APP下载

CD45分子在HIV-1病毒感染中的作用研究进展

2017-08-07李克雷

中国比较医学杂志 2017年6期
关键词:聚糖糖基化酪氨酸

李克雷,薛 婧,魏 强

(北京协和医学院比较医学中心,中国医学科学院医学实验动物研究所,卫生部人类疾病比较医学重点实验室,国家中医药管理局人类疾病动物模型三级实验室,新发再发传染病动物模型研究北京市重点实验室,北京 100021)

CD45分子在HIV-1病毒感染中的作用研究进展

李克雷,薛 婧,魏 强

(北京协和医学院比较医学中心,中国医学科学院医学实验动物研究所,卫生部人类疾病比较医学重点实验室,国家中医药管理局人类疾病动物模型三级实验室,新发再发传染病动物模型研究北京市重点实验室,北京 100021)

CD45分子是具有磷酸酶活性的跨膜蛋白,在免疫细胞中发挥重要作用。CD45分子对抗原受体信号转导是必需的,并具有调节细胞凋亡的作用,其功能紊乱会导致自身免疫性疾病、免疫缺陷、恶性肿瘤等。CD45分子的结构及其功能与HIV感染之间的关系是艾滋病研究领域的重要内容之一,本文就CD45分子在HIV感染中的作用作一综述。

CD45;HIV;免疫细胞

CD45分子是受体蛋白酪氨酸磷酸酶,主要表达于有核的造血细胞,主要功能涉及造血细胞的发育、活化、衰老和凋亡。CD45对T细胞的发育非常重要,如果CD45丢失,那么在胸腺中进行的双阳性选择会导致细胞的大量凋亡。此外,CD45作为跨膜分子,在细胞的信号转导中发挥重要作用。鉴于CD45是细胞膜上信号转导的关键分子,在淋巴细胞的发育成熟、功能调节及信号传递中具有重要意义。

1 CD45分子的结构

CD45分子为I型跨膜糖蛋白,其胞内区由D1、D2两个结构域组成,D1结构域具有酪氨酸磷酸酶活性,D2结构域对D1结构域的活性起调节作用;其胞外区包括3个纤维连接蛋白区、1个半胱氨酸富集区和3个由mRNA的选择性剪接得到的结构域,即A、B、C异构体。成熟的CD45分子量范围为180—240 kDa,其最大的异构体为CD45RABC,最小的变构体为CD45RO,结构如图1所示[1]。CD45RABC富含O-聚糖和N-聚糖,主要包括A、B、C 3个含O-聚糖的区域,近膜端区域含有N-聚糖;另一种剪接形式CD45RO仅含有N-聚糖的近膜端区域,不含有O-聚糖。

CD45分子上的O-聚糖主要包括两个核心结构:core-1与core-2[2],这两个核心结构可被聚N-乙酰基、唾液酸和海藻糖修饰。与O-聚糖不同,N-聚糖前体合成时具有甘露糖结构,以便其在高尔基体内修饰,N-聚糖的这种结构增加了CD45的稳定性。糖基化形式在细胞表面的变化对细胞存活及功能具有重要影响。

图1 CD45分子结构示意图 [19]Fig.1 Schematic diagram of the molecular structure of CD45

2 CD45分子在免疫细胞中的作用

CD45分子是T细胞活化所必需的。研究表明TCR或CD3信号刺激不能使CD45表达缺失的T细胞增殖和产生细胞因子[3、4],并且在CD45缺陷的小鼠模型中也证明CD45在免疫系统中发挥的重要作用[5、6]。

CD45分子主要是通过蛋白酪氨酸激酶(PTKs)的调节来实现对淋巴细胞的发育和活化的调控[7]。PTKs由Src家族(p56lck和p59fyn)、Syr家族(ZAP-70)和Jak家族组成,CD45对p56lck和p59fyn的调节在淋巴细胞活化和信号转导中起重要作用。p56lck和p59fyn分子结构上存在两个关键的调节性酪氨酸磷酸化位点,即一个活化位点和一个抑制位点。CD45通过使活化位点和抑制位点去磷酸化控制Src激酶的活性[8]。在静息淋巴细胞中,CD45可以和磷酸基团竞争抑制位点并使活化位点去磷酸化,使Src激酶处于非活化状态。当抗原和受体结合后,膜蛋白的位置发生改变,Src激酶向抗原受体方向位移,使Src激酶和CD45分离,活化位点磷酸化而使Src激酶活化,此时CD45发挥正向调节作用。在整合素介导的细胞粘附过程中,Src激酶和CD45同时向粘附位点位移,活化位点去磷酸化,此时CD45发挥负调节作用[9、10]。

