侧为含泥极细—细晶白云岩,白云石结晶粒度较小,泥质含量高,二者富含长石微粒,结构突变面高岭石含量较高,安子洼-4
在扫描电镜下观察,据10块样品的36个能谱测试点统计,球形微化石的主要组分为MgO和CaO,含少量(质量分数约1%~5%)MnO、P2O5、FeO、Al2O3及SiO2等。所有化石的CaO质量分数(w)>45%,并且有5个测试点的CaO质量分数达到100%,有12个测试点的CaO质量分数>80%,而约半数化石的CaO质量分数为50%~80%;MgO的质量分数则为27%~42%。
3.3 碳氧同位素特征
研究区12个样品的碳、氧同位素值见表1。长7油层组泥页岩中白云石结核的δ13CV-PDB变化范围为0.4‰~11.5‰, 平均为6.475‰;δ18OV-PDB变化范围为-13.6‰~-10.3‰,平均为-12.225‰。上三叠统中从保存比较好的腕足壳体得到的有限的δ13C数据的变化范围为-0.5‰~+3.0‰,δ18O的变化范围为-3.9‰~-0.6‰[26];从保存得比较好的珊瑚得到的δ13C数据的变化范围为+2.5‰~+3.5‰,δ18O的变化范围为-4‰~-2‰[27]。研究区碳酸盐结核的碳同位素绝大部分都高于3.5‰,同时也高于第四纪白云石的碳同位素值(图9框线和椭圆形部分),而且氧同位素远远小于该期海洋的氧同位素组成。
表1 鄂尔多斯盆地南缘渭北地区长7油层组白云石结核的碳氧同位素值Table 1 The carbon and oxygen isotopes of dolomite concretions of Chang-7 in Weibei area, Ordos Basin
与微生物代谢活动有关的碳酸盐矿物具有特殊的碳同位素组成[28-33],需氧氧化带、硫酸盐还原带和热成熟带CO2的δ13C 值相应为0‰、-25‰和-15‰[30],与硫酸盐还原作用、甲烷厌氧氧化作用及嗜盐喜氧细菌有氧呼吸作用有关的碳酸盐矿物碳同位素总体呈强烈负偏[34-40];而唯独发酵带CO2可出现13C高度富集的现象,δ13C可达+15‰[30],并得到细菌作用模拟实验的证实[32-33],产甲烷古菌的代谢活动可以引起有机物质碳同位素的分馏并形成贫13C 的CH4和富13C 的CO2[32-33,41-42],与产烷带甲烷生成作用相关的碳酸盐碳同位素则多为正偏[41-43]。尽管强烈的蒸发作用也可以导致介质碳同位素升高,但是研究区碳酸盐结核碳同位素强烈富集而氧同位素强烈负偏,同时长7油层组烃源岩是一套优质烃源岩[19-20],厌氧微生物的活动应该非常活跃,因此认为研究区碳酸盐结核的碳同位素正偏可能与产烷带微生物代谢活动引起的甲烷生成作用有关。发酵带白云岩一般含铁,而研究区白云岩结核中白云石铁含量较高,甚至为铁白云石。
图9 鄂尔多斯盆地南缘长7油层组碳酸盐结核的碳氧同位素值及第四纪碳酸盐矿物碳、氧同位素值[47]Fig.9 The carbon and oxygen isotopes of Chang-7 carbonate concretions in Weibei area, southern Ordos Basin and the carbon and oxygen isotopes of some Quaternary dolomitesTC.铜川霸王庄剖面; CY.苍窑剖面; NJH.聂家河剖面; AZW.安子洼剖面; SB.水北沟剖面
研究区白云岩氧同位素组成(16.8‰~20.3‰,平均18.29‰;-13.6‰~-10.3‰,平均-12.225‰)与晚三叠世平均海水氧同位素组成(-3.9‰~-0.6‰[26];-4‰~-2‰[27])相比强烈负偏得多。流体氧同位素组成偏重可能是深部来源热液流体的一种典型特征[44]。长7沉积时期,盆地周围火山、地震活动频发,延长组中广泛发育火山灰沉积[45-46],在研究区内可以找到许多直观的证据,特别是研究区部分白云石与凝灰岩息息相关,如彬县水北沟见白云化蚀变凝灰岩(图6-D、E)。
4 成因探讨及研究意义
对现代厌氧和需氧细菌的研究表明,微生物活动能够克服低温(<50℃)白云石形成的动力学障碍[39,44,48-50]。然而,关于这些研究成果能否解释古代白云岩的成因仍然争论不休[51-53]。