在淋巴T细胞的分化过程中,CD45表达不同的异构体,同时细胞表面的糖基化也发生改变。T细胞表面的糖基化形式可用来区分T细胞亚群[11],花生凝集素可与无唾液酸化的core-1O-聚糖结合,而不能与唾液酸化core-1O-聚糖结合,而两者在不同细胞上存在,前者存在于活化T细胞,后者存在于初始T细胞。Core-2O-聚糖存在于不成熟的胸腺细胞,而不存在于成熟的胸腺细胞,也存在于活化的T细胞而非初始T细胞[12、13]。CD45糖基化对细胞的功能及存活可产生重要影响。CD45糖基化可调节T细胞的细胞因子产生[14],凝集素jacalin可通过特异地与CD45 core-1O-聚糖末端的Galβ1-3GalNAc结合而活化T细胞,并诱导T细胞产生IL-2。Galectin-1也可通过与CD45的结合调节细胞因子的产生,减少Th1的细胞因子水平,增加Th2细胞因子的产生能力[15、16];CD45糖基化对调节细胞凋亡的易感性,galectin-1结合CD45诱导T细胞凋亡,只有当T细胞共表达C2GnT和CD45的core-2O-聚糖时,galectin-1才能诱导凋亡[17、18]。Galectin-3也可诱导T细胞凋亡,而这一过程受到CD45分子O-聚糖和N-聚糖的调节,galectin-3能诱导CD45+Jurkat细胞调亡,但不能诱导CD45-J45.01细胞凋亡,galectin-3仅能诱导CD45RABC-J45.01细胞发生凋亡却不能诱导CD45RO-J45.01细胞发生凋亡,表明CD45分子中的O-聚糖在调节galectin-3诱导Jurkat细胞调亡中发挥着重要的作用[19]。

3 CD45在HIV感染中的作用

T细胞是HIV感染的主要靶细胞。在HIV感染时,对T细胞表面分子的变化研究能够进一步阐述HIV的感染机制。研究表明,表达CD45RO的CD4+T细胞更易于结合HIV-1,而CD45RO-细胞却不能结合[20、21],并且与HIV在CD4+CD45RABC+初始细胞内复制程度相比,HIV更容易在CD4+CD45RO+记忆细胞内复制[22],当HIV感染CD4+CD45RO+细胞时,CD3/CD28刺激信号引起的细胞核因子反应更强烈,进一步说明HIV在CD45RO+细胞内更易复制[23]。学者还发现HIV感染时CD45在T细胞表面的密度减少,CD4+T细胞上CD45RA和CD45RO表达降低,CD45RA在CD8+T细胞上降低,CD45RO在CD8+T细胞的表达升高[24、25],由于CD45基因的多样性,使得表达不同CD45分子的细胞对病毒的易感性有很大差异。例如将编码CD45的外显子进行C77G突变后,CD45的mRNA会发生异常剪切,最终可增加细胞对HIV的易感性[26];其他研究也显示CD45的多态性与细胞对HIV的易感性有关,在非洲乌干达人中CD45的第4个外显子有A54G突变,而这种的突变结构降低了HIV的感染频率[27],这些都证明CD45与HIV感染密切相关。

HIV感染T细胞后可使细胞发生凋亡,多种机制参与了这一过程,其中包括CD45分子介导的细胞凋亡。由于HIV-1感染T细胞可干扰CD45的酪氨酸磷酸酶活性和PLCγ的功能,对CD45活性的这种影响与疾病进程和细胞凋亡相关[28、29]。HIV的Tat、Vpr、Nef、gp120蛋白都可诱导细胞凋亡[30-33],但在对gp120诱导凋亡的研究中发现,gp120通过活化诱导的凋亡涉及到了细胞的活化[30,34],由于CD45分子在细胞活化过程中发挥重要作用,那么gp120诱导的凋亡可能与CD45有关。研究表明gp120诱导CD45-的T细胞凋亡率显著降低,CD45对gp120诱导凋亡的是通过抑制PI3K/Akt途径诱导FasL表达实现的,这表明CD45的胞外区在调节细胞凋亡过程中发挥作用[35],由于CD45胞外区具有多种糖基化位点,推测CD45的糖基化也在调节gp120诱导的凋亡过程中发挥作用。研究显示在HIV感染机体的过程中,一些未感染的T细胞的CD45的糖基化修饰发生变化,即无唾液酸化core-1O-聚糖和core-2O-聚糖表达增加,由于这种变化使得这些未感染细胞而通过旁观者效应发生凋亡[36]。

由于HIV潜伏库的存在,当前的AIDS治疗方法并不能有效完全清楚体能的HIV病毒,而潜伏感染的CD4+T是HIV治疗的主要障碍[37]。HIV主要潜伏在静息的记忆T细胞中[38],静息记忆T细胞表面标志为CD4+CD45RO+,故对CD45分子的深入研究可能为清除HIV潜伏库提供新的思路。研究表明,在猪尾猕猴体内,表达于CD4+T细胞表面的CD45RO 可用于检测HIV-1 感染模型中潜伏库细胞的数量[39],并且也有学者采用抗CD45RO的免疫毒素来清除HIV潜伏库细胞,在体外,该免疫毒素清除潜伏感染细胞效率可达到99%,且对CD45RA+初始T细胞和CD8+记忆T细胞无杀伤作用[40、41],表明针对CD45RO的靶向药物设计具有清除HIV潜伏库的可行性。

4 展望

CD45是一个重要的跨膜分子,它以其蛋白酪氨酸磷酸酶活性使蛋白酪氨酸激酶的抑制位点的酪氨酸去磷酸化从而使其活化,进而在T细胞活化的信号传递中起重要作用。随着对CD45研究的深入,发现CD45与多种疾病相关,人们试图利用单克隆抗体或药物阻断CD45介导的信号转导来阻断淋巴细胞的活化,进而应用于诱导免疫耐受和逆转移植排斥反应的研究。但CD45及其结合蛋白在淋巴细胞的发育、增殖和活化过程中的确切作用机制仍不甚清楚,特别是CD45分子在HIV感染过程中的作用以及对潜伏库细胞形成的作用仍需进一步研究。

[1] Dupéré-Minier G, Desharnais P, Bernier J. Involvement of tyrosine phosphatase CD45 in apoptosis [J]. Apoptosis, 2009, 15(1): 1-13.

[2] Furukawa K, Funakoshi Y, Autero M, et al. Structural study of the O-linked sugar chains of human leukocyte tyrosine phosphatase CD45 [J]. Eur J Biochem, 1998, 251(1-2): 288-294.

[3] Pingel JT, Thomas ML. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation [J]. Cell, 1989, 58(6): 1055-1065.

[4] Koretzky GA, PicusJ, Schultz T, et al. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production [J]. Proc Natl Acad Sci U S A, 1991, 88(6): 2037-2041.

[5] Kishihara K, Penninger J, Wallace VA, et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice.[J]. Cell, 1993, 74(74): 143-156.

[6] Byth KF, Conroy LA, Howlett S, et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation [J]. J Experimenta Med, 2015, 68(1): 105-114.

[7] Penninger JM, Irie-Sasaki J, Sasaki T, et al. CD45: New jobs for an old acquaintance [J]. Nature Immunol, 2001, 2(5): 389-96.

[8] Roach T, Slater S, Koval M, et al. CD45 regulates Src family member kinase activity associated with macrophage integrin-mediated adhesion [J]. Curr Biol, 1997, 7(6): 408-417.

[9] Thomas ML, Brown EJ. Positive and negative regulation of Src-family membrane kinases by CD45 [J]. Immunol Today, 1999, 20(20): 406-411.

[10] Alexander DR. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function [J]. Semin Immunol, 2000, 12(4): 349-359.

[11] ReisnerY, Linker-Israeli M, Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin [J]. Cell Immunol, 2005, 314(7086): 1033-1036.