a.鄂尔多斯盆地南缘渭北地区长7油层组油页岩中灰岩和白云岩两种类型的结核顺层保存于油页岩中,未切穿层理,上覆页岩层绕过结核沉积,可能为成岩早期的产物。结核中方解石和白云石球粒绝大部分都保存完整,仅偶见球粒破裂变形,因此球粒的形成时间也较早。
b.渭北地区长7油层组油页岩中灰岩大多具有放射状球粒结构,与Brazil和Angola下白垩统盐前盆地湖相球粒相似[54-55],可能与有机酸的存在密切相关[56]。
c.渭北地区长7油层组碳酸盐结核和碳酸盐岩薄层或纹层中方解石球粒和白云石球粒特征非常突出,表现为:①含白云石和方解石圆球的碳酸盐结核都富含有机质(图5-D~L)和较多黄铁矿(图6-A~D)。②圆球绝大部分形态完整,形状基本都为圆球形。③大都具有晶体腔和黑色的有机边缘,绝大部分圆球的黑色有机边缘较薄,部分具有较厚的壳壁并具有刺状突起(图6-A~E)。④大小比较均一,球粒直径在10~20 μm之间。⑤大多数都是在局部密集分布或呈条带状分布。⑥白云石圆球普遍富含铁。这些特征及分布特征与藻类习性非常相似。
d.长7油层组泥页岩中白云岩结核的δ13C平均为6.475‰,明显重于晚三叠世δ13C的变化范围,与现代沉积剖面发酵带和细菌作用模拟实验CO2产物可能出现的13C 高度富集的现象相一致。
e.长7油层组泥页岩中白云岩结核的δ18O远远小于该期海洋的氧同位素组成。长7沉积时期,构造活动活跃,火山、地震活动频发,在盆地内留下了许多直观的证据,研究区部分白云石与凝灰岩息息相关,如彬县水北沟见白云石化蚀变凝灰岩(图6-D、E)。
虽然与目前已报道的巴西Paraná盆地二叠系Assistência组叠层石内富含化石的燧石中白云石化的球状蓝细菌细胞[57]和中国西南地区二叠纪-三叠纪之交微生物岩中球状斯坦尼尔藻(Stanieria)[58]的细胞形态有差别,但综合以上分析,认为鄂尔多斯盆地南缘渭北地区长7油层组碳酸盐结核和碳酸盐岩薄层或纹层中白云石圆球的形成可能是蓝细菌细胞白云石化的结果。
泥岩中的结核通常与有机质分解过程中产生的成岩矿物有关[1],碳酸盐结核的发育往往与有机质含量较高有关[4],它们通常是微生物作用的产物[4,7]。长7油层组富含的碳酸盐结核可能指示了其优质的烃源岩及良好的生烃能力,有机地化和孢粉分析也都表明长7油层组优质烃源岩有机质丰度高,类型好,湖泊生产力极高[59]。
5 结 论
a.鄂尔多斯盆地南缘渭北地区长7油层组油页岩中富含灰岩和白云岩两种类型的结核,结核中富含方解石和白云石球粒,绝大部分球粒都保存完整。因此,灰岩和白云岩结核形成时间较早,可能是早成岩期间的产物。
b.长7油层组泥页岩中白云石结核的δ13C明显重于晚三叠世δ13C的变化范围,与现代沉积剖面发酵带和细菌作用模拟实验CO2产物可能出现的13C 高度富集的现象相一致,可能与产烷带微生物代谢活动引起的甲烷生成有关。
c.综合岩石学、矿物学、碳氧同位素分析认为,鄂尔多斯盆地南缘渭北地区长7油层组碳酸盐结核的形成与产烷带微生物代谢活动有关,碳酸盐结核中方解石和白云石圆球粒的形成可能是蓝细菌细胞方解石化或白云石化的结果。
d.长7油层组中富含的碳酸盐结核指示其为优质的烃源岩及良好的生烃能力。
[1] Curtis C D, Coleman M L. Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences[J]. Special Publication-Society of Economic Paleontologists and Mineralogists, 1986, 38: 23-34.
[2] Raiswell R. Non-steady state microbial diagenesis and the origin of concretions and nodular limestones[J]. Geological Society of London Special Publications, 1987, 36: 41-54.
[3] Van der Weijden C H. Early Diagenesis and Marine Pore Waters: Diagenesis Ⅲ[M]. Amsterdam: Elsevier, 1992: 13-134.
[4] Selles-Martinez J. Concretion morphology, classification and genesis[J]. Earth-Science Reviews, 1996, 41: 177-210.
[5] Canfield D E, Jørgensen B B, Fossing H,etal. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113: 27-40.
[6] Thamdrup B, Canfield D E. Pathways of carbon oxidation in continental margin sediments off central Chile [J]. Limnology and Oceanography, 1996, 41: 1629-1650.
[7] Raiswell R, Fisher Q. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition[J]. Journal of the Geological Society, 2000, 157: 239-251.
[8] Raiswell R. The growth of Cambrian and Liassic concretions[J]. Sedimentology, 1971, 17: 147-171.
[9] Raiswell R. Evidence for surface reaction-controlled growth of carbonate concretions in shales[J]. Sedimentology, 1988, 35: 571-575.
[10] Coleman M L, Raiswell R. Source of carbonate and origin of zonation in pyritiferous carbonate concretions; evaluation of a dynamic model[J]. American Journal of Science, 1995, 295: 282-308.
[11] Loyd S J, Berelson W M, Lyons T W,etal. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate[J]. Geochimica et Cosmochimica Acta, 2012, 78: 77-98.
[12] Dale A, John C M, Mozley P S,etal. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes[J]. Earth and Planetary Science Letters, 2014, 394: 30-37.
[13] Mozley P S, Burns S J. Oxygen and carbon isotopic composition of marine carbonate concretions: An overview[J]. Journal of Sedimentary Research, 1993, 63: 73-83.
[14] Kiriakoulakis K, Marshall J, Wolff G. Biomarkers in a Lower Jurassic concretion from Dorset (UK)[J]. Journal of the Geological Society of London, 2000, 157: 207-220.
[15] Pearson M J, Nelson C S. Organic geochemistry and stable isotope composition of New Zealand carbonate concretions and calcite fracture fills[J]. New Zealand Journal of Geology and Geophysics, 2005, 48: 395-414.
[16] Hendry J P, Pearson M J, Trewin N H,etal. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis[J]. Sedimentology, 2006, 53: 537-565.
[17] Vorhies J S, Gaines R R. Microbial dissolution of clay minerals as a source of iron and silica in marine sediments[J]. Nature Geoscience, 2009, 2: 221-225.
[18] 邓秀芹,付金华,姚泾利,等. 鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破[J].古地理学报,2011,13(4):443-455. Deng X Q, Fu J H, Yao J L,etal. Sedimentary facies of the Middle-Upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration[J]. Journal of Palaeogeography, 2011, 13(4): 443-455. (in Chinese)
[19] 杨华,张文正.论鄂尔多斯盆地长7 优质油源岩在低渗透油气成藏富集中的主导作用:地质地球化学特征[J].地球化学,2005, 34(2):147-154. Yang H, Zhang W Z. Leading effect of the Seventh Member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Geology and geochemistry[J]. Geochimica, 2005, 34(2): 147-154. (in Chinese)
[20] 张文正,杨华,李剑峰,等.论鄂尔多斯盆地长7 优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析[J].石油勘探与开发,2006,33(3):289-293. Zhang W Z, Yang H, Li J F,etal. Leading effect of the Seventh Member high-quality source rock of Yanchang Formation in Ordos Basin during the enrichment of low-penetrating oil-gas accumulation: Hydrocarbon generation and expulsion mechanism[J]. Petroleum Exploration and Development, 2006, 33(3): 289-293. (in Chinese)
[21] 张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64. Zhang W Z, Yang H, Yang Y H,etal. Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J]. Geochimica, 2008, 37(1): 59-64. (in Chinese)
[22] 张文正,杨华,杨伟伟,等.鄂尔多斯盆地延长组长7湖相页岩油地质特征评价[J].地球化学,2015, 44(5):505-515. Zhang W Z, Yang H, Yang W W,etal. Assessment of geological characteristics of lacustrine shale oil reservoir in Chang-7 Member of Yanchang Formation, Ordos Basin[J]. Geochimica, 2015, 44(5): 505-515. (in Chinese)
[23] 杨华,窦伟坦,刘显阳,等. 鄂尔多斯盆地三叠系延长组长7沉积相分析[J].沉积学报,2010,28(2): 254-263. Yang H, Dou W T, Liu X Y,etal. Analysis on sedimentary facies of Member 7 in Yanchang Formation of Triassic in Ordos Basin[J]. Acta Sedmentologica Sinica, 2010, 28(2): 254-263. (in Chinese)
[24] 何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003. He Z X, Evolution and Hydrocarbon of Ordos Basin [M]. Beijing: Petroleum Industry Press, 2003. (in Chinese)
[25] Qiu X W, Liu C Y, Wang F F,etal. Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, Central China[J]. Geological Journal, 2015, 50(4): 399-413.