[12] Galvan M, Murali-Krishna K, Ming LL, et al. Alterations in cell surface carbohydrates on T cells from infected mice can distinguish effector/memory CD8+ T cells from naive cells [J]. J Immunol, 1998, 161(2): 641-648.

[13] Grabie N, Delfs MW, Lim YC, et al. β-Galactoside α2,3-sialyltransferase-I gene expression during Th2 but not Th1 differentiation: implications for core2-glycan formation on cell surface proteins [J]. Eur J Immunol, 2002, 32(10): 2766-2772.

[14] Makoto B, Bruce YM, Motohiro N, et al. Glycosylation-dependent interaction of Jacalin with CD45 induces T lymphocyte activation and Th1/Th2 cytokine secretion [J]. J Leukocyte Biol, 2007, 81(4): 1002-1011.

[15] Cedenolaurent F, Opperman M, Barthel SR, et al. Galectin-1 triggers an immunoregulatory signature in T helper cells functionally defined by il-10 expression[J].J Immunol, 2012,188(7): 3127.

[16] Baum LG, Blackall DP, Sarah AM, et al. Amelioration of graft versus host disease by galectin-1 [J]. Clin Immunol, 2003, 109(3): 295-307.

[17] Nguyen JT, Evans DP, Galvan M, et al. CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans [J]. J Immunol, 2001, 167(10): 5697-707.

[18] Galvan M, Tsuboi S, Fukuda M, et al. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1 [J]. J Biol Chem, 2000, 275(22): 16730-16737.

[19] Jing X, Xiqiang G, Chunyan F, et al. Regulation of galectin-3-induced apoptosis of Jurkat cells by both O-glycans and N-glycans on CD45 [J]. FEBS Letters, 2013, 587(24): 3986-3994.

[20] Julià B, Jordi B, Arantxa G, et al. Preferential attachment of HIV particles to activated and CD45RO+CD4+T cells [J]. AIDS Res Human Retroviruses, 2002, 18(1): 27-38.

[21] WangWF, Guo J, Yu DY, et al. A dichotomy in cortical actin and chemotactic actin activity between human memory and naive T cells contributes to their differential susceptibility to HIV-1 infection [J]. J Biol Chem, 2012, 287(42): 35455-35469

[22] Spina CA, Prince HE, Richman DD. Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro [J]. J Clin Invest, 1997, 99(7): 1774-1785

[23] Robichaud G A, Benoit B, Jean-Francois F, et al. Nuclear factor of activated T cells is a driving force for preferential productive HIV-1 infection of CD45RO-expressing CD4+ T cells [J]. J Biol Chem, 2002, 277(26): 23733-13741.

[24] Mahalingam M, Pozniak A, Mcmanus T J, et al. Abnormalities of CD45 isoform expression in HIV infection [J]. Clin Immunol Immunopathol, 1996, 81(2): 210-214.

[25] Bruunsgaard H, Pedersen C, Scheibel E, et al. Increase in percentage of CD45RO+/CD8+ cells is associated with previous severe primary HIV infection [J]. J Acquired Immune Defic Syndr Human Retrovirol, 1995, 10(2): 107-114.

[26] Tchilian EZ, Wallace DL, Dawes R, et al. A point mutation in CD45 may be associated with an increased risk of HIV-1 infection [J]. AIDS, 2001, 15(15): 1892-1894

[27] Stanton T, Boxall S, Bennett A, et al. CD45 variant alleles: possibly increased frequency of a novel exon 4 CD45 polymorphism in HIV seropositive Ugandans [J]. Immunogenetics, 2004, 56(2): 107-110.

[28] Giovannetti A, Pierdominici M, Mazzetta F, et al. HIV type 1-induced inhibition of CD45 tyrosine phosphatase activity correlates with disease progression and apoptosis, but not with anti-CD3-induced T cell proliferation [J]. AIDS Res Human Retroviruses, 2000, 16(3): 211-219.

[29] Guntermann C, Amft N, Murphy BJ, et al. Impaired CD45-associated tyrosine phosphatase activity during HIV-1 infection: implications for CD3 and CD4 receptor signaling [J]. Biochemical Biophys Res Commun, 1998, 252(1): 69-77.

[30] Roggero R, Robert-Hebmann V, Harrington S, et al. Binding of human immunodeficiency virus type 1 gp120 to CXCR4 induces mitochondrial transmembrane depolarization and cytochrome c-mediated apoptosis independently of Fas signaling [J]. J Virol, 2001, 75(16): 7637-7650.

[31] Lenassi M, Cagney G, Liao M, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells [J]. Traffic 2010, 11, 110-122.

[32] Nayoung K, Sami K, Sumeet G, et al. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells [J]. Plos Pathogens, 2010, 6(9): e1001103-e1001103.

[33] Arokium H, Kamata M, Chen I. Virion-associated Vpr of human immunodeficiency virus type 1 triggers activation of apoptotic events and enhances Fas-induced apoptosis in human T cells [J]. J Virol, 2009, 83(21): 11283-11297.

[34] Westendorp MO, Frank R, Ochsenbauer C, et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120 [J]. Nature, 1995, 375(6531): 497-500.

[35] Anand AR, Ganju RK. HIV-1 gp120-mediated apoptosis of T cells is regulated by the membrane tyrosine phosphatase CD45[J]. J Biol Chem, 2006, 281(18): 12289-12299.

[36] Lantéri M, Giordanengo V, Hiraoka N, et al. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death [J]. Glycobiology 2003, 13: 909-918.

[37] Dahabieh MS, Battivelli E, Verdin E. Understanding HIV latency: The road to an HIV cure [J]. Ann Rev Med, 2015, 66: 407-421.

[38] Angela C, Pejman M, Monica G, et al. Bioinformatics and HIV latency [J]. Curr HIV/AIDS Rep, 2015, 12(1): 97-106.

[39] Valentine M, Song K, Maresh GA, et al. Expression of the memory marker CD45RO on helper T cells in macaques [J]. PLoS One, 2013, 8(9): e73969.

[40] Mccoig C, Dyke GV, Chou CS, et al. An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro [J]. Proc Natl Acad Sci U S A, 1999, 96(20): 11482-11485.

[41] Saavedra-Lozano J, Cao Y, Callison J, et al. An anti-CD45RO immunotoxin kills HIV-latently infected cells from individuals on HAART with little effect on CD8 memory [J]. Proc Natl Acad Sci U S A, 2004, 101(8): 2494-2499.

Research progress on the role of CD45 in HIV-1 infection

LI Ke-lei,XUE Jing,WEI Qiang

(Comparative Medicine Center, Peking Union College (PUMC) & Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Beijing 100021, China)

CD45 is a transmembrane molecule with phosphatase activity, and plays a major role in immune cells. CD45 is required for the antigen receptor signal transduction, and attributed as an apoptosis regulator. Impairment of this function may result in autoimmune, immunodeficiency, and malignant diseases. The role of CD45 in HIV-1 infection is one of important research topics. This paper summarizes the research progress on the role of CD45 in HIV-1 infection.

CD45;HIV-1;Immune cells

国家自然科学基金(青年科学基金项目,81301437),科技部重大专项(2014ZX10001001-001-004,2014ZX10001001-002-006)。

李克雷(1986-),男,博士生,从事实验动物病毒学和免疫学工作。E-mail: leekelei@126.com。

魏强,教授,博士导师,研究方向:实验动物病毒学。E-mail: weiqiang@cnilas.pumc.edu.cn。

综述与专论

R-33

A

1671-7856(2017) 06-0082-04

10.3969.j.issn.1671-7856. 2017.06.017

2017-02-21

猜你喜欢

聚糖糖基化酪氨酸
小麦型饲粮中添加酸性木聚糖酶对肉鸡消化道食糜黏度的影响
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
木聚糖酶在烘焙中的应用
PD-1/PD-L1 的糖基化修饰对肿瘤免疫治疗影响的研究进展
祛白胶囊联合脾氨肽治疗对白癜风患者IL-10、IL-17、酪氨酸酶IgG的影响
四氢嘧啶对酪氨酸酶的抑制作用机制及类型※
非淀粉多糖对肉鸡生长和发育的影响
饲料用β-甘露聚糖酶活力的测定
蛋白质O-GlcNAc糖基化修饰在妇科肿瘤中的研究进展
吃酱油伤疤会变黑?