[26] Korte C, Kozur H W, Veizer J.d13C andd18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226: 287-306.
[27] Stanley Jr G D, Swart P K. Evolution of the coral-zooxanthellae symbiosis during the Triassic: A geochemical approach[J]. Paleobiology, 1995: 179-199.
[28] Nissenbaum A, Presley B J, Kaplan I R. Early diagenesis in a reducing fjord, Saanich Inlet, B.C., I chemical and isotopic changes in major components of interstitial water[J]. Geochimica et Cosmochimica Acta, 1972, 36: 1007-1027.
[29] Friedmann I, Hardcastle K. Interstitial water studies, leg.15 -Isotopic composition of water[C]//Initial Reports Deep Sea Drilling Project, Vol.20. Washington: U.S. Government Printing Office, 1973: 901-903.
[30] Irwin H, Curtis C. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments[J]. Nature, 1977, 269: 209-213.
[31] Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986, 50: 693-709.
[32] William D R, Silverman S R. Carbon isotope fractionation in bacterial production of methane[J]. Science, 1965, 130: 1658-1659.
[33] Games L M, Hayes J M, Gunsalus R P. Methane producing bacteria: Natural fractionations of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1978, 42: 1295-1297.
[34] Alperin M J, Reeburgh W S, Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemical Cycles, 1988, 2(3): 279-288.
[35] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161: 291-314.
[36] Boetius A, Ravenschlag K, Schubert C J,etal. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626.
[37] Van Lith Y, Warthmann R, Vasconcelos C,etal. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50: 237-245.
[38] Sánchez-Román M, Vasconcelos C, Schmid T,etal. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36: 879-882.
[39] Sánchez-Román M, Rodríguez-Aranda J P, Del Cura M A G. Bioinduced precipitation of barite and celestite in dolomite microbialites examples from Miocene lacustrine sequences in the Madrid and Duero Basins, Spain [J]. Sedimentary Geology, 2009, 222: 138-148.
[40] Deng S, Dong H, Guo L,etal. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Result from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278:151-159.
[41] Kenward P A, Goldstein R H, Gonzalez L A, Roberts J A. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic archaea[J]. Geobiology, 2009, 7: 556-565.
[42] Mazzullo S J. Organogenic dolomitization in peritidal to deep-sea sediments[J]. Journal of Sedimentary Research, 2000, 70: 10-23.
[43] Roberts J A, Bennett P C, González L A,etal. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32: 277-280.
[44] Spencer R J. Origin of Ca-Cl brines in Devonian formations, Western Canada sedimentary basin[J]. Applied Geochemistry, 1987, 2: 373-384.
[45] 张文正,杨华,彭平安,等.晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J].地球化学,2009, 38(6): 573-582. Zhang W Z, Yang H, Peng P A,etal. The influence of late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582. (in Chinese)
[46] 张文正,杨华,解丽琴,等.湖底热水活动及其对优质烃源岩发育的影响——以鄂尔多斯盆地长7 烃源岩为例[J].石油勘探与开发,2010,37(4):424-429. Zhang W Z, Yang H, Xie L Q,etal. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429. (in Chinese)
[47] Tucker M E, Wright V P. Carbonate Sedimentology[M]. Oxford: Blackwell Science, 1990: 482.
[48] Vasconcelos C, McKenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions Lagoa Vermelha, Rio de Janeiro, Brazil[J]. Journal of Sedimentary Research, 1997, 67: 378-390.
[49] Vasconcelos C, McKenzie J A, Bernasconi S Tien,etal. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377: 220-222.
[50] Mansfield C F. A urolith of biogenic dolomite; another clue in the dolomite mystery[J]. Geochimica et Cosmochimica Acta, 1980, 44(6): 829-839.
[51] Southam G, Donald R. A structural comparison of bacterial microfossils vs. “nanobacteria” and nanofossils[J]. Earth-Science Reviews, 1999, 48: 251-264.
[52] Fernández-Díaz L, Astilleros J M, Pina C M. The morphology of calcite crystals grown in a porous medium doped with divalent cations[J]. Chemical Geology, 2006, 225: 314-321.
[53] Bailey J V, Raub T D, Nele Meckler A,etal. Pseudofossils in relict methane seep carbonates resemble endemic microbial consortia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285: 131-142.
[54] Terra G J S, Spadini A R, Franca A B,etal. Classificacão de rochas carbonáticas aplicável às bacias sedimentares brasileiras[J]. Bulletin Geoscience Petrobras, Rio de Janeiro, 2010, 18(1): 9-29.
[55] Wright V P, Barnett A J. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates[C]//Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. London: Geological Society, 2015: 209-219.
[56] Mercedes-Martín R, Rogersona M R, Brasier A T,etal. Growing spherulitic calcite grains in saline, hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids[J]. Sedimentary Geology, 2016, 335: 93-102.
[57] Calca Cléber P, Fairchild Thomas R, Cavalazzi Barbara,etal. Dolomitized cells within chert of the Permian Assistência Formation, Paraná Basin, Brazil[J]. Sedimentary Geology, 2016, 335: 120-135.
[58] Wu Y S, Yu G L, Jiang H X,etal. Role and lifestyle of calcified cyanobacteria (Stanieria) in Permian-Triassic boundary microbialites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 39-47.
[59] 熊林芳.坳陷型富烃凹陷优质烃源岩的形成环境——以鄂尔多斯盆地长7烃源岩为例[D].西安:西北大学档案馆,2015. Xiong L F. Formation Environment of the High Quality Source Rocks in Basin of Depression-Type: An Example from Chang-7 Source Rock in Ordos Basin, China[D]. Xi’an: The Archive of Northwest University, 2015. (in Chinese)
ThecarbonateconcretionsofChang-7andtheirhydrocarbonsignificanceinsouthernOrdosBasin,China
DONG Jie1, HU Zuowei1, YUAN Xiaoqi2, HE Jing2, Li Yun1, WANG Yulong1
1.StateKeyLaboratoryofOil&GasReservoirGeologyandExploitation,ChengduUniversityofTechnology,Chengdu610059,China;2.ResearchInstituteofExplorationandDevelopment,ChangqingOilfieldCompanyofPetroChina,Xi’an710018,China
Carbonate concretions, usually the products of microbial activity, can provide the information of diagenetic processes. On the basis of field investigation, thin section observation, application of scanning electron microscopy, X-ray diffraction and carbon oxygen isotopes, the limestone and dolomite concretions, abundant in the oil shales of Chang-7 (Member 7 of Upper Triassic Yanchang Formation) in Weibei area of the southern Ordos Basin, are studied. It is considered that the limestone and dolomite concretions are products of early diagenesis and the formation of calcite pellets and dolomite pellets is formed early and their features are similar to the algae.δ13C, which evidently heavier than the variation range ofδ13C during late Triassic, indicating that the formation of the carbonate concretions is related to the methane formation resulted from alkane producing and microbial metabolic activity. The formation of calcite pellets and dolomite pellets in the Chang-7 concretions is probably related to microbial activity and the carbonate nodules in the Chang-7 are indicator of favorable source rocks with good hydrocarbon generating capacity.
Ordos Basin; Yanchang Formation; oil shale; carbonate concretions
P588.245; TE122.116 [
] A
10.3969/j.issn.1671-9727.2017.05.06
1671-9727(2017)05-0553-12
2016-12-30。
国家自然科学基金项目(41302085, 41372113, 41102063); 国家科技重大专项(2011ZX05001, 2011ZX 05044); 高等学校博士学科点专项新教师类科研基金项目(20135122120006, 20115122120004); 油气藏地质及开发工程国家重点实验室开放研究基金项目(PLC201408); 成都理工大学中青年骨干教师培养计划项目(KYGG201532, KYGG201208)。
董杰(1991-),男,硕士研究生,研究方向:沉积学, E-mail: 635144435@qq.com。
胡作维(1981-),男,博士,副教授,研究方向:沉积学, E-mail: huzuowei@foxmail.com。